Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mbcache.c
Go to the documentation of this file.
1 /*
2  * linux/fs/mbcache.c
3  * (C) 2001-2002 Andreas Gruenbacher, <[email protected]>
4  */
5 
6 /*
7  * Filesystem Meta Information Block Cache (mbcache)
8  *
9  * The mbcache caches blocks of block devices that need to be located
10  * by their device/block number, as well as by other criteria (such
11  * as the block's contents).
12  *
13  * There can only be one cache entry in a cache per device and block number.
14  * Additional indexes need not be unique in this sense. The number of
15  * additional indexes (=other criteria) can be hardwired at compile time
16  * or specified at cache create time.
17  *
18  * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19  * in the cache. A valid entry is in the main hash tables of the cache,
20  * and may also be in the lru list. An invalid entry is not in any hashes
21  * or lists.
22  *
23  * A valid cache entry is only in the lru list if no handles refer to it.
24  * Invalid cache entries will be freed when the last handle to the cache
25  * entry is released. Entries that cannot be freed immediately are put
26  * back on the lru list.
27  */
28 
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 
32 #include <linux/hash.h>
33 #include <linux/fs.h>
34 #include <linux/mm.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/init.h>
38 #include <linux/mbcache.h>
39 
40 
41 #ifdef MB_CACHE_DEBUG
42 # define mb_debug(f...) do { \
43  printk(KERN_DEBUG f); \
44  printk("\n"); \
45  } while (0)
46 #define mb_assert(c) do { if (!(c)) \
47  printk(KERN_ERR "assertion " #c " failed\n"); \
48  } while(0)
49 #else
50 # define mb_debug(f...) do { } while(0)
51 # define mb_assert(c) do { } while(0)
52 #endif
53 #define mb_error(f...) do { \
54  printk(KERN_ERR f); \
55  printk("\n"); \
56  } while(0)
57 
58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
59 
60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
61 
62 MODULE_AUTHOR("Andreas Gruenbacher <[email protected]>");
63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64 MODULE_LICENSE("GPL");
65 
74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
77 #endif
78 
79 /*
80  * Global data: list of all mbcache's, lru list, and a spinlock for
81  * accessing cache data structures on SMP machines. The lru list is
82  * global across all mbcaches.
83  */
84 
85 static LIST_HEAD(mb_cache_list);
86 static LIST_HEAD(mb_cache_lru_list);
87 static DEFINE_SPINLOCK(mb_cache_spinlock);
88 
89 /*
90  * What the mbcache registers as to get shrunk dynamically.
91  */
92 
93 static int mb_cache_shrink_fn(struct shrinker *shrink,
94  struct shrink_control *sc);
95 
96 static struct shrinker mb_cache_shrinker = {
97  .shrink = mb_cache_shrink_fn,
98  .seeks = DEFAULT_SEEKS,
99 };
100 
101 static inline int
102 __mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
103 {
104  return !list_empty(&ce->e_block_list);
105 }
106 
107 
108 static void
109 __mb_cache_entry_unhash(struct mb_cache_entry *ce)
110 {
111  if (__mb_cache_entry_is_hashed(ce)) {
112  list_del_init(&ce->e_block_list);
113  list_del(&ce->e_index.o_list);
114  }
115 }
116 
117 
118 static void
119 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
120 {
121  struct mb_cache *cache = ce->e_cache;
122 
123  mb_assert(!(ce->e_used || ce->e_queued));
124  kmem_cache_free(cache->c_entry_cache, ce);
125  atomic_dec(&cache->c_entry_count);
126 }
127 
128 
129 static void
130 __mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
131  __releases(mb_cache_spinlock)
132 {
133  /* Wake up all processes queuing for this cache entry. */
134  if (ce->e_queued)
135  wake_up_all(&mb_cache_queue);
136  if (ce->e_used >= MB_CACHE_WRITER)
137  ce->e_used -= MB_CACHE_WRITER;
138  ce->e_used--;
139  if (!(ce->e_used || ce->e_queued)) {
140  if (!__mb_cache_entry_is_hashed(ce))
141  goto forget;
142  mb_assert(list_empty(&ce->e_lru_list));
143  list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
144  }
145  spin_unlock(&mb_cache_spinlock);
146  return;
147 forget:
148  spin_unlock(&mb_cache_spinlock);
149  __mb_cache_entry_forget(ce, GFP_KERNEL);
150 }
151 
152 
153 /*
154  * mb_cache_shrink_fn() memory pressure callback
155  *
156  * This function is called by the kernel memory management when memory
157  * gets low.
158  *
159  * @shrink: (ignored)
160  * @sc: shrink_control passed from reclaim
161  *
162  * Returns the number of objects which are present in the cache.
163  */
164 static int
165 mb_cache_shrink_fn(struct shrinker *shrink, struct shrink_control *sc)
166 {
167  LIST_HEAD(free_list);
168  struct mb_cache *cache;
169  struct mb_cache_entry *entry, *tmp;
170  int count = 0;
171  int nr_to_scan = sc->nr_to_scan;
172  gfp_t gfp_mask = sc->gfp_mask;
173 
174  mb_debug("trying to free %d entries", nr_to_scan);
175  spin_lock(&mb_cache_spinlock);
176  while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
177  struct mb_cache_entry *ce =
178  list_entry(mb_cache_lru_list.next,
179  struct mb_cache_entry, e_lru_list);
180  list_move_tail(&ce->e_lru_list, &free_list);
181  __mb_cache_entry_unhash(ce);
182  }
183  list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
184  mb_debug("cache %s (%d)", cache->c_name,
185  atomic_read(&cache->c_entry_count));
186  count += atomic_read(&cache->c_entry_count);
187  }
188  spin_unlock(&mb_cache_spinlock);
189  list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
190  __mb_cache_entry_forget(entry, gfp_mask);
191  }
192  return (count / 100) * sysctl_vfs_cache_pressure;
193 }
194 
195 
196 /*
197  * mb_cache_create() create a new cache
198  *
199  * All entries in one cache are equal size. Cache entries may be from
200  * multiple devices. If this is the first mbcache created, registers
201  * the cache with kernel memory management. Returns NULL if no more
202  * memory was available.
203  *
204  * @name: name of the cache (informal)
205  * @bucket_bits: log2(number of hash buckets)
206  */
207 struct mb_cache *
208 mb_cache_create(const char *name, int bucket_bits)
209 {
210  int n, bucket_count = 1 << bucket_bits;
211  struct mb_cache *cache = NULL;
212 
213  cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL);
214  if (!cache)
215  return NULL;
216  cache->c_name = name;
217  atomic_set(&cache->c_entry_count, 0);
218  cache->c_bucket_bits = bucket_bits;
219  cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
220  GFP_KERNEL);
221  if (!cache->c_block_hash)
222  goto fail;
223  for (n=0; n<bucket_count; n++)
224  INIT_LIST_HEAD(&cache->c_block_hash[n]);
225  cache->c_index_hash = kmalloc(bucket_count * sizeof(struct list_head),
226  GFP_KERNEL);
227  if (!cache->c_index_hash)
228  goto fail;
229  for (n=0; n<bucket_count; n++)
230  INIT_LIST_HEAD(&cache->c_index_hash[n]);
231  cache->c_entry_cache = kmem_cache_create(name,
232  sizeof(struct mb_cache_entry), 0,
234  if (!cache->c_entry_cache)
235  goto fail2;
236 
237  /*
238  * Set an upper limit on the number of cache entries so that the hash
239  * chains won't grow too long.
240  */
241  cache->c_max_entries = bucket_count << 4;
242 
243  spin_lock(&mb_cache_spinlock);
244  list_add(&cache->c_cache_list, &mb_cache_list);
245  spin_unlock(&mb_cache_spinlock);
246  return cache;
247 
248 fail2:
249  kfree(cache->c_index_hash);
250 
251 fail:
252  kfree(cache->c_block_hash);
253  kfree(cache);
254  return NULL;
255 }
256 
257 
258 /*
259  * mb_cache_shrink()
260  *
261  * Removes all cache entries of a device from the cache. All cache entries
262  * currently in use cannot be freed, and thus remain in the cache. All others
263  * are freed.
264  *
265  * @bdev: which device's cache entries to shrink
266  */
267 void
269 {
271  struct list_head *l, *ltmp;
272 
273  spin_lock(&mb_cache_spinlock);
274  list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
275  struct mb_cache_entry *ce =
277  if (ce->e_bdev == bdev) {
278  list_move_tail(&ce->e_lru_list, &free_list);
279  __mb_cache_entry_unhash(ce);
280  }
281  }
282  spin_unlock(&mb_cache_spinlock);
283  list_for_each_safe(l, ltmp, &free_list) {
284  __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
286  }
287 }
288 
289 
290 /*
291  * mb_cache_destroy()
292  *
293  * Shrinks the cache to its minimum possible size (hopefully 0 entries),
294  * and then destroys it. If this was the last mbcache, un-registers the
295  * mbcache from kernel memory management.
296  */
297 void
299 {
301  struct list_head *l, *ltmp;
302 
303  spin_lock(&mb_cache_spinlock);
304  list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
305  struct mb_cache_entry *ce =
307  if (ce->e_cache == cache) {
308  list_move_tail(&ce->e_lru_list, &free_list);
309  __mb_cache_entry_unhash(ce);
310  }
311  }
312  list_del(&cache->c_cache_list);
313  spin_unlock(&mb_cache_spinlock);
314 
315  list_for_each_safe(l, ltmp, &free_list) {
316  __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
318  }
319 
320  if (atomic_read(&cache->c_entry_count) > 0) {
321  mb_error("cache %s: %d orphaned entries",
322  cache->c_name,
323  atomic_read(&cache->c_entry_count));
324  }
325 
327 
328  kfree(cache->c_index_hash);
329  kfree(cache->c_block_hash);
330  kfree(cache);
331 }
332 
333 /*
334  * mb_cache_entry_alloc()
335  *
336  * Allocates a new cache entry. The new entry will not be valid initially,
337  * and thus cannot be looked up yet. It should be filled with data, and
338  * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
339  * if no more memory was available.
340  */
341 struct mb_cache_entry *
342 mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
343 {
344  struct mb_cache_entry *ce = NULL;
345 
346  if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) {
347  spin_lock(&mb_cache_spinlock);
348  if (!list_empty(&mb_cache_lru_list)) {
349  ce = list_entry(mb_cache_lru_list.next,
350  struct mb_cache_entry, e_lru_list);
351  list_del_init(&ce->e_lru_list);
352  __mb_cache_entry_unhash(ce);
353  }
354  spin_unlock(&mb_cache_spinlock);
355  }
356  if (!ce) {
357  ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
358  if (!ce)
359  return NULL;
360  atomic_inc(&cache->c_entry_count);
361  INIT_LIST_HEAD(&ce->e_lru_list);
362  INIT_LIST_HEAD(&ce->e_block_list);
363  ce->e_cache = cache;
364  ce->e_queued = 0;
365  }
366  ce->e_used = 1 + MB_CACHE_WRITER;
367  return ce;
368 }
369 
370 
371 /*
372  * mb_cache_entry_insert()
373  *
374  * Inserts an entry that was allocated using mb_cache_entry_alloc() into
375  * the cache. After this, the cache entry can be looked up, but is not yet
376  * in the lru list as the caller still holds a handle to it. Returns 0 on
377  * success, or -EBUSY if a cache entry for that device + inode exists
378  * already (this may happen after a failed lookup, but when another process
379  * has inserted the same cache entry in the meantime).
380  *
381  * @bdev: device the cache entry belongs to
382  * @block: block number
383  * @key: lookup key
384  */
385 int
387  sector_t block, unsigned int key)
388 {
389  struct mb_cache *cache = ce->e_cache;
390  unsigned int bucket;
391  struct list_head *l;
392  int error = -EBUSY;
393 
394  bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
395  cache->c_bucket_bits);
396  spin_lock(&mb_cache_spinlock);
397  list_for_each_prev(l, &cache->c_block_hash[bucket]) {
398  struct mb_cache_entry *ce =
400  if (ce->e_bdev == bdev && ce->e_block == block)
401  goto out;
402  }
403  __mb_cache_entry_unhash(ce);
404  ce->e_bdev = bdev;
405  ce->e_block = block;
406  list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
407  ce->e_index.o_key = key;
408  bucket = hash_long(key, cache->c_bucket_bits);
409  list_add(&ce->e_index.o_list, &cache->c_index_hash[bucket]);
410  error = 0;
411 out:
412  spin_unlock(&mb_cache_spinlock);
413  return error;
414 }
415 
416 
417 /*
418  * mb_cache_entry_release()
419  *
420  * Release a handle to a cache entry. When the last handle to a cache entry
421  * is released it is either freed (if it is invalid) or otherwise inserted
422  * in to the lru list.
423  */
424 void
426 {
427  spin_lock(&mb_cache_spinlock);
428  __mb_cache_entry_release_unlock(ce);
429 }
430 
431 
432 /*
433  * mb_cache_entry_free()
434  *
435  * This is equivalent to the sequence mb_cache_entry_takeout() --
436  * mb_cache_entry_release().
437  */
438 void
440 {
441  spin_lock(&mb_cache_spinlock);
442  mb_assert(list_empty(&ce->e_lru_list));
443  __mb_cache_entry_unhash(ce);
444  __mb_cache_entry_release_unlock(ce);
445 }
446 
447 
448 /*
449  * mb_cache_entry_get()
450  *
451  * Get a cache entry by device / block number. (There can only be one entry
452  * in the cache per device and block.) Returns NULL if no such cache entry
453  * exists. The returned cache entry is locked for exclusive access ("single
454  * writer").
455  */
456 struct mb_cache_entry *
457 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
458  sector_t block)
459 {
460  unsigned int bucket;
461  struct list_head *l;
462  struct mb_cache_entry *ce;
463 
464  bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
465  cache->c_bucket_bits);
466  spin_lock(&mb_cache_spinlock);
467  list_for_each(l, &cache->c_block_hash[bucket]) {
468  ce = list_entry(l, struct mb_cache_entry, e_block_list);
469  if (ce->e_bdev == bdev && ce->e_block == block) {
470  DEFINE_WAIT(wait);
471 
472  if (!list_empty(&ce->e_lru_list))
473  list_del_init(&ce->e_lru_list);
474 
475  while (ce->e_used > 0) {
476  ce->e_queued++;
477  prepare_to_wait(&mb_cache_queue, &wait,
479  spin_unlock(&mb_cache_spinlock);
480  schedule();
481  spin_lock(&mb_cache_spinlock);
482  ce->e_queued--;
483  }
484  finish_wait(&mb_cache_queue, &wait);
485  ce->e_used += 1 + MB_CACHE_WRITER;
486 
487  if (!__mb_cache_entry_is_hashed(ce)) {
488  __mb_cache_entry_release_unlock(ce);
489  return NULL;
490  }
491  goto cleanup;
492  }
493  }
494  ce = NULL;
495 
496 cleanup:
497  spin_unlock(&mb_cache_spinlock);
498  return ce;
499 }
500 
501 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
502 
503 static struct mb_cache_entry *
504 __mb_cache_entry_find(struct list_head *l, struct list_head *head,
505  struct block_device *bdev, unsigned int key)
506 {
507  while (l != head) {
508  struct mb_cache_entry *ce =
509  list_entry(l, struct mb_cache_entry, e_index.o_list);
510  if (ce->e_bdev == bdev && ce->e_index.o_key == key) {
511  DEFINE_WAIT(wait);
512 
513  if (!list_empty(&ce->e_lru_list))
514  list_del_init(&ce->e_lru_list);
515 
516  /* Incrementing before holding the lock gives readers
517  priority over writers. */
518  ce->e_used++;
519  while (ce->e_used >= MB_CACHE_WRITER) {
520  ce->e_queued++;
521  prepare_to_wait(&mb_cache_queue, &wait,
523  spin_unlock(&mb_cache_spinlock);
524  schedule();
525  spin_lock(&mb_cache_spinlock);
526  ce->e_queued--;
527  }
528  finish_wait(&mb_cache_queue, &wait);
529 
530  if (!__mb_cache_entry_is_hashed(ce)) {
531  __mb_cache_entry_release_unlock(ce);
532  spin_lock(&mb_cache_spinlock);
533  return ERR_PTR(-EAGAIN);
534  }
535  return ce;
536  }
537  l = l->next;
538  }
539  return NULL;
540 }
541 
542 
543 /*
544  * mb_cache_entry_find_first()
545  *
546  * Find the first cache entry on a given device with a certain key in
547  * an additional index. Additional matches can be found with
548  * mb_cache_entry_find_next(). Returns NULL if no match was found. The
549  * returned cache entry is locked for shared access ("multiple readers").
550  *
551  * @cache: the cache to search
552  * @bdev: the device the cache entry should belong to
553  * @key: the key in the index
554  */
555 struct mb_cache_entry *
556 mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev,
557  unsigned int key)
558 {
559  unsigned int bucket = hash_long(key, cache->c_bucket_bits);
560  struct list_head *l;
561  struct mb_cache_entry *ce;
562 
563  spin_lock(&mb_cache_spinlock);
564  l = cache->c_index_hash[bucket].next;
565  ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
566  spin_unlock(&mb_cache_spinlock);
567  return ce;
568 }
569 
570 
571 /*
572  * mb_cache_entry_find_next()
573  *
574  * Find the next cache entry on a given device with a certain key in an
575  * additional index. Returns NULL if no match could be found. The previous
576  * entry is atomatically released, so that mb_cache_entry_find_next() can
577  * be called like this:
578  *
579  * entry = mb_cache_entry_find_first();
580  * while (entry) {
581  * ...
582  * entry = mb_cache_entry_find_next(entry, ...);
583  * }
584  *
585  * @prev: The previous match
586  * @bdev: the device the cache entry should belong to
587  * @key: the key in the index
588  */
589 struct mb_cache_entry *
591  struct block_device *bdev, unsigned int key)
592 {
593  struct mb_cache *cache = prev->e_cache;
594  unsigned int bucket = hash_long(key, cache->c_bucket_bits);
595  struct list_head *l;
596  struct mb_cache_entry *ce;
597 
598  spin_lock(&mb_cache_spinlock);
599  l = prev->e_index.o_list.next;
600  ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
601  __mb_cache_entry_release_unlock(prev);
602  return ce;
603 }
604 
605 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
606 
607 static int __init init_mbcache(void)
608 {
609  register_shrinker(&mb_cache_shrinker);
610  return 0;
611 }
612 
613 static void __exit exit_mbcache(void)
614 {
615  unregister_shrinker(&mb_cache_shrinker);
616 }
617 
618 module_init(init_mbcache)
619 module_exit(exit_mbcache)
620