Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mtd_nandecctest.c
Go to the documentation of this file.
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/list.h>
4 #include <linux/random.h>
5 #include <linux/string.h>
6 #include <linux/bitops.h>
7 #include <linux/slab.h>
8 #include <linux/mtd/nand_ecc.h>
9 
10 /*
11  * Test the implementation for software ECC
12  *
13  * No actual MTD device is needed, So we don't need to warry about losing
14  * important data by human error.
15  *
16  * This covers possible patterns of corruption which can be reliably corrected
17  * or detected.
18  */
19 
20 #if defined(CONFIG_MTD_NAND) || defined(CONFIG_MTD_NAND_MODULE)
21 
22 struct nand_ecc_test {
23  const char *name;
24  void (*prepare)(void *, void *, void *, void *, const size_t);
25  int (*verify)(void *, void *, void *, const size_t);
26 };
27 
28 /*
29  * The reason for this __change_bit_le() instead of __change_bit() is to inject
30  * bit error properly within the region which is not a multiple of
31  * sizeof(unsigned long) on big-endian systems
32  */
33 #ifdef __LITTLE_ENDIAN
34 #define __change_bit_le(nr, addr) __change_bit(nr, addr)
35 #elif defined(__BIG_ENDIAN)
36 #define __change_bit_le(nr, addr) \
37  __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
38 #else
39 #error "Unknown byte order"
40 #endif
41 
42 static void single_bit_error_data(void *error_data, void *correct_data,
43  size_t size)
44 {
45  unsigned int offset = random32() % (size * BITS_PER_BYTE);
46 
47  memcpy(error_data, correct_data, size);
48  __change_bit_le(offset, error_data);
49 }
50 
51 static void double_bit_error_data(void *error_data, void *correct_data,
52  size_t size)
53 {
54  unsigned int offset[2];
55 
56  offset[0] = random32() % (size * BITS_PER_BYTE);
57  do {
58  offset[1] = random32() % (size * BITS_PER_BYTE);
59  } while (offset[0] == offset[1]);
60 
61  memcpy(error_data, correct_data, size);
62 
63  __change_bit_le(offset[0], error_data);
64  __change_bit_le(offset[1], error_data);
65 }
66 
67 static unsigned int random_ecc_bit(size_t size)
68 {
69  unsigned int offset = random32() % (3 * BITS_PER_BYTE);
70 
71  if (size == 256) {
72  /*
73  * Don't inject a bit error into the insignificant bits (16th
74  * and 17th bit) in ECC code for 256 byte data block
75  */
76  while (offset == 16 || offset == 17)
77  offset = random32() % (3 * BITS_PER_BYTE);
78  }
79 
80  return offset;
81 }
82 
83 static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
84  size_t size)
85 {
86  unsigned int offset = random_ecc_bit(size);
87 
88  memcpy(error_ecc, correct_ecc, 3);
89  __change_bit_le(offset, error_ecc);
90 }
91 
92 static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
93  size_t size)
94 {
95  unsigned int offset[2];
96 
97  offset[0] = random_ecc_bit(size);
98  do {
99  offset[1] = random_ecc_bit(size);
100  } while (offset[0] == offset[1]);
101 
102  memcpy(error_ecc, correct_ecc, 3);
103  __change_bit_le(offset[0], error_ecc);
104  __change_bit_le(offset[1], error_ecc);
105 }
106 
107 static void no_bit_error(void *error_data, void *error_ecc,
108  void *correct_data, void *correct_ecc, const size_t size)
109 {
110  memcpy(error_data, correct_data, size);
111  memcpy(error_ecc, correct_ecc, 3);
112 }
113 
114 static int no_bit_error_verify(void *error_data, void *error_ecc,
115  void *correct_data, const size_t size)
116 {
117  unsigned char calc_ecc[3];
118  int ret;
119 
120  __nand_calculate_ecc(error_data, size, calc_ecc);
121  ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
122  if (ret == 0 && !memcmp(correct_data, error_data, size))
123  return 0;
124 
125  return -EINVAL;
126 }
127 
128 static void single_bit_error_in_data(void *error_data, void *error_ecc,
129  void *correct_data, void *correct_ecc, const size_t size)
130 {
131  single_bit_error_data(error_data, correct_data, size);
132  memcpy(error_ecc, correct_ecc, 3);
133 }
134 
135 static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
136  void *correct_data, void *correct_ecc, const size_t size)
137 {
138  memcpy(error_data, correct_data, size);
139  single_bit_error_ecc(error_ecc, correct_ecc, size);
140 }
141 
142 static int single_bit_error_correct(void *error_data, void *error_ecc,
143  void *correct_data, const size_t size)
144 {
145  unsigned char calc_ecc[3];
146  int ret;
147 
148  __nand_calculate_ecc(error_data, size, calc_ecc);
149  ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
150  if (ret == 1 && !memcmp(correct_data, error_data, size))
151  return 0;
152 
153  return -EINVAL;
154 }
155 
156 static void double_bit_error_in_data(void *error_data, void *error_ecc,
157  void *correct_data, void *correct_ecc, const size_t size)
158 {
159  double_bit_error_data(error_data, correct_data, size);
160  memcpy(error_ecc, correct_ecc, 3);
161 }
162 
163 static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
164  void *correct_data, void *correct_ecc, const size_t size)
165 {
166  single_bit_error_data(error_data, correct_data, size);
167  single_bit_error_ecc(error_ecc, correct_ecc, size);
168 }
169 
170 static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
171  void *correct_data, void *correct_ecc, const size_t size)
172 {
173  memcpy(error_data, correct_data, size);
174  double_bit_error_ecc(error_ecc, correct_ecc, size);
175 }
176 
177 static int double_bit_error_detect(void *error_data, void *error_ecc,
178  void *correct_data, const size_t size)
179 {
180  unsigned char calc_ecc[3];
181  int ret;
182 
183  __nand_calculate_ecc(error_data, size, calc_ecc);
184  ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
185 
186  return (ret == -1) ? 0 : -EINVAL;
187 }
188 
189 static const struct nand_ecc_test nand_ecc_test[] = {
190  {
191  .name = "no-bit-error",
192  .prepare = no_bit_error,
193  .verify = no_bit_error_verify,
194  },
195  {
196  .name = "single-bit-error-in-data-correct",
197  .prepare = single_bit_error_in_data,
198  .verify = single_bit_error_correct,
199  },
200  {
201  .name = "single-bit-error-in-ecc-correct",
202  .prepare = single_bit_error_in_ecc,
203  .verify = single_bit_error_correct,
204  },
205  {
206  .name = "double-bit-error-in-data-detect",
207  .prepare = double_bit_error_in_data,
208  .verify = double_bit_error_detect,
209  },
210  {
211  .name = "single-bit-error-in-data-and-ecc-detect",
212  .prepare = single_bit_error_in_data_and_ecc,
213  .verify = double_bit_error_detect,
214  },
215  {
216  .name = "double-bit-error-in-ecc-detect",
217  .prepare = double_bit_error_in_ecc,
218  .verify = double_bit_error_detect,
219  },
220 };
221 
222 static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
223  void *correct_ecc, const size_t size)
224 {
225  pr_info("hexdump of error data:\n");
226  print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
227  error_data, size, false);
228  print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
229  DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
230 
231  pr_info("hexdump of correct data:\n");
232  print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
233  correct_data, size, false);
234  print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
235  DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
236 }
237 
238 static int nand_ecc_test_run(const size_t size)
239 {
240  int i;
241  int err = 0;
242  void *error_data;
243  void *error_ecc;
244  void *correct_data;
245  void *correct_ecc;
246 
247  error_data = kmalloc(size, GFP_KERNEL);
248  error_ecc = kmalloc(3, GFP_KERNEL);
249  correct_data = kmalloc(size, GFP_KERNEL);
250  correct_ecc = kmalloc(3, GFP_KERNEL);
251 
252  if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
253  err = -ENOMEM;
254  goto error;
255  }
256 
257  get_random_bytes(correct_data, size);
258  __nand_calculate_ecc(correct_data, size, correct_ecc);
259 
260  for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
261  nand_ecc_test[i].prepare(error_data, error_ecc,
262  correct_data, correct_ecc, size);
263  err = nand_ecc_test[i].verify(error_data, error_ecc,
264  correct_data, size);
265 
266  if (err) {
267  pr_err("mtd_nandecctest: not ok - %s-%zd\n",
268  nand_ecc_test[i].name, size);
269  dump_data_ecc(error_data, error_ecc,
270  correct_data, correct_ecc, size);
271  break;
272  }
273  pr_info("mtd_nandecctest: ok - %s-%zd\n",
274  nand_ecc_test[i].name, size);
275  }
276 error:
277  kfree(error_data);
278  kfree(error_ecc);
279  kfree(correct_data);
280  kfree(correct_ecc);
281 
282  return err;
283 }
284 
285 #else
286 
287 static int nand_ecc_test_run(const size_t size)
288 {
289  return 0;
290 }
291 
292 #endif
293 
294 static int __init ecc_test_init(void)
295 {
296  int err;
297 
298  err = nand_ecc_test_run(256);
299  if (err)
300  return err;
301 
302  return nand_ecc_test_run(512);
303 }
304 
305 static void __exit ecc_test_exit(void)
306 {
307 }
308 
309 module_init(ecc_test_init);
310 module_exit(ecc_test_exit);
311 
312 MODULE_DESCRIPTION("NAND ECC function test module");
313 MODULE_AUTHOR("Akinobu Mita");
314 MODULE_LICENSE("GPL");