Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mmu_notifier.h
Go to the documentation of this file.
1 #ifndef _LINUX_MMU_NOTIFIER_H
2 #define _LINUX_MMU_NOTIFIER_H
3 
4 #include <linux/list.h>
5 #include <linux/spinlock.h>
6 #include <linux/mm_types.h>
7 #include <linux/srcu.h>
8 
9 struct mmu_notifier;
10 struct mmu_notifier_ops;
11 
12 #ifdef CONFIG_MMU_NOTIFIER
13 
14 /*
15  * The mmu notifier_mm structure is allocated and installed in
16  * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
17  * critical section and it's released only when mm_count reaches zero
18  * in mmdrop().
19  */
20 struct mmu_notifier_mm {
21  /* all mmu notifiers registerd in this mm are queued in this list */
22  struct hlist_head list;
23  /* to serialize the list modifications and hlist_unhashed */
25 };
26 
27 struct mmu_notifier_ops {
28  /*
29  * Called either by mmu_notifier_unregister or when the mm is
30  * being destroyed by exit_mmap, always before all pages are
31  * freed. This can run concurrently with other mmu notifier
32  * methods (the ones invoked outside the mm context) and it
33  * should tear down all secondary mmu mappings and freeze the
34  * secondary mmu. If this method isn't implemented you've to
35  * be sure that nothing could possibly write to the pages
36  * through the secondary mmu by the time the last thread with
37  * tsk->mm == mm exits.
38  *
39  * As side note: the pages freed after ->release returns could
40  * be immediately reallocated by the gart at an alias physical
41  * address with a different cache model, so if ->release isn't
42  * implemented because all _software_ driven memory accesses
43  * through the secondary mmu are terminated by the time the
44  * last thread of this mm quits, you've also to be sure that
45  * speculative _hardware_ operations can't allocate dirty
46  * cachelines in the cpu that could not be snooped and made
47  * coherent with the other read and write operations happening
48  * through the gart alias address, so leading to memory
49  * corruption.
50  */
51  void (*release)(struct mmu_notifier *mn,
52  struct mm_struct *mm);
53 
54  /*
55  * clear_flush_young is called after the VM is
56  * test-and-clearing the young/accessed bitflag in the
57  * pte. This way the VM will provide proper aging to the
58  * accesses to the page through the secondary MMUs and not
59  * only to the ones through the Linux pte.
60  */
61  int (*clear_flush_young)(struct mmu_notifier *mn,
62  struct mm_struct *mm,
63  unsigned long address);
64 
65  /*
66  * test_young is called to check the young/accessed bitflag in
67  * the secondary pte. This is used to know if the page is
68  * frequently used without actually clearing the flag or tearing
69  * down the secondary mapping on the page.
70  */
71  int (*test_young)(struct mmu_notifier *mn,
72  struct mm_struct *mm,
73  unsigned long address);
74 
75  /*
76  * change_pte is called in cases that pte mapping to page is changed:
77  * for example, when ksm remaps pte to point to a new shared page.
78  */
79  void (*change_pte)(struct mmu_notifier *mn,
80  struct mm_struct *mm,
81  unsigned long address,
82  pte_t pte);
83 
84  /*
85  * Before this is invoked any secondary MMU is still ok to
86  * read/write to the page previously pointed to by the Linux
87  * pte because the page hasn't been freed yet and it won't be
88  * freed until this returns. If required set_page_dirty has to
89  * be called internally to this method.
90  */
91  void (*invalidate_page)(struct mmu_notifier *mn,
92  struct mm_struct *mm,
93  unsigned long address);
94 
95  /*
96  * invalidate_range_start() and invalidate_range_end() must be
97  * paired and are called only when the mmap_sem and/or the
98  * locks protecting the reverse maps are held. The subsystem
99  * must guarantee that no additional references are taken to
100  * the pages in the range established between the call to
101  * invalidate_range_start() and the matching call to
102  * invalidate_range_end().
103  *
104  * Invalidation of multiple concurrent ranges may be
105  * optionally permitted by the driver. Either way the
106  * establishment of sptes is forbidden in the range passed to
107  * invalidate_range_begin/end for the whole duration of the
108  * invalidate_range_begin/end critical section.
109  *
110  * invalidate_range_start() is called when all pages in the
111  * range are still mapped and have at least a refcount of one.
112  *
113  * invalidate_range_end() is called when all pages in the
114  * range have been unmapped and the pages have been freed by
115  * the VM.
116  *
117  * The VM will remove the page table entries and potentially
118  * the page between invalidate_range_start() and
119  * invalidate_range_end(). If the page must not be freed
120  * because of pending I/O or other circumstances then the
121  * invalidate_range_start() callback (or the initial mapping
122  * by the driver) must make sure that the refcount is kept
123  * elevated.
124  *
125  * If the driver increases the refcount when the pages are
126  * initially mapped into an address space then either
127  * invalidate_range_start() or invalidate_range_end() may
128  * decrease the refcount. If the refcount is decreased on
129  * invalidate_range_start() then the VM can free pages as page
130  * table entries are removed. If the refcount is only
131  * droppped on invalidate_range_end() then the driver itself
132  * will drop the last refcount but it must take care to flush
133  * any secondary tlb before doing the final free on the
134  * page. Pages will no longer be referenced by the linux
135  * address space but may still be referenced by sptes until
136  * the last refcount is dropped.
137  */
138  void (*invalidate_range_start)(struct mmu_notifier *mn,
139  struct mm_struct *mm,
140  unsigned long start, unsigned long end);
141  void (*invalidate_range_end)(struct mmu_notifier *mn,
142  struct mm_struct *mm,
143  unsigned long start, unsigned long end);
144 };
145 
146 /*
147  * The notifier chains are protected by mmap_sem and/or the reverse map
148  * semaphores. Notifier chains are only changed when all reverse maps and
149  * the mmap_sem locks are taken.
150  *
151  * Therefore notifier chains can only be traversed when either
152  *
153  * 1. mmap_sem is held.
154  * 2. One of the reverse map locks is held (i_mmap_mutex or anon_vma->mutex).
155  * 3. No other concurrent thread can access the list (release)
156  */
157 struct mmu_notifier {
158  struct hlist_node hlist;
159  const struct mmu_notifier_ops *ops;
160 };
161 
162 static inline int mm_has_notifiers(struct mm_struct *mm)
163 {
164  return unlikely(mm->mmu_notifier_mm);
165 }
166 
167 extern int mmu_notifier_register(struct mmu_notifier *mn,
168  struct mm_struct *mm);
169 extern int __mmu_notifier_register(struct mmu_notifier *mn,
170  struct mm_struct *mm);
171 extern void mmu_notifier_unregister(struct mmu_notifier *mn,
172  struct mm_struct *mm);
173 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
174 extern void __mmu_notifier_release(struct mm_struct *mm);
175 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
176  unsigned long address);
177 extern int __mmu_notifier_test_young(struct mm_struct *mm,
178  unsigned long address);
179 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
180  unsigned long address, pte_t pte);
181 extern void __mmu_notifier_invalidate_page(struct mm_struct *mm,
182  unsigned long address);
183 extern void __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
184  unsigned long start, unsigned long end);
185 extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
186  unsigned long start, unsigned long end);
187 
188 static inline void mmu_notifier_release(struct mm_struct *mm)
189 {
190  if (mm_has_notifiers(mm))
192 }
193 
194 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
195  unsigned long address)
196 {
197  if (mm_has_notifiers(mm))
198  return __mmu_notifier_clear_flush_young(mm, address);
199  return 0;
200 }
201 
202 static inline int mmu_notifier_test_young(struct mm_struct *mm,
203  unsigned long address)
204 {
205  if (mm_has_notifiers(mm))
206  return __mmu_notifier_test_young(mm, address);
207  return 0;
208 }
209 
210 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
211  unsigned long address, pte_t pte)
212 {
213  if (mm_has_notifiers(mm))
214  __mmu_notifier_change_pte(mm, address, pte);
215 }
216 
217 static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
218  unsigned long address)
219 {
220  if (mm_has_notifiers(mm))
221  __mmu_notifier_invalidate_page(mm, address);
222 }
223 
224 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
225  unsigned long start, unsigned long end)
226 {
227  if (mm_has_notifiers(mm))
229 }
230 
231 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
232  unsigned long start, unsigned long end)
233 {
234  if (mm_has_notifiers(mm))
235  __mmu_notifier_invalidate_range_end(mm, start, end);
236 }
237 
238 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
239 {
240  mm->mmu_notifier_mm = NULL;
241 }
242 
243 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
244 {
245  if (mm_has_notifiers(mm))
247 }
248 
249 #define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
250 ({ \
251  int __young; \
252  struct vm_area_struct *___vma = __vma; \
253  unsigned long ___address = __address; \
254  __young = ptep_clear_flush_young(___vma, ___address, __ptep); \
255  __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
256  ___address); \
257  __young; \
258 })
259 
260 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \
261 ({ \
262  int __young; \
263  struct vm_area_struct *___vma = __vma; \
264  unsigned long ___address = __address; \
265  __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \
266  __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
267  ___address); \
268  __young; \
269 })
270 
271 /*
272  * set_pte_at_notify() sets the pte _after_ running the notifier.
273  * This is safe to start by updating the secondary MMUs, because the primary MMU
274  * pte invalidate must have already happened with a ptep_clear_flush() before
275  * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is
276  * required when we change both the protection of the mapping from read-only to
277  * read-write and the pfn (like during copy on write page faults). Otherwise the
278  * old page would remain mapped readonly in the secondary MMUs after the new
279  * page is already writable by some CPU through the primary MMU.
280  */
281 #define set_pte_at_notify(__mm, __address, __ptep, __pte) \
282 ({ \
283  struct mm_struct *___mm = __mm; \
284  unsigned long ___address = __address; \
285  pte_t ___pte = __pte; \
286  \
287  mmu_notifier_change_pte(___mm, ___address, ___pte); \
288  set_pte_at(___mm, ___address, __ptep, ___pte); \
289 })
290 
291 #else /* CONFIG_MMU_NOTIFIER */
292 
293 static inline void mmu_notifier_release(struct mm_struct *mm)
294 {
295 }
296 
297 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
298  unsigned long address)
299 {
300  return 0;
301 }
302 
303 static inline int mmu_notifier_test_young(struct mm_struct *mm,
304  unsigned long address)
305 {
306  return 0;
307 }
308 
309 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
310  unsigned long address, pte_t pte)
311 {
312 }
313 
314 static inline void mmu_notifier_invalidate_page(struct mm_struct *mm,
315  unsigned long address)
316 {
317 }
318 
319 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
320  unsigned long start, unsigned long end)
321 {
322 }
323 
324 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
325  unsigned long start, unsigned long end)
326 {
327 }
328 
329 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
330 {
331 }
332 
333 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
334 {
335 }
336 
337 #define ptep_clear_flush_young_notify ptep_clear_flush_young
338 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
339 #define set_pte_at_notify set_pte_at
340 
341 #endif /* CONFIG_MMU_NOTIFIER */
342 
343 #endif /* _LINUX_MMU_NOTIFIER_H */