Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nand_ecc.c
Go to the documentation of this file.
1 /*
2  * This file contains an ECC algorithm that detects and corrects 1 bit
3  * errors in a 256 byte block of data.
4  *
5  * drivers/mtd/nand/nand_ecc.c
6  *
7  * Copyright © 2008 Koninklijke Philips Electronics NV.
8  * Author: Frans Meulenbroeks
9  *
10  * Completely replaces the previous ECC implementation which was written by:
11  * Steven J. Hill ([email protected])
12  * Thomas Gleixner ([email protected])
13  *
14  * Information on how this algorithm works and how it was developed
15  * can be found in Documentation/mtd/nand_ecc.txt
16  *
17  * This file is free software; you can redistribute it and/or modify it
18  * under the terms of the GNU General Public License as published by the
19  * Free Software Foundation; either version 2 or (at your option) any
20  * later version.
21  *
22  * This file is distributed in the hope that it will be useful, but WITHOUT
23  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25  * for more details.
26  *
27  * You should have received a copy of the GNU General Public License along
28  * with this file; if not, write to the Free Software Foundation, Inc.,
29  * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
30  *
31  */
32 
33 /*
34  * The STANDALONE macro is useful when running the code outside the kernel
35  * e.g. when running the code in a testbed or a benchmark program.
36  * When STANDALONE is used, the module related macros are commented out
37  * as well as the linux include files.
38  * Instead a private definition of mtd_info is given to satisfy the compiler
39  * (the code does not use mtd_info, so the code does not care)
40  */
41 #ifndef STANDALONE
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/mtd/mtd.h>
46 #include <linux/mtd/nand.h>
47 #include <linux/mtd/nand_ecc.h>
48 #include <asm/byteorder.h>
49 #else
50 #include <stdint.h>
51 struct mtd_info;
52 #define EXPORT_SYMBOL(x) /* x */
53 
54 #define MODULE_LICENSE(x) /* x */
55 #define MODULE_AUTHOR(x) /* x */
56 #define MODULE_DESCRIPTION(x) /* x */
57 
58 #define printk printf
59 #define KERN_ERR ""
60 #endif
61 
62 /*
63  * invparity is a 256 byte table that contains the odd parity
64  * for each byte. So if the number of bits in a byte is even,
65  * the array element is 1, and when the number of bits is odd
66  * the array eleemnt is 0.
67  */
68 static const char invparity[256] = {
69  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
70  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
71  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
72  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
73  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
74  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
75  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
76  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
77  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
78  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
79  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
80  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
81  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
82  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
83  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
84  1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
85 };
86 
87 /*
88  * bitsperbyte contains the number of bits per byte
89  * this is only used for testing and repairing parity
90  * (a precalculated value slightly improves performance)
91  */
92 static const char bitsperbyte[256] = {
93  0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
94  1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
95  1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
96  2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
97  1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
98  2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
99  2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
100  3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
101  1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
102  2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
103  2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
104  3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
105  2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
106  3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
107  3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
108  4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
109 };
110 
111 /*
112  * addressbits is a lookup table to filter out the bits from the xor-ed
113  * ECC data that identify the faulty location.
114  * this is only used for repairing parity
115  * see the comments in nand_correct_data for more details
116  */
117 static const char addressbits[256] = {
118  0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
119  0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
120  0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
121  0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
122  0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
123  0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
124  0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
125  0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
126  0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
127  0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
128  0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
129  0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
130  0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
131  0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
132  0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
133  0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
134  0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
135  0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
136  0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
137  0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
138  0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
139  0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
140  0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
141  0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
142  0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
143  0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
144  0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
145  0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
146  0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
147  0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
148  0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
149  0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
150 };
151 
159 void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize,
160  unsigned char *code)
161 {
162  int i;
163  const uint32_t *bp = (uint32_t *)buf;
164  /* 256 or 512 bytes/ecc */
165  const uint32_t eccsize_mult = eccsize >> 8;
166  uint32_t cur; /* current value in buffer */
167  /* rp0..rp15..rp17 are the various accumulated parities (per byte) */
168  uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
169  uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;
170  uint32_t uninitialized_var(rp17); /* to make compiler happy */
171  uint32_t par; /* the cumulative parity for all data */
172  uint32_t tmppar; /* the cumulative parity for this iteration;
173  for rp12, rp14 and rp16 at the end of the
174  loop */
175 
176  par = 0;
177  rp4 = 0;
178  rp6 = 0;
179  rp8 = 0;
180  rp10 = 0;
181  rp12 = 0;
182  rp14 = 0;
183  rp16 = 0;
184 
185  /*
186  * The loop is unrolled a number of times;
187  * This avoids if statements to decide on which rp value to update
188  * Also we process the data by longwords.
189  * Note: passing unaligned data might give a performance penalty.
190  * It is assumed that the buffers are aligned.
191  * tmppar is the cumulative sum of this iteration.
192  * needed for calculating rp12, rp14, rp16 and par
193  * also used as a performance improvement for rp6, rp8 and rp10
194  */
195  for (i = 0; i < eccsize_mult << 2; i++) {
196  cur = *bp++;
197  tmppar = cur;
198  rp4 ^= cur;
199  cur = *bp++;
200  tmppar ^= cur;
201  rp6 ^= tmppar;
202  cur = *bp++;
203  tmppar ^= cur;
204  rp4 ^= cur;
205  cur = *bp++;
206  tmppar ^= cur;
207  rp8 ^= tmppar;
208 
209  cur = *bp++;
210  tmppar ^= cur;
211  rp4 ^= cur;
212  rp6 ^= cur;
213  cur = *bp++;
214  tmppar ^= cur;
215  rp6 ^= cur;
216  cur = *bp++;
217  tmppar ^= cur;
218  rp4 ^= cur;
219  cur = *bp++;
220  tmppar ^= cur;
221  rp10 ^= tmppar;
222 
223  cur = *bp++;
224  tmppar ^= cur;
225  rp4 ^= cur;
226  rp6 ^= cur;
227  rp8 ^= cur;
228  cur = *bp++;
229  tmppar ^= cur;
230  rp6 ^= cur;
231  rp8 ^= cur;
232  cur = *bp++;
233  tmppar ^= cur;
234  rp4 ^= cur;
235  rp8 ^= cur;
236  cur = *bp++;
237  tmppar ^= cur;
238  rp8 ^= cur;
239 
240  cur = *bp++;
241  tmppar ^= cur;
242  rp4 ^= cur;
243  rp6 ^= cur;
244  cur = *bp++;
245  tmppar ^= cur;
246  rp6 ^= cur;
247  cur = *bp++;
248  tmppar ^= cur;
249  rp4 ^= cur;
250  cur = *bp++;
251  tmppar ^= cur;
252 
253  par ^= tmppar;
254  if ((i & 0x1) == 0)
255  rp12 ^= tmppar;
256  if ((i & 0x2) == 0)
257  rp14 ^= tmppar;
258  if (eccsize_mult == 2 && (i & 0x4) == 0)
259  rp16 ^= tmppar;
260  }
261 
262  /*
263  * handle the fact that we use longword operations
264  * we'll bring rp4..rp14..rp16 back to single byte entities by
265  * shifting and xoring first fold the upper and lower 16 bits,
266  * then the upper and lower 8 bits.
267  */
268  rp4 ^= (rp4 >> 16);
269  rp4 ^= (rp4 >> 8);
270  rp4 &= 0xff;
271  rp6 ^= (rp6 >> 16);
272  rp6 ^= (rp6 >> 8);
273  rp6 &= 0xff;
274  rp8 ^= (rp8 >> 16);
275  rp8 ^= (rp8 >> 8);
276  rp8 &= 0xff;
277  rp10 ^= (rp10 >> 16);
278  rp10 ^= (rp10 >> 8);
279  rp10 &= 0xff;
280  rp12 ^= (rp12 >> 16);
281  rp12 ^= (rp12 >> 8);
282  rp12 &= 0xff;
283  rp14 ^= (rp14 >> 16);
284  rp14 ^= (rp14 >> 8);
285  rp14 &= 0xff;
286  if (eccsize_mult == 2) {
287  rp16 ^= (rp16 >> 16);
288  rp16 ^= (rp16 >> 8);
289  rp16 &= 0xff;
290  }
291 
292  /*
293  * we also need to calculate the row parity for rp0..rp3
294  * This is present in par, because par is now
295  * rp3 rp3 rp2 rp2 in little endian and
296  * rp2 rp2 rp3 rp3 in big endian
297  * as well as
298  * rp1 rp0 rp1 rp0 in little endian and
299  * rp0 rp1 rp0 rp1 in big endian
300  * First calculate rp2 and rp3
301  */
302 #ifdef __BIG_ENDIAN
303  rp2 = (par >> 16);
304  rp2 ^= (rp2 >> 8);
305  rp2 &= 0xff;
306  rp3 = par & 0xffff;
307  rp3 ^= (rp3 >> 8);
308  rp3 &= 0xff;
309 #else
310  rp3 = (par >> 16);
311  rp3 ^= (rp3 >> 8);
312  rp3 &= 0xff;
313  rp2 = par & 0xffff;
314  rp2 ^= (rp2 >> 8);
315  rp2 &= 0xff;
316 #endif
317 
318  /* reduce par to 16 bits then calculate rp1 and rp0 */
319  par ^= (par >> 16);
320 #ifdef __BIG_ENDIAN
321  rp0 = (par >> 8) & 0xff;
322  rp1 = (par & 0xff);
323 #else
324  rp1 = (par >> 8) & 0xff;
325  rp0 = (par & 0xff);
326 #endif
327 
328  /* finally reduce par to 8 bits */
329  par ^= (par >> 8);
330  par &= 0xff;
331 
332  /*
333  * and calculate rp5..rp15..rp17
334  * note that par = rp4 ^ rp5 and due to the commutative property
335  * of the ^ operator we can say:
336  * rp5 = (par ^ rp4);
337  * The & 0xff seems superfluous, but benchmarking learned that
338  * leaving it out gives slightly worse results. No idea why, probably
339  * it has to do with the way the pipeline in pentium is organized.
340  */
341  rp5 = (par ^ rp4) & 0xff;
342  rp7 = (par ^ rp6) & 0xff;
343  rp9 = (par ^ rp8) & 0xff;
344  rp11 = (par ^ rp10) & 0xff;
345  rp13 = (par ^ rp12) & 0xff;
346  rp15 = (par ^ rp14) & 0xff;
347  if (eccsize_mult == 2)
348  rp17 = (par ^ rp16) & 0xff;
349 
350  /*
351  * Finally calculate the ECC bits.
352  * Again here it might seem that there are performance optimisations
353  * possible, but benchmarks showed that on the system this is developed
354  * the code below is the fastest
355  */
356 #ifdef CONFIG_MTD_NAND_ECC_SMC
357  code[0] =
358  (invparity[rp7] << 7) |
359  (invparity[rp6] << 6) |
360  (invparity[rp5] << 5) |
361  (invparity[rp4] << 4) |
362  (invparity[rp3] << 3) |
363  (invparity[rp2] << 2) |
364  (invparity[rp1] << 1) |
365  (invparity[rp0]);
366  code[1] =
367  (invparity[rp15] << 7) |
368  (invparity[rp14] << 6) |
369  (invparity[rp13] << 5) |
370  (invparity[rp12] << 4) |
371  (invparity[rp11] << 3) |
372  (invparity[rp10] << 2) |
373  (invparity[rp9] << 1) |
374  (invparity[rp8]);
375 #else
376  code[1] =
377  (invparity[rp7] << 7) |
378  (invparity[rp6] << 6) |
379  (invparity[rp5] << 5) |
380  (invparity[rp4] << 4) |
381  (invparity[rp3] << 3) |
382  (invparity[rp2] << 2) |
383  (invparity[rp1] << 1) |
384  (invparity[rp0]);
385  code[0] =
386  (invparity[rp15] << 7) |
387  (invparity[rp14] << 6) |
388  (invparity[rp13] << 5) |
389  (invparity[rp12] << 4) |
390  (invparity[rp11] << 3) |
391  (invparity[rp10] << 2) |
392  (invparity[rp9] << 1) |
393  (invparity[rp8]);
394 #endif
395  if (eccsize_mult == 1)
396  code[2] =
397  (invparity[par & 0xf0] << 7) |
398  (invparity[par & 0x0f] << 6) |
399  (invparity[par & 0xcc] << 5) |
400  (invparity[par & 0x33] << 4) |
401  (invparity[par & 0xaa] << 3) |
402  (invparity[par & 0x55] << 2) |
403  3;
404  else
405  code[2] =
406  (invparity[par & 0xf0] << 7) |
407  (invparity[par & 0x0f] << 6) |
408  (invparity[par & 0xcc] << 5) |
409  (invparity[par & 0x33] << 4) |
410  (invparity[par & 0xaa] << 3) |
411  (invparity[par & 0x55] << 2) |
412  (invparity[rp17] << 1) |
413  (invparity[rp16] << 0);
414 }
416 
424 int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
425  unsigned char *code)
426 {
428  ((struct nand_chip *)mtd->priv)->ecc.size, code);
429 
430  return 0;
431 }
433 
443 int __nand_correct_data(unsigned char *buf,
444  unsigned char *read_ecc, unsigned char *calc_ecc,
445  unsigned int eccsize)
446 {
447  unsigned char b0, b1, b2, bit_addr;
448  unsigned int byte_addr;
449  /* 256 or 512 bytes/ecc */
450  const uint32_t eccsize_mult = eccsize >> 8;
451 
452  /*
453  * b0 to b2 indicate which bit is faulty (if any)
454  * we might need the xor result more than once,
455  * so keep them in a local var
456  */
457 #ifdef CONFIG_MTD_NAND_ECC_SMC
458  b0 = read_ecc[0] ^ calc_ecc[0];
459  b1 = read_ecc[1] ^ calc_ecc[1];
460 #else
461  b0 = read_ecc[1] ^ calc_ecc[1];
462  b1 = read_ecc[0] ^ calc_ecc[0];
463 #endif
464  b2 = read_ecc[2] ^ calc_ecc[2];
465 
466  /* check if there are any bitfaults */
467 
468  /* repeated if statements are slightly more efficient than switch ... */
469  /* ordered in order of likelihood */
470 
471  if ((b0 | b1 | b2) == 0)
472  return 0; /* no error */
473 
474  if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
475  (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
476  ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
477  (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
478  /* single bit error */
479  /*
480  * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
481  * byte, cp 5/3/1 indicate the faulty bit.
482  * A lookup table (called addressbits) is used to filter
483  * the bits from the byte they are in.
484  * A marginal optimisation is possible by having three
485  * different lookup tables.
486  * One as we have now (for b0), one for b2
487  * (that would avoid the >> 1), and one for b1 (with all values
488  * << 4). However it was felt that introducing two more tables
489  * hardly justify the gain.
490  *
491  * The b2 shift is there to get rid of the lowest two bits.
492  * We could also do addressbits[b2] >> 1 but for the
493  * performance it does not make any difference
494  */
495  if (eccsize_mult == 1)
496  byte_addr = (addressbits[b1] << 4) + addressbits[b0];
497  else
498  byte_addr = (addressbits[b2 & 0x3] << 8) +
499  (addressbits[b1] << 4) + addressbits[b0];
500  bit_addr = addressbits[b2 >> 2];
501  /* flip the bit */
502  buf[byte_addr] ^= (1 << bit_addr);
503  return 1;
504 
505  }
506  /* count nr of bits; use table lookup, faster than calculating it */
507  if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
508  return 1; /* error in ECC data; no action needed */
509 
510  printk(KERN_ERR "uncorrectable error : ");
511  return -1;
512 }
514 
524 int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
525  unsigned char *read_ecc, unsigned char *calc_ecc)
526 {
527  return __nand_correct_data(buf, read_ecc, calc_ecc,
528  ((struct nand_chip *)mtd->priv)->ecc.size);
529 }
531 
532 MODULE_LICENSE("GPL");
533 MODULE_AUTHOR("Frans Meulenbroeks <[email protected]>");
534 MODULE_DESCRIPTION("Generic NAND ECC support");