Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mac_psc.h
Go to the documentation of this file.
1 /*
2  * Apple Peripheral System Controller (PSC)
3  *
4  * The PSC is used on the AV Macs to control IO functions not handled
5  * by the VIAs (Ethernet, DSP, SCC, Sound). This includes nine DMA
6  * channels.
7  *
8  * The first seven DMA channels appear to be "one-shot" and are actually
9  * sets of two channels; one member is active while the other is being
10  * configured, and then you flip the active member and start all over again.
11  * The one-shot channels are grouped together and are:
12  *
13  * 1. SCSI
14  * 2. Ethernet Read
15  * 3. Ethernet Write
16  * 4. Floppy Disk Controller
17  * 5. SCC Channel A Receive
18  * 6. SCC Channel B Receive
19  * 7. SCC Channel A Transmit
20  *
21  * The remaining two channels are handled somewhat differently. They appear
22  * to be closely tied and share one set of registers. They also seem to run
23  * continuously, although how you keep the buffer filled in this scenario is
24  * not understood as there seems to be only one input and one output buffer
25  * pointer.
26  *
27  * Much of this was extrapolated from what was known about the Ethernet
28  * registers and subsequently confirmed using MacsBug (ie by pinging the
29  * machine with easy-to-find patterns and looking for them in the DMA
30  * buffers, or by sending a file over the serial ports and finding the
31  * file in the buffers.)
32  *
33  * 1999-05-25 (jmt)
34  */
35 
36 #define PSC_BASE (0x50F31000)
37 
38 /*
39  * The IER/IFR registers work like the VIA, except that it has 4
40  * of them each on different interrupt levels, and each register
41  * set only seems to handle four interrupts instead of seven.
42  *
43  * To access a particular set of registers, add 0xn0 to the base
44  * where n = 3,4,5 or 6.
45  */
46 
47 #define pIFRbase 0x100
48 #define pIERbase 0x104
49 
50 /*
51  * One-shot DMA control registers
52  */
53 
54 #define PSC_MYSTERY 0x804
55 
56 #define PSC_CTL_BASE 0xC00
57 
58 #define PSC_SCSI_CTL 0xC00
59 #define PSC_ENETRD_CTL 0xC10
60 #define PSC_ENETWR_CTL 0xC20
61 #define PSC_FDC_CTL 0xC30
62 #define PSC_SCCA_CTL 0xC40
63 #define PSC_SCCB_CTL 0xC50
64 #define PSC_SCCATX_CTL 0xC60
65 
66 /*
67  * DMA channels. Add +0x10 for the second channel in the set.
68  * You're supposed to use one channel while the other runs and
69  * then flip channels and do the whole thing again.
70  */
71 
72 #define PSC_ADDR_BASE 0x1000
73 #define PSC_LEN_BASE 0x1004
74 #define PSC_CMD_BASE 0x1008
75 
76 #define PSC_SET0 0x00
77 #define PSC_SET1 0x10
78 
79 #define PSC_SCSI_ADDR 0x1000 /* confirmed */
80 #define PSC_SCSI_LEN 0x1004 /* confirmed */
81 #define PSC_SCSI_CMD 0x1008 /* confirmed */
82 #define PSC_ENETRD_ADDR 0x1020 /* confirmed */
83 #define PSC_ENETRD_LEN 0x1024 /* confirmed */
84 #define PSC_ENETRD_CMD 0x1028 /* confirmed */
85 #define PSC_ENETWR_ADDR 0x1040 /* confirmed */
86 #define PSC_ENETWR_LEN 0x1044 /* confirmed */
87 #define PSC_ENETWR_CMD 0x1048 /* confirmed */
88 #define PSC_FDC_ADDR 0x1060 /* strongly suspected */
89 #define PSC_FDC_LEN 0x1064 /* strongly suspected */
90 #define PSC_FDC_CMD 0x1068 /* strongly suspected */
91 #define PSC_SCCA_ADDR 0x1080 /* confirmed */
92 #define PSC_SCCA_LEN 0x1084 /* confirmed */
93 #define PSC_SCCA_CMD 0x1088 /* confirmed */
94 #define PSC_SCCB_ADDR 0x10A0 /* confirmed */
95 #define PSC_SCCB_LEN 0x10A4 /* confirmed */
96 #define PSC_SCCB_CMD 0x10A8 /* confirmed */
97 #define PSC_SCCATX_ADDR 0x10C0 /* confirmed */
98 #define PSC_SCCATX_LEN 0x10C4 /* confirmed */
99 #define PSC_SCCATX_CMD 0x10C8 /* confirmed */
100 
101 /*
102  * Free-running DMA registers. The only part known for sure are the bits in
103  * the control register, the buffer addresses and the buffer length. Everything
104  * else is anybody's guess.
105  *
106  * These registers seem to be mirrored every thirty-two bytes up until offset
107  * 0x300. It's safe to assume then that a new set of registers starts there.
108  */
109 
110 #define PSC_SND_CTL 0x200 /*
111  * [ 16-bit ]
112  * Sound (Singer?) control register.
113  *
114  * bit 0 : ????
115  * bit 1 : ????
116  * bit 2 : Set to one to enable sound
117  * output. Possibly a mute flag.
118  * bit 3 : ????
119  * bit 4 : ????
120  * bit 5 : ????
121  * bit 6 : Set to one to enable pass-thru
122  * audio. In this mode the audio data
123  * seems to appear in both the input
124  * buffer and the output buffer.
125  * bit 7 : Set to one to activate the
126  * sound input DMA or zero to
127  * disable it.
128  * bit 8 : Set to one to activate the
129  * sound output DMA or zero to
130  * disable it.
131  * bit 9 : \
132  * bit 11 : |
133  * These two bits control the sample
134  * rate. Usually set to binary 10 and
135  * MacOS 8.0 says I'm at 48 KHz. Using
136  * a binary value of 01 makes things
137  * sound about 1/2 speed (24 KHz?) and
138  * binary 00 is slower still (22 KHz?)
139  *
140  * Setting this to 0x0000 is a good way to
141  * kill all DMA at boot time so that the
142  * PSC won't overwrite the kernel image
143  * with sound data.
144  */
145 
146 /*
147  * 0x0202 - 0x0203 is unused. Writing there
148  * seems to clobber the control register.
149  */
150 
151 #define PSC_SND_SOURCE 0x204 /*
152  * [ 32-bit ]
153  * Controls input source and volume:
154  *
155  * bits 12-15 : input source volume, 0 - F
156  * bits 16-19 : unknown, always 0x5
157  * bits 20-23 : input source selection:
158  * 0x3 = CD Audio
159  * 0x4 = External Audio
160  *
161  * The volume is definitely not the general
162  * output volume as it doesn't affect the
163  * alert sound volume.
164  */
165 #define PSC_SND_STATUS1 0x208 /*
166  * [ 32-bit ]
167  * Appears to be a read-only status register.
168  * The usual value is 0x00400002.
169  */
170 #define PSC_SND_HUH3 0x20C /*
171  * [ 16-bit ]
172  * Unknown 16-bit value, always 0x0000.
173  */
174 #define PSC_SND_BITS2GO 0x20E /*
175  * [ 16-bit ]
176  * Counts down to zero from some constant
177  * value. The value appears to be the
178  * number of _bits_ remaining before the
179  * buffer is full, which would make sense
180  * since Apple's docs say the sound DMA
181  * channels are 1 bit wide.
182  */
183 #define PSC_SND_INADDR 0x210 /*
184  * [ 32-bit ]
185  * Address of the sound input DMA buffer
186  */
187 #define PSC_SND_OUTADDR 0x214 /*
188  * [ 32-bit ]
189  * Address of the sound output DMA buffer
190  */
191 #define PSC_SND_LEN 0x218 /*
192  * [ 16-bit ]
193  * Length of both buffers in eight-byte units.
194  */
195 #define PSC_SND_HUH4 0x21A /*
196  * [ 16-bit ]
197  * Unknown, always 0x0000.
198  */
199 #define PSC_SND_STATUS2 0x21C /*
200  * [ 16-bit ]
201  * Appears to e a read-only status register.
202  * The usual value is 0x0200.
203  */
204 #define PSC_SND_HUH5 0x21E /*
205  * [ 16-bit ]
206  * Unknown, always 0x0000.
207  */
208 
209 #ifndef __ASSEMBLY__
210 
211 extern volatile __u8 *psc;
212 extern int psc_present;
213 
214 extern void psc_register_interrupts(void);
215 extern void psc_irq_enable(int);
216 extern void psc_irq_disable(int);
217 
218 /*
219  * Access functions
220  */
221 
222 static inline void psc_write_byte(int offset, __u8 data)
223 {
224  *((volatile __u8 *)(psc + offset)) = data;
225 }
226 
227 static inline void psc_write_word(int offset, __u16 data)
228 {
229  *((volatile __u16 *)(psc + offset)) = data;
230 }
231 
232 static inline void psc_write_long(int offset, __u32 data)
233 {
234  *((volatile __u32 *)(psc + offset)) = data;
235 }
236 
237 static inline u8 psc_read_byte(int offset)
238 {
239  return *((volatile __u8 *)(psc + offset));
240 }
241 
242 static inline u16 psc_read_word(int offset)
243 {
244  return *((volatile __u16 *)(psc + offset));
245 }
246 
247 static inline u32 psc_read_long(int offset)
248 {
249  return *((volatile __u32 *)(psc + offset));
250 }
251 
252 #endif /* __ASSEMBLY__ */