Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
memblock.c
Go to the documentation of this file.
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp. June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22 
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25 
26 struct memblock memblock __initdata_memblock = {
27  .memory.regions = memblock_memory_init_regions,
28  .memory.cnt = 1, /* empty dummy entry */
29  .memory.max = INIT_MEMBLOCK_REGIONS,
30 
31  .reserved.regions = memblock_reserved_init_regions,
32  .reserved.cnt = 1, /* empty dummy entry */
33  .reserved.max = INIT_MEMBLOCK_REGIONS,
34 
35  .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
36 };
37 
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40 static int memblock_memory_in_slab __initdata_memblock = 0;
41 static int memblock_reserved_in_slab __initdata_memblock = 0;
42 
43 /* inline so we don't get a warning when pr_debug is compiled out */
44 static __init_memblock const char *
45 memblock_type_name(struct memblock_type *type)
46 {
47  if (type == &memblock.memory)
48  return "memory";
49  else if (type == &memblock.reserved)
50  return "reserved";
51  else
52  return "unknown";
53 }
54 
55 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
56 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
57 {
58  return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
59 }
60 
61 /*
62  * Address comparison utilities
63  */
64 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
66 {
67  return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
68 }
69 
70 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
71  phys_addr_t base, phys_addr_t size)
72 {
73  unsigned long i;
74 
75  for (i = 0; i < type->cnt; i++) {
76  phys_addr_t rgnbase = type->regions[i].base;
77  phys_addr_t rgnsize = type->regions[i].size;
78  if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
79  break;
80  }
81 
82  return (i < type->cnt) ? i : -1;
83 }
84 
100  phys_addr_t align, int nid)
101 {
102  phys_addr_t this_start, this_end, cand;
103  u64 i;
104 
105  /* pump up @end */
106  if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
107  end = memblock.current_limit;
108 
109  /* avoid allocating the first page */
110  start = max_t(phys_addr_t, start, PAGE_SIZE);
111  end = max(start, end);
112 
113  for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
114  this_start = clamp(this_start, start, end);
115  this_end = clamp(this_end, start, end);
116 
117  if (this_end < size)
118  continue;
119 
120  cand = round_down(this_end - size, align);
121  if (cand >= this_start)
122  return cand;
123  }
124  return 0;
125 }
126 
142 {
143  return memblock_find_in_range_node(start, end, size, align,
144  MAX_NUMNODES);
145 }
146 
147 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
148 {
149  type->total_size -= type->regions[r].size;
150  memmove(&type->regions[r], &type->regions[r + 1],
151  (type->cnt - (r + 1)) * sizeof(type->regions[r]));
152  type->cnt--;
153 
154  /* Special case for empty arrays */
155  if (type->cnt == 0) {
156  WARN_ON(type->total_size != 0);
157  type->cnt = 1;
158  type->regions[0].base = 0;
159  type->regions[0].size = 0;
160  memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
161  }
162 }
163 
165  phys_addr_t *addr)
166 {
167  if (memblock.reserved.regions == memblock_reserved_init_regions)
168  return 0;
169 
170  *addr = __pa(memblock.reserved.regions);
171 
172  return PAGE_ALIGN(sizeof(struct memblock_region) *
173  memblock.reserved.max);
174 }
175 
191 static int __init_memblock memblock_double_array(struct memblock_type *type,
192  phys_addr_t new_area_start,
193  phys_addr_t new_area_size)
194 {
195  struct memblock_region *new_array, *old_array;
196  phys_addr_t old_alloc_size, new_alloc_size;
197  phys_addr_t old_size, new_size, addr;
198  int use_slab = slab_is_available();
199  int *in_slab;
200 
201  /* We don't allow resizing until we know about the reserved regions
202  * of memory that aren't suitable for allocation
203  */
204  if (!memblock_can_resize)
205  return -1;
206 
207  /* Calculate new doubled size */
208  old_size = type->max * sizeof(struct memblock_region);
209  new_size = old_size << 1;
210  /*
211  * We need to allocated new one align to PAGE_SIZE,
212  * so we can free them completely later.
213  */
214  old_alloc_size = PAGE_ALIGN(old_size);
215  new_alloc_size = PAGE_ALIGN(new_size);
216 
217  /* Retrieve the slab flag */
218  if (type == &memblock.memory)
219  in_slab = &memblock_memory_in_slab;
220  else
221  in_slab = &memblock_reserved_in_slab;
222 
223  /* Try to find some space for it.
224  *
225  * WARNING: We assume that either slab_is_available() and we use it or
226  * we use MEMBLOCK for allocations. That means that this is unsafe to
227  * use when bootmem is currently active (unless bootmem itself is
228  * implemented on top of MEMBLOCK which isn't the case yet)
229  *
230  * This should however not be an issue for now, as we currently only
231  * call into MEMBLOCK while it's still active, or much later when slab
232  * is active for memory hotplug operations
233  */
234  if (use_slab) {
235  new_array = kmalloc(new_size, GFP_KERNEL);
236  addr = new_array ? __pa(new_array) : 0;
237  } else {
238  /* only exclude range when trying to double reserved.regions */
239  if (type != &memblock.reserved)
240  new_area_start = new_area_size = 0;
241 
242  addr = memblock_find_in_range(new_area_start + new_area_size,
243  memblock.current_limit,
244  new_alloc_size, PAGE_SIZE);
245  if (!addr && new_area_size)
246  addr = memblock_find_in_range(0,
247  min(new_area_start, memblock.current_limit),
248  new_alloc_size, PAGE_SIZE);
249 
250  new_array = addr ? __va(addr) : NULL;
251  }
252  if (!addr) {
253  pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
254  memblock_type_name(type), type->max, type->max * 2);
255  return -1;
256  }
257 
258  memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
259  memblock_type_name(type), type->max * 2, (u64)addr,
260  (u64)addr + new_size - 1);
261 
262  /*
263  * Found space, we now need to move the array over before we add the
264  * reserved region since it may be our reserved array itself that is
265  * full.
266  */
267  memcpy(new_array, type->regions, old_size);
268  memset(new_array + type->max, 0, old_size);
269  old_array = type->regions;
270  type->regions = new_array;
271  type->max <<= 1;
272 
273  /* Free old array. We needn't free it if the array is the static one */
274  if (*in_slab)
275  kfree(old_array);
276  else if (old_array != memblock_memory_init_regions &&
277  old_array != memblock_reserved_init_regions)
278  memblock_free(__pa(old_array), old_alloc_size);
279 
280  /*
281  * Reserve the new array if that comes from the memblock. Otherwise, we
282  * needn't do it
283  */
284  if (!use_slab)
285  BUG_ON(memblock_reserve(addr, new_alloc_size));
286 
287  /* Update slab flag */
288  *in_slab = use_slab;
289 
290  return 0;
291 }
292 
299 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
300 {
301  int i = 0;
302 
303  /* cnt never goes below 1 */
304  while (i < type->cnt - 1) {
305  struct memblock_region *this = &type->regions[i];
306  struct memblock_region *next = &type->regions[i + 1];
307 
308  if (this->base + this->size != next->base ||
309  memblock_get_region_node(this) !=
310  memblock_get_region_node(next)) {
311  BUG_ON(this->base + this->size > next->base);
312  i++;
313  continue;
314  }
315 
316  this->size += next->size;
317  memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
318  type->cnt--;
319  }
320 }
321 
332 static void __init_memblock memblock_insert_region(struct memblock_type *type,
333  int idx, phys_addr_t base,
334  phys_addr_t size, int nid)
335 {
336  struct memblock_region *rgn = &type->regions[idx];
337 
338  BUG_ON(type->cnt >= type->max);
339  memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
340  rgn->base = base;
341  rgn->size = size;
342  memblock_set_region_node(rgn, nid);
343  type->cnt++;
344  type->total_size += size;
345 }
346 
362 static int __init_memblock memblock_add_region(struct memblock_type *type,
363  phys_addr_t base, phys_addr_t size, int nid)
364 {
365  bool insert = false;
366  phys_addr_t obase = base;
367  phys_addr_t end = base + memblock_cap_size(base, &size);
368  int i, nr_new;
369 
370  if (!size)
371  return 0;
372 
373  /* special case for empty array */
374  if (type->regions[0].size == 0) {
375  WARN_ON(type->cnt != 1 || type->total_size);
376  type->regions[0].base = base;
377  type->regions[0].size = size;
378  memblock_set_region_node(&type->regions[0], nid);
379  type->total_size = size;
380  return 0;
381  }
382 repeat:
383  /*
384  * The following is executed twice. Once with %false @insert and
385  * then with %true. The first counts the number of regions needed
386  * to accomodate the new area. The second actually inserts them.
387  */
388  base = obase;
389  nr_new = 0;
390 
391  for (i = 0; i < type->cnt; i++) {
392  struct memblock_region *rgn = &type->regions[i];
393  phys_addr_t rbase = rgn->base;
394  phys_addr_t rend = rbase + rgn->size;
395 
396  if (rbase >= end)
397  break;
398  if (rend <= base)
399  continue;
400  /*
401  * @rgn overlaps. If it separates the lower part of new
402  * area, insert that portion.
403  */
404  if (rbase > base) {
405  nr_new++;
406  if (insert)
407  memblock_insert_region(type, i++, base,
408  rbase - base, nid);
409  }
410  /* area below @rend is dealt with, forget about it */
411  base = min(rend, end);
412  }
413 
414  /* insert the remaining portion */
415  if (base < end) {
416  nr_new++;
417  if (insert)
418  memblock_insert_region(type, i, base, end - base, nid);
419  }
420 
421  /*
422  * If this was the first round, resize array and repeat for actual
423  * insertions; otherwise, merge and return.
424  */
425  if (!insert) {
426  while (type->cnt + nr_new > type->max)
427  if (memblock_double_array(type, obase, size) < 0)
428  return -ENOMEM;
429  insert = true;
430  goto repeat;
431  } else {
432  memblock_merge_regions(type);
433  return 0;
434  }
435 }
436 
437 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
438  int nid)
439 {
440  return memblock_add_region(&memblock.memory, base, size, nid);
441 }
442 
443 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
444 {
445  return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
446 }
447 
464 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
465  phys_addr_t base, phys_addr_t size,
466  int *start_rgn, int *end_rgn)
467 {
468  phys_addr_t end = base + memblock_cap_size(base, &size);
469  int i;
470 
471  *start_rgn = *end_rgn = 0;
472 
473  if (!size)
474  return 0;
475 
476  /* we'll create at most two more regions */
477  while (type->cnt + 2 > type->max)
478  if (memblock_double_array(type, base, size) < 0)
479  return -ENOMEM;
480 
481  for (i = 0; i < type->cnt; i++) {
482  struct memblock_region *rgn = &type->regions[i];
483  phys_addr_t rbase = rgn->base;
484  phys_addr_t rend = rbase + rgn->size;
485 
486  if (rbase >= end)
487  break;
488  if (rend <= base)
489  continue;
490 
491  if (rbase < base) {
492  /*
493  * @rgn intersects from below. Split and continue
494  * to process the next region - the new top half.
495  */
496  rgn->base = base;
497  rgn->size -= base - rbase;
498  type->total_size -= base - rbase;
499  memblock_insert_region(type, i, rbase, base - rbase,
500  memblock_get_region_node(rgn));
501  } else if (rend > end) {
502  /*
503  * @rgn intersects from above. Split and redo the
504  * current region - the new bottom half.
505  */
506  rgn->base = end;
507  rgn->size -= end - rbase;
508  type->total_size -= end - rbase;
509  memblock_insert_region(type, i--, rbase, end - rbase,
510  memblock_get_region_node(rgn));
511  } else {
512  /* @rgn is fully contained, record it */
513  if (!*end_rgn)
514  *start_rgn = i;
515  *end_rgn = i + 1;
516  }
517  }
518 
519  return 0;
520 }
521 
522 static int __init_memblock __memblock_remove(struct memblock_type *type,
523  phys_addr_t base, phys_addr_t size)
524 {
525  int start_rgn, end_rgn;
526  int i, ret;
527 
528  ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
529  if (ret)
530  return ret;
531 
532  for (i = end_rgn - 1; i >= start_rgn; i--)
533  memblock_remove_region(type, i);
534  return 0;
535 }
536 
537 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
538 {
539  return __memblock_remove(&memblock.memory, base, size);
540 }
541 
542 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
543 {
544  memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
545  (unsigned long long)base,
546  (unsigned long long)base + size,
547  (void *)_RET_IP_);
548 
549  return __memblock_remove(&memblock.reserved, base, size);
550 }
551 
552 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
553 {
554  struct memblock_type *_rgn = &memblock.reserved;
555 
556  memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
557  (unsigned long long)base,
558  (unsigned long long)base + size,
559  (void *)_RET_IP_);
560 
561  return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
562 }
563 
587 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
588  phys_addr_t *out_start,
589  phys_addr_t *out_end, int *out_nid)
590 {
591  struct memblock_type *mem = &memblock.memory;
592  struct memblock_type *rsv = &memblock.reserved;
593  int mi = *idx & 0xffffffff;
594  int ri = *idx >> 32;
595 
596  for ( ; mi < mem->cnt; mi++) {
597  struct memblock_region *m = &mem->regions[mi];
598  phys_addr_t m_start = m->base;
599  phys_addr_t m_end = m->base + m->size;
600 
601  /* only memory regions are associated with nodes, check it */
602  if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
603  continue;
604 
605  /* scan areas before each reservation for intersection */
606  for ( ; ri < rsv->cnt + 1; ri++) {
607  struct memblock_region *r = &rsv->regions[ri];
608  phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
609  phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
610 
611  /* if ri advanced past mi, break out to advance mi */
612  if (r_start >= m_end)
613  break;
614  /* if the two regions intersect, we're done */
615  if (m_start < r_end) {
616  if (out_start)
617  *out_start = max(m_start, r_start);
618  if (out_end)
619  *out_end = min(m_end, r_end);
620  if (out_nid)
621  *out_nid = memblock_get_region_node(m);
622  /*
623  * The region which ends first is advanced
624  * for the next iteration.
625  */
626  if (m_end <= r_end)
627  mi++;
628  else
629  ri++;
630  *idx = (u32)mi | (u64)ri << 32;
631  return;
632  }
633  }
634  }
635 
636  /* signal end of iteration */
637  *idx = ULLONG_MAX;
638 }
639 
650 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
651  phys_addr_t *out_start,
652  phys_addr_t *out_end, int *out_nid)
653 {
654  struct memblock_type *mem = &memblock.memory;
655  struct memblock_type *rsv = &memblock.reserved;
656  int mi = *idx & 0xffffffff;
657  int ri = *idx >> 32;
658 
659  if (*idx == (u64)ULLONG_MAX) {
660  mi = mem->cnt - 1;
661  ri = rsv->cnt;
662  }
663 
664  for ( ; mi >= 0; mi--) {
665  struct memblock_region *m = &mem->regions[mi];
666  phys_addr_t m_start = m->base;
667  phys_addr_t m_end = m->base + m->size;
668 
669  /* only memory regions are associated with nodes, check it */
670  if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
671  continue;
672 
673  /* scan areas before each reservation for intersection */
674  for ( ; ri >= 0; ri--) {
675  struct memblock_region *r = &rsv->regions[ri];
676  phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
677  phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
678 
679  /* if ri advanced past mi, break out to advance mi */
680  if (r_end <= m_start)
681  break;
682  /* if the two regions intersect, we're done */
683  if (m_end > r_start) {
684  if (out_start)
685  *out_start = max(m_start, r_start);
686  if (out_end)
687  *out_end = min(m_end, r_end);
688  if (out_nid)
689  *out_nid = memblock_get_region_node(m);
690 
691  if (m_start >= r_start)
692  mi--;
693  else
694  ri--;
695  *idx = (u32)mi | (u64)ri << 32;
696  return;
697  }
698  }
699  }
700 
701  *idx = ULLONG_MAX;
702 }
703 
704 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
705 /*
706  * Common iterator interface used to define for_each_mem_range().
707  */
708 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
709  unsigned long *out_start_pfn,
710  unsigned long *out_end_pfn, int *out_nid)
711 {
712  struct memblock_type *type = &memblock.memory;
713  struct memblock_region *r;
714 
715  while (++*idx < type->cnt) {
716  r = &type->regions[*idx];
717 
718  if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
719  continue;
720  if (nid == MAX_NUMNODES || nid == r->nid)
721  break;
722  }
723  if (*idx >= type->cnt) {
724  *idx = -1;
725  return;
726  }
727 
728  if (out_start_pfn)
729  *out_start_pfn = PFN_UP(r->base);
730  if (out_end_pfn)
731  *out_end_pfn = PFN_DOWN(r->base + r->size);
732  if (out_nid)
733  *out_nid = r->nid;
734 }
735 
748 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
749  int nid)
750 {
751  struct memblock_type *type = &memblock.memory;
752  int start_rgn, end_rgn;
753  int i, ret;
754 
755  ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
756  if (ret)
757  return ret;
758 
759  for (i = start_rgn; i < end_rgn; i++)
760  memblock_set_region_node(&type->regions[i], nid);
761 
762  memblock_merge_regions(type);
763  return 0;
764 }
765 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
766 
767 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
768  phys_addr_t align, phys_addr_t max_addr,
769  int nid)
770 {
771  phys_addr_t found;
772 
773  /* align @size to avoid excessive fragmentation on reserved array */
774  size = round_up(size, align);
775 
776  found = memblock_find_in_range_node(0, max_addr, size, align, nid);
777  if (found && !memblock_reserve(found, size))
778  return found;
779 
780  return 0;
781 }
782 
784 {
785  return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
786 }
787 
789 {
790  return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
791 }
792 
794 {
795  phys_addr_t alloc;
796 
797  alloc = __memblock_alloc_base(size, align, max_addr);
798 
799  if (alloc == 0)
800  panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
801  (unsigned long long) size, (unsigned long long) max_addr);
802 
803  return alloc;
804 }
805 
807 {
808  return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
809 }
810 
812 {
813  phys_addr_t res = memblock_alloc_nid(size, align, nid);
814 
815  if (res)
816  return res;
817  return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
818 }
819 
820 
821 /*
822  * Remaining API functions
823  */
824 
826 {
827  return memblock.memory.total_size;
828 }
829 
830 /* lowest address */
831 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
832 {
833  return memblock.memory.regions[0].base;
834 }
835 
836 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
837 {
838  int idx = memblock.memory.cnt - 1;
839 
840  return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
841 }
842 
844 {
845  unsigned long i;
846  phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
847 
848  if (!limit)
849  return;
850 
851  /* find out max address */
852  for (i = 0; i < memblock.memory.cnt; i++) {
853  struct memblock_region *r = &memblock.memory.regions[i];
854 
855  if (limit <= r->size) {
856  max_addr = r->base + limit;
857  break;
858  }
859  limit -= r->size;
860  }
861 
862  /* truncate both memory and reserved regions */
863  __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
864  __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
865 }
866 
867 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
868 {
869  unsigned int left = 0, right = type->cnt;
870 
871  do {
872  unsigned int mid = (right + left) / 2;
873 
874  if (addr < type->regions[mid].base)
875  right = mid;
876  else if (addr >= (type->regions[mid].base +
877  type->regions[mid].size))
878  left = mid + 1;
879  else
880  return mid;
881  } while (left < right);
882  return -1;
883 }
884 
886 {
887  return memblock_search(&memblock.reserved, addr) != -1;
888 }
889 
890 int __init_memblock memblock_is_memory(phys_addr_t addr)
891 {
892  return memblock_search(&memblock.memory, addr) != -1;
893 }
894 
905 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
906 {
907  int idx = memblock_search(&memblock.memory, base);
908  phys_addr_t end = base + memblock_cap_size(base, &size);
909 
910  if (idx == -1)
911  return 0;
912  return memblock.memory.regions[idx].base <= base &&
913  (memblock.memory.regions[idx].base +
914  memblock.memory.regions[idx].size) >= end;
915 }
916 
927 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
928 {
929  memblock_cap_size(base, &size);
930  return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
931 }
932 
933 void __init_memblock memblock_trim_memory(phys_addr_t align)
934 {
935  int i;
936  phys_addr_t start, end, orig_start, orig_end;
937  struct memblock_type *mem = &memblock.memory;
938 
939  for (i = 0; i < mem->cnt; i++) {
940  orig_start = mem->regions[i].base;
941  orig_end = mem->regions[i].base + mem->regions[i].size;
942  start = round_up(orig_start, align);
943  end = round_down(orig_end, align);
944 
945  if (start == orig_start && end == orig_end)
946  continue;
947 
948  if (start < end) {
949  mem->regions[i].base = start;
950  mem->regions[i].size = end - start;
951  } else {
952  memblock_remove_region(mem, i);
953  i--;
954  }
955  }
956 }
957 
959 {
960  memblock.current_limit = limit;
961 }
962 
963 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
964 {
965  unsigned long long base, size;
966  int i;
967 
968  pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
969 
970  for (i = 0; i < type->cnt; i++) {
971  struct memblock_region *rgn = &type->regions[i];
972  char nid_buf[32] = "";
973 
974  base = rgn->base;
975  size = rgn->size;
976 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
977  if (memblock_get_region_node(rgn) != MAX_NUMNODES)
978  snprintf(nid_buf, sizeof(nid_buf), " on node %d",
979  memblock_get_region_node(rgn));
980 #endif
981  pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
982  name, i, base, base + size - 1, size, nid_buf);
983  }
984 }
985 
986 void __init_memblock __memblock_dump_all(void)
987 {
988  pr_info("MEMBLOCK configuration:\n");
989  pr_info(" memory size = %#llx reserved size = %#llx\n",
990  (unsigned long long)memblock.memory.total_size,
991  (unsigned long long)memblock.reserved.total_size);
992 
993  memblock_dump(&memblock.memory, "memory");
994  memblock_dump(&memblock.reserved, "reserved");
995 }
996 
998 {
999  memblock_can_resize = 1;
1000 }
1001 
1002 static int __init early_memblock(char *p)
1003 {
1004  if (p && strstr(p, "debug"))
1005  memblock_debug = 1;
1006  return 0;
1007 }
1008 early_param("memblock", early_memblock);
1009 
1010 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1011 
1012 static int memblock_debug_show(struct seq_file *m, void *private)
1013 {
1014  struct memblock_type *type = m->private;
1015  struct memblock_region *reg;
1016  int i;
1017 
1018  for (i = 0; i < type->cnt; i++) {
1019  reg = &type->regions[i];
1020  seq_printf(m, "%4d: ", i);
1021  if (sizeof(phys_addr_t) == 4)
1022  seq_printf(m, "0x%08lx..0x%08lx\n",
1023  (unsigned long)reg->base,
1024  (unsigned long)(reg->base + reg->size - 1));
1025  else
1026  seq_printf(m, "0x%016llx..0x%016llx\n",
1027  (unsigned long long)reg->base,
1028  (unsigned long long)(reg->base + reg->size - 1));
1029 
1030  }
1031  return 0;
1032 }
1033 
1034 static int memblock_debug_open(struct inode *inode, struct file *file)
1035 {
1036  return single_open(file, memblock_debug_show, inode->i_private);
1037 }
1038 
1039 static const struct file_operations memblock_debug_fops = {
1040  .open = memblock_debug_open,
1041  .read = seq_read,
1042  .llseek = seq_lseek,
1043  .release = single_release,
1044 };
1045 
1046 static int __init memblock_init_debugfs(void)
1047 {
1048  struct dentry *root = debugfs_create_dir("memblock", NULL);
1049  if (!root)
1050  return -ENXIO;
1051  debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1052  debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1053 
1054  return 0;
1055 }
1056 __initcall(memblock_init_debugfs);
1057 
1058 #endif /* CONFIG_DEBUG_FS */