Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
multicalls.c
Go to the documentation of this file.
1 /*
2  * Xen hypercall batching.
3  *
4  * Xen allows multiple hypercalls to be issued at once, using the
5  * multicall interface. This allows the cost of trapping into the
6  * hypervisor to be amortized over several calls.
7  *
8  * This file implements a simple interface for multicalls. There's a
9  * per-cpu buffer of outstanding multicalls. When you want to queue a
10  * multicall for issuing, you can allocate a multicall slot for the
11  * call and its arguments, along with storage for space which is
12  * pointed to by the arguments (for passing pointers to structures,
13  * etc). When the multicall is actually issued, all the space for the
14  * commands and allocated memory is freed for reuse.
15  *
16  * Multicalls are flushed whenever any of the buffers get full, or
17  * when explicitly requested. There's no way to get per-multicall
18  * return results back. It will BUG if any of the multicalls fail.
19  *
20  * Jeremy Fitzhardinge <[email protected]>, XenSource Inc, 2007
21  */
22 #include <linux/percpu.h>
23 #include <linux/hardirq.h>
24 #include <linux/debugfs.h>
25 
26 #include <asm/xen/hypercall.h>
27 
28 #include "multicalls.h"
29 #include "debugfs.h"
30 
31 #define MC_BATCH 32
32 
33 #define MC_DEBUG 0
34 
35 #define MC_ARGS (MC_BATCH * 16)
36 
37 
38 struct mc_buffer {
39  unsigned mcidx, argidx, cbidx;
41 #if MC_DEBUG
43  void *caller[MC_BATCH];
44 #endif
45  unsigned char args[MC_ARGS];
46  struct callback {
47  void (*fn)(void *);
48  void *data;
50 };
51 
52 static DEFINE_PER_CPU(struct mc_buffer, mc_buffer);
53 DEFINE_PER_CPU(unsigned long, xen_mc_irq_flags);
54 
55 void xen_mc_flush(void)
56 {
57  struct mc_buffer *b = &__get_cpu_var(mc_buffer);
58  struct multicall_entry *mc;
59  int ret = 0;
60  unsigned long flags;
61  int i;
62 
64 
65  /* Disable interrupts in case someone comes in and queues
66  something in the middle */
67  local_irq_save(flags);
68 
69  trace_xen_mc_flush(b->mcidx, b->argidx, b->cbidx);
70 
71  switch (b->mcidx) {
72  case 0:
73  /* no-op */
74  BUG_ON(b->argidx != 0);
75  break;
76 
77  case 1:
78  /* Singleton multicall - bypass multicall machinery
79  and just do the call directly. */
80  mc = &b->entries[0];
81 
82  mc->result = privcmd_call(mc->op,
83  mc->args[0], mc->args[1], mc->args[2],
84  mc->args[3], mc->args[4]);
85  ret = mc->result < 0;
86  break;
87 
88  default:
89 #if MC_DEBUG
90  memcpy(b->debug, b->entries,
91  b->mcidx * sizeof(struct multicall_entry));
92 #endif
93 
94  if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0)
95  BUG();
96  for (i = 0; i < b->mcidx; i++)
97  if (b->entries[i].result < 0)
98  ret++;
99 
100 #if MC_DEBUG
101  if (ret) {
102  printk(KERN_ERR "%d multicall(s) failed: cpu %d\n",
103  ret, smp_processor_id());
104  dump_stack();
105  for (i = 0; i < b->mcidx; i++) {
106  printk(KERN_DEBUG " call %2d/%d: op=%lu arg=[%lx] result=%ld\t%pF\n",
107  i+1, b->mcidx,
108  b->debug[i].op,
109  b->debug[i].args[0],
110  b->entries[i].result,
111  b->caller[i]);
112  }
113  }
114 #endif
115  }
116 
117  b->mcidx = 0;
118  b->argidx = 0;
119 
120  for (i = 0; i < b->cbidx; i++) {
121  struct callback *cb = &b->callbacks[i];
122 
123  (*cb->fn)(cb->data);
124  }
125  b->cbidx = 0;
126 
127  local_irq_restore(flags);
128 
129  WARN_ON(ret);
130 }
131 
133 {
134  struct mc_buffer *b = &__get_cpu_var(mc_buffer);
135  struct multicall_space ret;
136  unsigned argidx = roundup(b->argidx, sizeof(u64));
137 
138  trace_xen_mc_entry_alloc(args);
139 
140  BUG_ON(preemptible());
141  BUG_ON(b->argidx >= MC_ARGS);
142 
143  if (unlikely(b->mcidx == MC_BATCH ||
144  (argidx + args) >= MC_ARGS)) {
145  trace_xen_mc_flush_reason((b->mcidx == MC_BATCH) ?
147  xen_mc_flush();
148  argidx = roundup(b->argidx, sizeof(u64));
149  }
150 
151  ret.mc = &b->entries[b->mcidx];
152 #if MC_DEBUG
153  b->caller[b->mcidx] = __builtin_return_address(0);
154 #endif
155  b->mcidx++;
156  ret.args = &b->args[argidx];
157  b->argidx = argidx + args;
158 
159  BUG_ON(b->argidx >= MC_ARGS);
160  return ret;
161 }
162 
164 {
165  struct mc_buffer *b = &__get_cpu_var(mc_buffer);
166  struct multicall_space ret = { NULL, NULL };
167 
168  BUG_ON(preemptible());
169  BUG_ON(b->argidx >= MC_ARGS);
170 
171  if (unlikely(b->mcidx == 0 ||
172  b->entries[b->mcidx - 1].op != op)) {
173  trace_xen_mc_extend_args(op, size, XEN_MC_XE_BAD_OP);
174  goto out;
175  }
176 
177  if (unlikely((b->argidx + size) >= MC_ARGS)) {
178  trace_xen_mc_extend_args(op, size, XEN_MC_XE_NO_SPACE);
179  goto out;
180  }
181 
182  ret.mc = &b->entries[b->mcidx - 1];
183  ret.args = &b->args[b->argidx];
184  b->argidx += size;
185 
186  BUG_ON(b->argidx >= MC_ARGS);
187 
188  trace_xen_mc_extend_args(op, size, XEN_MC_XE_OK);
189 out:
190  return ret;
191 }
192 
193 void xen_mc_callback(void (*fn)(void *), void *data)
194 {
195  struct mc_buffer *b = &__get_cpu_var(mc_buffer);
196  struct callback *cb;
197 
198  if (b->cbidx == MC_BATCH) {
199  trace_xen_mc_flush_reason(XEN_MC_FL_CALLBACK);
200  xen_mc_flush();
201  }
202 
203  trace_xen_mc_callback(fn, data);
204 
205  cb = &b->callbacks[b->cbidx++];
206  cb->fn = fn;
207  cb->data = data;
208 }