Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mem_map.h
Go to the documentation of this file.
1 /*
2  * BF561 memory map
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  * Licensed under the GPL-2 or later.
6  */
7 
8 #ifndef __BFIN_MACH_MEM_MAP_H__
9 #define __BFIN_MACH_MEM_MAP_H__
10 
11 #ifndef __BFIN_MEM_MAP_H__
12 # error "do not include mach/mem_map.h directly -- use asm/mem_map.h"
13 #endif
14 
15 /* Async Memory Banks */
16 #define ASYNC_BANK3_BASE 0x2C000000 /* Async Bank 3 */
17 #define ASYNC_BANK3_SIZE 0x04000000 /* 64M */
18 #define ASYNC_BANK2_BASE 0x28000000 /* Async Bank 2 */
19 #define ASYNC_BANK2_SIZE 0x04000000 /* 64M */
20 #define ASYNC_BANK1_BASE 0x24000000 /* Async Bank 1 */
21 #define ASYNC_BANK1_SIZE 0x04000000 /* 64M */
22 #define ASYNC_BANK0_BASE 0x20000000 /* Async Bank 0 */
23 #define ASYNC_BANK0_SIZE 0x04000000 /* 64M */
24 
25 /* Boot ROM Memory */
26 
27 #define BOOT_ROM_START 0xEF000000
28 #define BOOT_ROM_LENGTH 0x800
29 
30 /* Level 1 Memory */
31 
32 #ifdef CONFIG_BFIN_ICACHE
33 #define BFIN_ICACHESIZE (16*1024)
34 #else
35 #define BFIN_ICACHESIZE (0*1024)
36 #endif
37 
38 /* Memory Map for ADSP-BF561 processors */
39 
40 #define COREA_L1_CODE_START 0xFFA00000
41 #define COREA_L1_DATA_A_START 0xFF800000
42 #define COREA_L1_DATA_B_START 0xFF900000
43 #define COREB_L1_CODE_START 0xFF600000
44 #define COREB_L1_DATA_A_START 0xFF400000
45 #define COREB_L1_DATA_B_START 0xFF500000
46 
47 #define L1_CODE_START COREA_L1_CODE_START
48 #define L1_DATA_A_START COREA_L1_DATA_A_START
49 #define L1_DATA_B_START COREA_L1_DATA_B_START
50 
51 #define L1_CODE_LENGTH 0x4000
52 
53 #ifdef CONFIG_BFIN_DCACHE
54 
55 #ifdef CONFIG_BFIN_DCACHE_BANKA
56 #define DMEM_CNTR (ACACHE_BSRAM | ENDCPLB | PORT_PREF0)
57 #define L1_DATA_A_LENGTH (0x8000 - 0x4000)
58 #define L1_DATA_B_LENGTH 0x8000
59 #define BFIN_DCACHESIZE (16*1024)
60 #define BFIN_DSUPBANKS 1
61 #else
62 #define DMEM_CNTR (ACACHE_BCACHE | ENDCPLB | PORT_PREF0)
63 #define L1_DATA_A_LENGTH (0x8000 - 0x4000)
64 #define L1_DATA_B_LENGTH (0x8000 - 0x4000)
65 #define BFIN_DCACHESIZE (32*1024)
66 #define BFIN_DSUPBANKS 2
67 #endif
68 
69 #else
70 #define DMEM_CNTR (ASRAM_BSRAM | ENDCPLB | PORT_PREF0)
71 #define L1_DATA_A_LENGTH 0x8000
72 #define L1_DATA_B_LENGTH 0x8000
73 #define BFIN_DCACHESIZE (0*1024)
74 #define BFIN_DSUPBANKS 0
75 #endif /*CONFIG_BFIN_DCACHE*/
76 
77 /*
78  * If we are in SMP mode, then the cache settings of Core B will match
79  * the settings of Core A. If we aren't, then we assume Core B is not
80  * using any cache. This allows the rest of the kernel to work with
81  * the core in either mode as we are only loading user code into it and
82  * it is the user's problem to make sure they aren't doing something
83  * stupid there.
84  *
85  * Note that we treat the L1 code region as a contiguous blob to make
86  * the rest of the kernel simpler. Easier to check one region than a
87  * bunch of small ones. Again, possible misbehavior here is the fault
88  * of the user -- don't try to use memory that doesn't exist.
89  */
90 #ifdef CONFIG_SMP
91 # define COREB_L1_CODE_LENGTH L1_CODE_LENGTH
92 # define COREB_L1_DATA_A_LENGTH L1_DATA_A_LENGTH
93 # define COREB_L1_DATA_B_LENGTH L1_DATA_B_LENGTH
94 #else
95 # define COREB_L1_CODE_LENGTH 0x14000
96 # define COREB_L1_DATA_A_LENGTH 0x8000
97 # define COREB_L1_DATA_B_LENGTH 0x8000
98 #endif
99 
100 /* Level 2 Memory */
101 #define L2_START 0xFEB00000
102 #define L2_LENGTH 0x20000
103 
104 /* Scratch Pad Memory */
105 
106 #define COREA_L1_SCRATCH_START 0xFFB00000
107 #define COREB_L1_SCRATCH_START 0xFF700000
108 
109 #ifdef CONFIG_SMP
110 
111 /*
112  * The following macros both return the address of the PDA for the
113  * current core.
114  *
115  * In its first safe (and hairy) form, the macro neither clobbers any
116  * register aside of the output Preg, nor uses the stack, since it
117  * could be called with an invalid stack pointer, or the current stack
118  * space being uncovered by any CPLB (e.g. early exception handling).
119  *
120  * The constraints on the second form are a bit relaxed, and the code
121  * is allowed to use the specified Dreg for determining the PDA
122  * address to be returned into Preg.
123  */
124 # define GET_PDA_SAFE(preg) \
125  preg.l = lo(DSPID); \
126  preg.h = hi(DSPID); \
127  preg = [preg]; \
128  preg = preg << 2; \
129  preg = preg << 2; \
130  preg = preg << 2; \
131  preg = preg << 2; \
132  preg = preg << 2; \
133  preg = preg << 2; \
134  preg = preg << 2; \
135  preg = preg << 2; \
136  preg = preg << 2; \
137  preg = preg << 2; \
138  preg = preg << 2; \
139  preg = preg << 2; \
140  if cc jump 2f; \
141  cc = preg == 0x0; \
142  preg.l = _cpu_pda; \
143  preg.h = _cpu_pda; \
144  if !cc jump 3f; \
145 1: \
146  /* preg = 0x0; */ \
147  cc = !cc; /* restore cc to 0 */ \
148  jump 4f; \
149 2: \
150  cc = preg == 0x0; \
151  preg.l = _cpu_pda; \
152  preg.h = _cpu_pda; \
153  if cc jump 4f; \
154  /* preg = 0x1000000; */ \
155  cc = !cc; /* restore cc to 1 */ \
156 3: \
157  preg = [preg]; \
158 4:
159 
160 # define GET_PDA(preg, dreg) \
161  preg.l = lo(DSPID); \
162  preg.h = hi(DSPID); \
163  dreg = [preg]; \
164  preg.l = _cpu_pda; \
165  preg.h = _cpu_pda; \
166  cc = bittst(dreg, 0); \
167  if !cc jump 1f; \
168  preg = [preg]; \
169 1: \
170 
171 # define GET_CPUID(preg, dreg) \
172  preg.l = lo(DSPID); \
173  preg.h = hi(DSPID); \
174  dreg = [preg]; \
175  dreg = ROT dreg BY -1; \
176  dreg = CC;
177 
178 # ifndef __ASSEMBLY__
179 
180 # include <asm/processor.h>
181 
182 static inline unsigned long get_l1_scratch_start_cpu(int cpu)
183 {
185 }
186 static inline unsigned long get_l1_code_start_cpu(int cpu)
187 {
189 }
190 static inline unsigned long get_l1_data_a_start_cpu(int cpu)
191 {
193 }
194 static inline unsigned long get_l1_data_b_start_cpu(int cpu)
195 {
197 }
198 
199 static inline unsigned long get_l1_scratch_start(void)
200 {
201  return get_l1_scratch_start_cpu(blackfin_core_id());
202 }
203 static inline unsigned long get_l1_code_start(void)
204 {
205  return get_l1_code_start_cpu(blackfin_core_id());
206 }
207 static inline unsigned long get_l1_data_a_start(void)
208 {
209  return get_l1_data_a_start_cpu(blackfin_core_id());
210 }
211 static inline unsigned long get_l1_data_b_start(void)
212 {
213  return get_l1_data_b_start_cpu(blackfin_core_id());
214 }
215 
216 # endif /* __ASSEMBLY__ */
217 #endif /* CONFIG_SMP */
218 
219 #endif