Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
fault.c
Go to the documentation of this file.
1 /*
2  * arch/microblaze/mm/fault.c
3  *
4  * Copyright (C) 2007 Xilinx, Inc. All rights reserved.
5  *
6  * Derived from "arch/ppc/mm/fault.c"
7  * Copyright (C) 1995-1996 Gary Thomas ([email protected])
8  *
9  * Derived from "arch/i386/mm/fault.c"
10  * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
11  *
12  * Modified by Cort Dougan and Paul Mackerras.
13  *
14  * This file is subject to the terms and conditions of the GNU General
15  * Public License. See the file COPYING in the main directory of this
16  * archive for more details.
17  *
18  */
19 
20 #include <linux/module.h>
21 #include <linux/signal.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/ptrace.h>
28 #include <linux/mman.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 
32 #include <asm/page.h>
33 #include <asm/pgtable.h>
34 #include <asm/mmu.h>
35 #include <asm/mmu_context.h>
36 #include <linux/uaccess.h>
37 #include <asm/exceptions.h>
38 
39 static unsigned long pte_misses; /* updated by do_page_fault() */
40 static unsigned long pte_errors; /* updated by do_page_fault() */
41 
42 /*
43  * Check whether the instruction at regs->pc is a store using
44  * an update addressing form which will update r1.
45  */
46 static int store_updates_sp(struct pt_regs *regs)
47 {
48  unsigned int inst;
49 
50  if (get_user(inst, (unsigned int __user *)regs->pc))
51  return 0;
52  /* check for 1 in the rD field */
53  if (((inst >> 21) & 0x1f) != 1)
54  return 0;
55  /* check for store opcodes */
56  if ((inst & 0xd0000000) == 0xd0000000)
57  return 1;
58  return 0;
59 }
60 
61 
62 /*
63  * bad_page_fault is called when we have a bad access from the kernel.
64  * It is called from do_page_fault above and from some of the procedures
65  * in traps.c.
66  */
67 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
68 {
69  const struct exception_table_entry *fixup;
70 /* MS: no context */
71  /* Are we prepared to handle this fault? */
72  fixup = search_exception_tables(regs->pc);
73  if (fixup) {
74  regs->pc = fixup->fixup;
75  return;
76  }
77 
78  /* kernel has accessed a bad area */
79  die("kernel access of bad area", regs, sig);
80 }
81 
82 /*
83  * The error_code parameter is ESR for a data fault,
84  * 0 for an instruction fault.
85  */
86 void do_page_fault(struct pt_regs *regs, unsigned long address,
87  unsigned long error_code)
88 {
89  struct vm_area_struct *vma;
90  struct mm_struct *mm = current->mm;
92  int code = SEGV_MAPERR;
93  int is_write = error_code & ESR_S;
94  int fault;
95  unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
96  (is_write ? FAULT_FLAG_WRITE : 0);
97 
98  regs->ear = address;
99  regs->esr = error_code;
100 
101  /* On a kernel SLB miss we can only check for a valid exception entry */
102  if (unlikely(kernel_mode(regs) && (address >= TASK_SIZE))) {
103  printk(KERN_WARNING "kernel task_size exceed");
104  _exception(SIGSEGV, regs, code, address);
105  }
106 
107  /* for instr TLB miss and instr storage exception ESR_S is undefined */
108  if ((error_code & 0x13) == 0x13 || (error_code & 0x11) == 0x11)
109  is_write = 0;
110 
111  if (unlikely(in_atomic() || !mm)) {
112  if (kernel_mode(regs))
113  goto bad_area_nosemaphore;
114 
115  /* in_atomic() in user mode is really bad,
116  as is current->mm == NULL. */
117  printk(KERN_EMERG "Page fault in user mode with "
118  "in_atomic(), mm = %p\n", mm);
119  printk(KERN_EMERG "r15 = %lx MSR = %lx\n",
120  regs->r15, regs->msr);
121  die("Weird page fault", regs, SIGSEGV);
122  }
123 
124  /* When running in the kernel we expect faults to occur only to
125  * addresses in user space. All other faults represent errors in the
126  * kernel and should generate an OOPS. Unfortunately, in the case of an
127  * erroneous fault occurring in a code path which already holds mmap_sem
128  * we will deadlock attempting to validate the fault against the
129  * address space. Luckily the kernel only validly references user
130  * space from well defined areas of code, which are listed in the
131  * exceptions table.
132  *
133  * As the vast majority of faults will be valid we will only perform
134  * the source reference check when there is a possibility of a deadlock.
135  * Attempt to lock the address space, if we cannot we then validate the
136  * source. If this is invalid we can skip the address space check,
137  * thus avoiding the deadlock.
138  */
139  if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
140  if (kernel_mode(regs) && !search_exception_tables(regs->pc))
141  goto bad_area_nosemaphore;
142 
143 retry:
144  down_read(&mm->mmap_sem);
145  }
146 
147  vma = find_vma(mm, address);
148  if (unlikely(!vma))
149  goto bad_area;
150 
151  if (vma->vm_start <= address)
152  goto good_area;
153 
154  if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
155  goto bad_area;
156 
157  if (unlikely(!is_write))
158  goto bad_area;
159 
160  /*
161  * N.B. The ABI allows programs to access up to
162  * a few hundred bytes below the stack pointer (TBD).
163  * The kernel signal delivery code writes up to about 1.5kB
164  * below the stack pointer (r1) before decrementing it.
165  * The exec code can write slightly over 640kB to the stack
166  * before setting the user r1. Thus we allow the stack to
167  * expand to 1MB without further checks.
168  */
169  if (unlikely(address + 0x100000 < vma->vm_end)) {
170 
171  /* get user regs even if this fault is in kernel mode */
172  struct pt_regs *uregs = current->thread.regs;
173  if (uregs == NULL)
174  goto bad_area;
175 
176  /*
177  * A user-mode access to an address a long way below
178  * the stack pointer is only valid if the instruction
179  * is one which would update the stack pointer to the
180  * address accessed if the instruction completed,
181  * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
182  * (or the byte, halfword, float or double forms).
183  *
184  * If we don't check this then any write to the area
185  * between the last mapped region and the stack will
186  * expand the stack rather than segfaulting.
187  */
188  if (address + 2048 < uregs->r1
189  && (kernel_mode(regs) || !store_updates_sp(regs)))
190  goto bad_area;
191  }
192  if (expand_stack(vma, address))
193  goto bad_area;
194 
195 good_area:
196  code = SEGV_ACCERR;
197 
198  /* a write */
199  if (unlikely(is_write)) {
200  if (unlikely(!(vma->vm_flags & VM_WRITE)))
201  goto bad_area;
202  /* a read */
203  } else {
204  /* protection fault */
205  if (unlikely(error_code & 0x08000000))
206  goto bad_area;
207  if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC))))
208  goto bad_area;
209  }
210 
211  /*
212  * If for any reason at all we couldn't handle the fault,
213  * make sure we exit gracefully rather than endlessly redo
214  * the fault.
215  */
216  fault = handle_mm_fault(mm, vma, address, flags);
217 
218  if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
219  return;
220 
221  if (unlikely(fault & VM_FAULT_ERROR)) {
222  if (fault & VM_FAULT_OOM)
223  goto out_of_memory;
224  else if (fault & VM_FAULT_SIGBUS)
225  goto do_sigbus;
226  BUG();
227  }
228 
229  if (flags & FAULT_FLAG_ALLOW_RETRY) {
230  if (unlikely(fault & VM_FAULT_MAJOR))
231  current->maj_flt++;
232  else
233  current->min_flt++;
234  if (fault & VM_FAULT_RETRY) {
235  flags &= ~FAULT_FLAG_ALLOW_RETRY;
236  flags |= FAULT_FLAG_TRIED;
237 
238  /*
239  * No need to up_read(&mm->mmap_sem) as we would
240  * have already released it in __lock_page_or_retry
241  * in mm/filemap.c.
242  */
243 
244  goto retry;
245  }
246  }
247 
248  up_read(&mm->mmap_sem);
249 
250  /*
251  * keep track of tlb+htab misses that are good addrs but
252  * just need pte's created via handle_mm_fault()
253  * -- Cort
254  */
255  pte_misses++;
256  return;
257 
258 bad_area:
259  up_read(&mm->mmap_sem);
260 
261 bad_area_nosemaphore:
262  pte_errors++;
263 
264  /* User mode accesses cause a SIGSEGV */
265  if (user_mode(regs)) {
266  _exception(SIGSEGV, regs, code, address);
267 /* info.si_signo = SIGSEGV;
268  info.si_errno = 0;
269  info.si_code = code;
270  info.si_addr = (void *) address;
271  force_sig_info(SIGSEGV, &info, current);*/
272  return;
273  }
274 
275  bad_page_fault(regs, address, SIGSEGV);
276  return;
277 
278 /*
279  * We ran out of memory, or some other thing happened to us that made
280  * us unable to handle the page fault gracefully.
281  */
283  up_read(&mm->mmap_sem);
284  if (!user_mode(regs))
285  bad_page_fault(regs, address, SIGKILL);
286  else
288  return;
289 
290 do_sigbus:
291  up_read(&mm->mmap_sem);
292  if (user_mode(regs)) {
293  info.si_signo = SIGBUS;
294  info.si_errno = 0;
295  info.si_code = BUS_ADRERR;
296  info.si_addr = (void __user *)address;
297  force_sig_info(SIGBUS, &info, current);
298  return;
299  }
300  bad_page_fault(regs, address, SIGBUS);
301 }