Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
auth.c
Go to the documentation of this file.
1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  * ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING. If not, write to
20  * the Free Software Foundation, 59 Temple Place - Suite 330,
21  * Boston, MA 02111-1307, USA.
22  *
23  * Please send any bug reports or fixes you make to the
24  * email address(es):
25  * lksctp developers <[email protected]>
26  *
27  * Or submit a bug report through the following website:
28  * http://www.sf.net/projects/lksctp
29  *
30  * Written or modified by:
31  * Vlad Yasevich <[email protected]>
32  *
33  * Any bugs reported given to us we will try to fix... any fixes shared will
34  * be incorporated into the next SCTP release.
35  */
36 
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/crypto.h>
40 #include <linux/scatterlist.h>
41 #include <net/sctp/sctp.h>
42 #include <net/sctp/auth.h>
43 
44 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
45  {
46  /* id 0 is reserved. as all 0 */
48  },
49  {
50  .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
51  .hmac_name="hmac(sha1)",
52  .hmac_len = SCTP_SHA1_SIG_SIZE,
53  },
54  {
55  /* id 2 is reserved as well */
57  },
58 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
59  {
60  .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
61  .hmac_name="hmac(sha256)",
62  .hmac_len = SCTP_SHA256_SIG_SIZE,
63  }
64 #endif
65 };
66 
67 
69 {
70  if (!key)
71  return;
72 
73  if (atomic_dec_and_test(&key->refcnt)) {
74  kfree(key);
76  }
77 }
78 
79 /* Create a new key structure of a given length */
80 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
81 {
82  struct sctp_auth_bytes *key;
83 
84  /* Verify that we are not going to overflow INT_MAX */
85  if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
86  return NULL;
87 
88  /* Allocate the shared key */
89  key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
90  if (!key)
91  return NULL;
92 
93  key->len = key_len;
94  atomic_set(&key->refcnt, 1);
95  SCTP_DBG_OBJCNT_INC(keys);
96 
97  return key;
98 }
99 
100 /* Create a new shared key container with a give key id */
102 {
103  struct sctp_shared_key *new;
104 
105  /* Allocate the shared key container */
106  new = kzalloc(sizeof(struct sctp_shared_key), gfp);
107  if (!new)
108  return NULL;
109 
110  INIT_LIST_HEAD(&new->key_list);
111  new->key_id = key_id;
112 
113  return new;
114 }
115 
116 /* Free the shared key structure */
117 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
118 {
119  BUG_ON(!list_empty(&sh_key->key_list));
120  sctp_auth_key_put(sh_key->key);
121  sh_key->key = NULL;
122  kfree(sh_key);
123 }
124 
125 /* Destroy the entire key list. This is done during the
126  * associon and endpoint free process.
127  */
129 {
130  struct sctp_shared_key *ep_key;
131  struct sctp_shared_key *tmp;
132 
133  if (list_empty(keys))
134  return;
135 
136  key_for_each_safe(ep_key, tmp, keys) {
137  list_del_init(&ep_key->key_list);
138  sctp_auth_shkey_free(ep_key);
139  }
140 }
141 
142 /* Compare two byte vectors as numbers. Return values
143  * are:
144  * 0 - vectors are equal
145  * < 0 - vector 1 is smaller than vector2
146  * > 0 - vector 1 is greater than vector2
147  *
148  * Algorithm is:
149  * This is performed by selecting the numerically smaller key vector...
150  * If the key vectors are equal as numbers but differ in length ...
151  * the shorter vector is considered smaller
152  *
153  * Examples (with small values):
154  * 000123456789 > 123456789 (first number is longer)
155  * 000123456789 < 234567891 (second number is larger numerically)
156  * 123456789 > 2345678 (first number is both larger & longer)
157  */
158 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
159  struct sctp_auth_bytes *vector2)
160 {
161  int diff;
162  int i;
163  const __u8 *longer;
164 
165  diff = vector1->len - vector2->len;
166  if (diff) {
167  longer = (diff > 0) ? vector1->data : vector2->data;
168 
169  /* Check to see if the longer number is
170  * lead-zero padded. If it is not, it
171  * is automatically larger numerically.
172  */
173  for (i = 0; i < abs(diff); i++ ) {
174  if (longer[i] != 0)
175  return diff;
176  }
177  }
178 
179  /* lengths are the same, compare numbers */
180  return memcmp(vector1->data, vector2->data, vector1->len);
181 }
182 
183 /*
184  * Create a key vector as described in SCTP-AUTH, Section 6.1
185  * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
186  * parameter sent by each endpoint are concatenated as byte vectors.
187  * These parameters include the parameter type, parameter length, and
188  * the parameter value, but padding is omitted; all padding MUST be
189  * removed from this concatenation before proceeding with further
190  * computation of keys. Parameters which were not sent are simply
191  * omitted from the concatenation process. The resulting two vectors
192  * are called the two key vectors.
193  */
194 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
195  sctp_random_param_t *random,
196  sctp_chunks_param_t *chunks,
197  sctp_hmac_algo_param_t *hmacs,
198  gfp_t gfp)
199 {
200  struct sctp_auth_bytes *new;
201  __u32 len;
202  __u32 offset = 0;
203 
204  len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
205  if (chunks)
206  len += ntohs(chunks->param_hdr.length);
207 
208  new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
209  if (!new)
210  return NULL;
211 
212  new->len = len;
213 
214  memcpy(new->data, random, ntohs(random->param_hdr.length));
215  offset += ntohs(random->param_hdr.length);
216 
217  if (chunks) {
218  memcpy(new->data + offset, chunks,
219  ntohs(chunks->param_hdr.length));
220  offset += ntohs(chunks->param_hdr.length);
221  }
222 
223  memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
224 
225  return new;
226 }
227 
228 
229 /* Make a key vector based on our local parameters */
230 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
231  const struct sctp_association *asoc,
232  gfp_t gfp)
233 {
234  return sctp_auth_make_key_vector(
235  (sctp_random_param_t*)asoc->c.auth_random,
236  (sctp_chunks_param_t*)asoc->c.auth_chunks,
237  (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
238  gfp);
239 }
240 
241 /* Make a key vector based on peer's parameters */
242 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
243  const struct sctp_association *asoc,
244  gfp_t gfp)
245 {
246  return sctp_auth_make_key_vector(asoc->peer.peer_random,
247  asoc->peer.peer_chunks,
248  asoc->peer.peer_hmacs,
249  gfp);
250 }
251 
252 
253 /* Set the value of the association shared key base on the parameters
254  * given. The algorithm is:
255  * From the endpoint pair shared keys and the key vectors the
256  * association shared keys are computed. This is performed by selecting
257  * the numerically smaller key vector and concatenating it to the
258  * endpoint pair shared key, and then concatenating the numerically
259  * larger key vector to that. The result of the concatenation is the
260  * association shared key.
261  */
262 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
263  struct sctp_shared_key *ep_key,
264  struct sctp_auth_bytes *first_vector,
265  struct sctp_auth_bytes *last_vector,
266  gfp_t gfp)
267 {
268  struct sctp_auth_bytes *secret;
269  __u32 offset = 0;
270  __u32 auth_len;
271 
272  auth_len = first_vector->len + last_vector->len;
273  if (ep_key->key)
274  auth_len += ep_key->key->len;
275 
276  secret = sctp_auth_create_key(auth_len, gfp);
277  if (!secret)
278  return NULL;
279 
280  if (ep_key->key) {
281  memcpy(secret->data, ep_key->key->data, ep_key->key->len);
282  offset += ep_key->key->len;
283  }
284 
285  memcpy(secret->data + offset, first_vector->data, first_vector->len);
286  offset += first_vector->len;
287 
288  memcpy(secret->data + offset, last_vector->data, last_vector->len);
289 
290  return secret;
291 }
292 
293 /* Create an association shared key. Follow the algorithm
294  * described in SCTP-AUTH, Section 6.1
295  */
296 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
297  const struct sctp_association *asoc,
298  struct sctp_shared_key *ep_key,
299  gfp_t gfp)
300 {
301  struct sctp_auth_bytes *local_key_vector;
302  struct sctp_auth_bytes *peer_key_vector;
303  struct sctp_auth_bytes *first_vector,
304  *last_vector;
305  struct sctp_auth_bytes *secret = NULL;
306  int cmp;
307 
308 
309  /* Now we need to build the key vectors
310  * SCTP-AUTH , Section 6.1
311  * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
312  * parameter sent by each endpoint are concatenated as byte vectors.
313  * These parameters include the parameter type, parameter length, and
314  * the parameter value, but padding is omitted; all padding MUST be
315  * removed from this concatenation before proceeding with further
316  * computation of keys. Parameters which were not sent are simply
317  * omitted from the concatenation process. The resulting two vectors
318  * are called the two key vectors.
319  */
320 
321  local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
322  peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
323 
324  if (!peer_key_vector || !local_key_vector)
325  goto out;
326 
327  /* Figure out the order in which the key_vectors will be
328  * added to the endpoint shared key.
329  * SCTP-AUTH, Section 6.1:
330  * This is performed by selecting the numerically smaller key
331  * vector and concatenating it to the endpoint pair shared
332  * key, and then concatenating the numerically larger key
333  * vector to that. If the key vectors are equal as numbers
334  * but differ in length, then the concatenation order is the
335  * endpoint shared key, followed by the shorter key vector,
336  * followed by the longer key vector. Otherwise, the key
337  * vectors are identical, and may be concatenated to the
338  * endpoint pair key in any order.
339  */
340  cmp = sctp_auth_compare_vectors(local_key_vector,
341  peer_key_vector);
342  if (cmp < 0) {
343  first_vector = local_key_vector;
344  last_vector = peer_key_vector;
345  } else {
346  first_vector = peer_key_vector;
347  last_vector = local_key_vector;
348  }
349 
350  secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
351  gfp);
352 out:
353  kfree(local_key_vector);
354  kfree(peer_key_vector);
355 
356  return secret;
357 }
358 
359 /*
360  * Populate the association overlay list with the list
361  * from the endpoint.
362  */
364  struct sctp_association *asoc,
365  gfp_t gfp)
366 {
367  struct sctp_shared_key *sh_key;
368  struct sctp_shared_key *new;
369 
370  BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
371 
372  key_for_each(sh_key, &ep->endpoint_shared_keys) {
373  new = sctp_auth_shkey_create(sh_key->key_id, gfp);
374  if (!new)
375  goto nomem;
376 
377  new->key = sh_key->key;
378  sctp_auth_key_hold(new->key);
379  list_add(&new->key_list, &asoc->endpoint_shared_keys);
380  }
381 
382  return 0;
383 
384 nomem:
386  return -ENOMEM;
387 }
388 
389 
390 /* Public interface to creat the association shared key.
391  * See code above for the algorithm.
392  */
394 {
395  struct net *net = sock_net(asoc->base.sk);
396  struct sctp_auth_bytes *secret;
397  struct sctp_shared_key *ep_key;
398 
399  /* If we don't support AUTH, or peer is not capable
400  * we don't need to do anything.
401  */
402  if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
403  return 0;
404 
405  /* If the key_id is non-zero and we couldn't find an
406  * endpoint pair shared key, we can't compute the
407  * secret.
408  * For key_id 0, endpoint pair shared key is a NULL key.
409  */
410  ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
411  BUG_ON(!ep_key);
412 
413  secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
414  if (!secret)
415  return -ENOMEM;
416 
418  asoc->asoc_shared_key = secret;
419 
420  return 0;
421 }
422 
423 
424 /* Find the endpoint pair shared key based on the key_id */
426  const struct sctp_association *asoc,
427  __u16 key_id)
428 {
429  struct sctp_shared_key *key;
430 
431  /* First search associations set of endpoint pair shared keys */
432  key_for_each(key, &asoc->endpoint_shared_keys) {
433  if (key->key_id == key_id)
434  return key;
435  }
436 
437  return NULL;
438 }
439 
440 /*
441  * Initialize all the possible digest transforms that we can use. Right now
442  * now, the supported digests are SHA1 and SHA256. We do this here once
443  * because of the restrictiong that transforms may only be allocated in
444  * user context. This forces us to pre-allocated all possible transforms
445  * at the endpoint init time.
446  */
448 {
449  struct net *net = sock_net(ep->base.sk);
450  struct crypto_hash *tfm = NULL;
451  __u16 id;
452 
453  /* if the transforms are already allocted, we are done */
454  if (!net->sctp.auth_enable) {
455  ep->auth_hmacs = NULL;
456  return 0;
457  }
458 
459  if (ep->auth_hmacs)
460  return 0;
461 
462  /* Allocated the array of pointers to transorms */
463  ep->auth_hmacs = kzalloc(
464  sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
465  gfp);
466  if (!ep->auth_hmacs)
467  return -ENOMEM;
468 
469  for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
470 
471  /* See is we support the id. Supported IDs have name and
472  * length fields set, so that we can allocated and use
473  * them. We can safely just check for name, for without the
474  * name, we can't allocate the TFM.
475  */
476  if (!sctp_hmac_list[id].hmac_name)
477  continue;
478 
479  /* If this TFM has been allocated, we are all set */
480  if (ep->auth_hmacs[id])
481  continue;
482 
483  /* Allocate the ID */
484  tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
486  if (IS_ERR(tfm))
487  goto out_err;
488 
489  ep->auth_hmacs[id] = tfm;
490  }
491 
492  return 0;
493 
494 out_err:
495  /* Clean up any successful allocations */
497  return -ENOMEM;
498 }
499 
500 /* Destroy the hmac tfm array */
501 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
502 {
503  int i;
504 
505  if (!auth_hmacs)
506  return;
507 
508  for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
509  {
510  if (auth_hmacs[i])
511  crypto_free_hash(auth_hmacs[i]);
512  }
513  kfree(auth_hmacs);
514 }
515 
516 
518 {
519  return &sctp_hmac_list[hmac_id];
520 }
521 
522 /* Get an hmac description information that we can use to build
523  * the AUTH chunk
524  */
526 {
527  struct sctp_hmac_algo_param *hmacs;
528  __u16 n_elt;
529  __u16 id = 0;
530  int i;
531 
532  /* If we have a default entry, use it */
533  if (asoc->default_hmac_id)
534  return &sctp_hmac_list[asoc->default_hmac_id];
535 
536  /* Since we do not have a default entry, find the first entry
537  * we support and return that. Do not cache that id.
538  */
539  hmacs = asoc->peer.peer_hmacs;
540  if (!hmacs)
541  return NULL;
542 
543  n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
544  for (i = 0; i < n_elt; i++) {
545  id = ntohs(hmacs->hmac_ids[i]);
546 
547  /* Check the id is in the supported range */
548  if (id > SCTP_AUTH_HMAC_ID_MAX) {
549  id = 0;
550  continue;
551  }
552 
553  /* See is we support the id. Supported IDs have name and
554  * length fields set, so that we can allocated and use
555  * them. We can safely just check for name, for without the
556  * name, we can't allocate the TFM.
557  */
558  if (!sctp_hmac_list[id].hmac_name) {
559  id = 0;
560  continue;
561  }
562 
563  break;
564  }
565 
566  if (id == 0)
567  return NULL;
568 
569  return &sctp_hmac_list[id];
570 }
571 
572 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
573 {
574  int found = 0;
575  int i;
576 
577  for (i = 0; i < n_elts; i++) {
578  if (hmac_id == hmacs[i]) {
579  found = 1;
580  break;
581  }
582  }
583 
584  return found;
585 }
586 
587 /* See if the HMAC_ID is one that we claim as supported */
589  __be16 hmac_id)
590 {
591  struct sctp_hmac_algo_param *hmacs;
592  __u16 n_elt;
593 
594  if (!asoc)
595  return 0;
596 
597  hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
598  n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
599 
600  return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
601 }
602 
603 
604 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
605  * Section 6.1:
606  * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
607  * algorithm it supports.
608  */
610  struct sctp_hmac_algo_param *hmacs)
611 {
612  struct sctp_endpoint *ep;
613  __u16 id;
614  int i;
615  int n_params;
616 
617  /* if the default id is already set, use it */
618  if (asoc->default_hmac_id)
619  return;
620 
621  n_params = (ntohs(hmacs->param_hdr.length)
622  - sizeof(sctp_paramhdr_t)) >> 1;
623  ep = asoc->ep;
624  for (i = 0; i < n_params; i++) {
625  id = ntohs(hmacs->hmac_ids[i]);
626 
627  /* Check the id is in the supported range */
628  if (id > SCTP_AUTH_HMAC_ID_MAX)
629  continue;
630 
631  /* If this TFM has been allocated, use this id */
632  if (ep->auth_hmacs[id]) {
633  asoc->default_hmac_id = id;
634  break;
635  }
636  }
637 }
638 
639 
640 /* Check to see if the given chunk is supposed to be authenticated */
641 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
642 {
643  unsigned short len;
644  int found = 0;
645  int i;
646 
647  if (!param || param->param_hdr.length == 0)
648  return 0;
649 
650  len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
651 
652  /* SCTP-AUTH, Section 3.2
653  * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
654  * chunks MUST NOT be listed in the CHUNKS parameter. However, if
655  * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
656  * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
657  */
658  for (i = 0; !found && i < len; i++) {
659  switch (param->chunks[i]) {
660  case SCTP_CID_INIT:
661  case SCTP_CID_INIT_ACK:
663  case SCTP_CID_AUTH:
664  break;
665 
666  default:
667  if (param->chunks[i] == chunk)
668  found = 1;
669  break;
670  }
671  }
672 
673  return found;
674 }
675 
676 /* Check if peer requested that this chunk is authenticated */
677 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
678 {
679  struct net *net;
680  if (!asoc)
681  return 0;
682 
683  net = sock_net(asoc->base.sk);
684  if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
685  return 0;
686 
687  return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
688 }
689 
690 /* Check if we requested that peer authenticate this chunk. */
691 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
692 {
693  struct net *net;
694  if (!asoc)
695  return 0;
696 
697  net = sock_net(asoc->base.sk);
698  if (!net->sctp.auth_enable)
699  return 0;
700 
701  return __sctp_auth_cid(chunk,
702  (struct sctp_chunks_param *)asoc->c.auth_chunks);
703 }
704 
705 /* SCTP-AUTH: Section 6.2:
706  * The sender MUST calculate the MAC as described in RFC2104 [2] using
707  * the hash function H as described by the MAC Identifier and the shared
708  * association key K based on the endpoint pair shared key described by
709  * the shared key identifier. The 'data' used for the computation of
710  * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
711  * zero (as shown in Figure 6) followed by all chunks that are placed
712  * after the AUTH chunk in the SCTP packet.
713  */
715  struct sk_buff *skb,
716  struct sctp_auth_chunk *auth,
717  gfp_t gfp)
718 {
719  struct scatterlist sg;
720  struct hash_desc desc;
721  struct sctp_auth_bytes *asoc_key;
722  __u16 key_id, hmac_id;
723  __u8 *digest;
724  unsigned char *end;
725  int free_key = 0;
726 
727  /* Extract the info we need:
728  * - hmac id
729  * - key id
730  */
731  key_id = ntohs(auth->auth_hdr.shkey_id);
732  hmac_id = ntohs(auth->auth_hdr.hmac_id);
733 
734  if (key_id == asoc->active_key_id)
735  asoc_key = asoc->asoc_shared_key;
736  else {
737  struct sctp_shared_key *ep_key;
738 
739  ep_key = sctp_auth_get_shkey(asoc, key_id);
740  if (!ep_key)
741  return;
742 
743  asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
744  if (!asoc_key)
745  return;
746 
747  free_key = 1;
748  }
749 
750  /* set up scatter list */
751  end = skb_tail_pointer(skb);
752  sg_init_one(&sg, auth, end - (unsigned char *)auth);
753 
754  desc.tfm = asoc->ep->auth_hmacs[hmac_id];
755  desc.flags = 0;
756 
757  digest = auth->auth_hdr.hmac;
758  if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
759  goto free;
760 
761  crypto_hash_digest(&desc, &sg, sg.length, digest);
762 
763 free:
764  if (free_key)
765  sctp_auth_key_put(asoc_key);
766 }
767 
768 /* API Helpers */
769 
770 /* Add a chunk to the endpoint authenticated chunk list */
771 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
772 {
773  struct sctp_chunks_param *p = ep->auth_chunk_list;
774  __u16 nchunks;
775  __u16 param_len;
776 
777  /* If this chunk is already specified, we are done */
778  if (__sctp_auth_cid(chunk_id, p))
779  return 0;
780 
781  /* Check if we can add this chunk to the array */
782  param_len = ntohs(p->param_hdr.length);
783  nchunks = param_len - sizeof(sctp_paramhdr_t);
784  if (nchunks == SCTP_NUM_CHUNK_TYPES)
785  return -EINVAL;
786 
787  p->chunks[nchunks] = chunk_id;
788  p->param_hdr.length = htons(param_len + 1);
789  return 0;
790 }
791 
792 /* Add hmac identifires to the endpoint list of supported hmac ids */
794  struct sctp_hmacalgo *hmacs)
795 {
796  int has_sha1 = 0;
797  __u16 id;
798  int i;
799 
800  /* Scan the list looking for unsupported id. Also make sure that
801  * SHA1 is specified.
802  */
803  for (i = 0; i < hmacs->shmac_num_idents; i++) {
804  id = hmacs->shmac_idents[i];
805 
806  if (id > SCTP_AUTH_HMAC_ID_MAX)
807  return -EOPNOTSUPP;
808 
809  if (SCTP_AUTH_HMAC_ID_SHA1 == id)
810  has_sha1 = 1;
811 
812  if (!sctp_hmac_list[id].hmac_name)
813  return -EOPNOTSUPP;
814  }
815 
816  if (!has_sha1)
817  return -EINVAL;
818 
819  memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
820  hmacs->shmac_num_idents * sizeof(__u16));
821  ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
822  hmacs->shmac_num_idents * sizeof(__u16));
823  return 0;
824 }
825 
826 /* Set a new shared key on either endpoint or association. If the
827  * the key with a same ID already exists, replace the key (remove the
828  * old key and add a new one).
829  */
831  struct sctp_association *asoc,
832  struct sctp_authkey *auth_key)
833 {
834  struct sctp_shared_key *cur_key = NULL;
835  struct sctp_auth_bytes *key;
836  struct list_head *sh_keys;
837  int replace = 0;
838 
839  /* Try to find the given key id to see if
840  * we are doing a replace, or adding a new key
841  */
842  if (asoc)
843  sh_keys = &asoc->endpoint_shared_keys;
844  else
845  sh_keys = &ep->endpoint_shared_keys;
846 
847  key_for_each(cur_key, sh_keys) {
848  if (cur_key->key_id == auth_key->sca_keynumber) {
849  replace = 1;
850  break;
851  }
852  }
853 
854  /* If we are not replacing a key id, we need to allocate
855  * a shared key.
856  */
857  if (!replace) {
858  cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
859  GFP_KERNEL);
860  if (!cur_key)
861  return -ENOMEM;
862  }
863 
864  /* Create a new key data based on the info passed in */
865  key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
866  if (!key)
867  goto nomem;
868 
869  memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
870 
871  /* If we are replacing, remove the old keys data from the
872  * key id. If we are adding new key id, add it to the
873  * list.
874  */
875  if (replace)
876  sctp_auth_key_put(cur_key->key);
877  else
878  list_add(&cur_key->key_list, sh_keys);
879 
880  cur_key->key = key;
881  sctp_auth_key_hold(key);
882 
883  return 0;
884 nomem:
885  if (!replace)
886  sctp_auth_shkey_free(cur_key);
887 
888  return -ENOMEM;
889 }
890 
892  struct sctp_association *asoc,
893  __u16 key_id)
894 {
895  struct sctp_shared_key *key;
896  struct list_head *sh_keys;
897  int found = 0;
898 
899  /* The key identifier MUST correst to an existing key */
900  if (asoc)
901  sh_keys = &asoc->endpoint_shared_keys;
902  else
903  sh_keys = &ep->endpoint_shared_keys;
904 
905  key_for_each(key, sh_keys) {
906  if (key->key_id == key_id) {
907  found = 1;
908  break;
909  }
910  }
911 
912  if (!found)
913  return -EINVAL;
914 
915  if (asoc) {
916  asoc->active_key_id = key_id;
918  } else
919  ep->active_key_id = key_id;
920 
921  return 0;
922 }
923 
925  struct sctp_association *asoc,
926  __u16 key_id)
927 {
928  struct sctp_shared_key *key;
929  struct list_head *sh_keys;
930  int found = 0;
931 
932  /* The key identifier MUST NOT be the current active key
933  * The key identifier MUST correst to an existing key
934  */
935  if (asoc) {
936  if (asoc->active_key_id == key_id)
937  return -EINVAL;
938 
939  sh_keys = &asoc->endpoint_shared_keys;
940  } else {
941  if (ep->active_key_id == key_id)
942  return -EINVAL;
943 
944  sh_keys = &ep->endpoint_shared_keys;
945  }
946 
947  key_for_each(key, sh_keys) {
948  if (key->key_id == key_id) {
949  found = 1;
950  break;
951  }
952  }
953 
954  if (!found)
955  return -EINVAL;
956 
957  /* Delete the shared key */
958  list_del_init(&key->key_list);
959  sctp_auth_shkey_free(key);
960 
961  return 0;
962 }