Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
outqueue.c
Go to the documentation of this file.
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  *
7  * This file is part of the SCTP kernel implementation
8  *
9  * These functions implement the sctp_outq class. The outqueue handles
10  * bundling and queueing of outgoing SCTP chunks.
11  *
12  * This SCTP implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This SCTP implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  * ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING. If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  * lksctp developers <[email protected]>
32  *
33  * Or submit a bug report through the following website:
34  * http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  * La Monte H.P. Yarroll <[email protected]>
38  * Karl Knutson <[email protected]>
39  * Perry Melange <[email protected]>
40  * Xingang Guo <[email protected]>
41  * Hui Huang <[email protected]>
42  * Sridhar Samudrala <[email protected]>
43  * Jon Grimm <[email protected]>
44  *
45  * Any bugs reported given to us we will try to fix... any fixes shared will
46  * be incorporated into the next SCTP release.
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/slab.h>
56 #include <net/sock.h> /* For skb_set_owner_w */
57 
58 #include <net/sctp/sctp.h>
59 #include <net/sctp/sm.h>
60 
61 /* Declare internal functions here. */
62 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
63 static void sctp_check_transmitted(struct sctp_outq *q,
64  struct list_head *transmitted_queue,
65  struct sctp_transport *transport,
66  union sctp_addr *saddr,
67  struct sctp_sackhdr *sack,
68  __u32 *highest_new_tsn);
69 
70 static void sctp_mark_missing(struct sctp_outq *q,
71  struct list_head *transmitted_queue,
72  struct sctp_transport *transport,
73  __u32 highest_new_tsn,
74  int count_of_newacks);
75 
76 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
77 
78 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout);
79 
80 /* Add data to the front of the queue. */
81 static inline void sctp_outq_head_data(struct sctp_outq *q,
82  struct sctp_chunk *ch)
83 {
84  list_add(&ch->list, &q->out_chunk_list);
85  q->out_qlen += ch->skb->len;
86 }
87 
88 /* Take data from the front of the queue. */
89 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
90 {
91  struct sctp_chunk *ch = NULL;
92 
93  if (!list_empty(&q->out_chunk_list)) {
94  struct list_head *entry = q->out_chunk_list.next;
95 
96  ch = list_entry(entry, struct sctp_chunk, list);
97  list_del_init(entry);
98  q->out_qlen -= ch->skb->len;
99  }
100  return ch;
101 }
102 /* Add data chunk to the end of the queue. */
103 static inline void sctp_outq_tail_data(struct sctp_outq *q,
104  struct sctp_chunk *ch)
105 {
106  list_add_tail(&ch->list, &q->out_chunk_list);
107  q->out_qlen += ch->skb->len;
108 }
109 
110 /*
111  * SFR-CACC algorithm:
112  * D) If count_of_newacks is greater than or equal to 2
113  * and t was not sent to the current primary then the
114  * sender MUST NOT increment missing report count for t.
115  */
116 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
117  struct sctp_transport *transport,
118  int count_of_newacks)
119 {
120  if (count_of_newacks >=2 && transport != primary)
121  return 1;
122  return 0;
123 }
124 
125 /*
126  * SFR-CACC algorithm:
127  * F) If count_of_newacks is less than 2, let d be the
128  * destination to which t was sent. If cacc_saw_newack
129  * is 0 for destination d, then the sender MUST NOT
130  * increment missing report count for t.
131  */
132 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
133  int count_of_newacks)
134 {
135  if (count_of_newacks < 2 &&
136  (transport && !transport->cacc.cacc_saw_newack))
137  return 1;
138  return 0;
139 }
140 
141 /*
142  * SFR-CACC algorithm:
143  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
144  * execute steps C, D, F.
145  *
146  * C has been implemented in sctp_outq_sack
147  */
148 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
149  struct sctp_transport *transport,
150  int count_of_newacks)
151 {
152  if (!primary->cacc.cycling_changeover) {
153  if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
154  return 1;
155  if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
156  return 1;
157  return 0;
158  }
159  return 0;
160 }
161 
162 /*
163  * SFR-CACC algorithm:
164  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
165  * than next_tsn_at_change of the current primary, then
166  * the sender MUST NOT increment missing report count
167  * for t.
168  */
169 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
170 {
171  if (primary->cacc.cycling_changeover &&
172  TSN_lt(tsn, primary->cacc.next_tsn_at_change))
173  return 1;
174  return 0;
175 }
176 
177 /*
178  * SFR-CACC algorithm:
179  * 3) If the missing report count for TSN t is to be
180  * incremented according to [RFC2960] and
181  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
182  * then the sender MUST further execute steps 3.1 and
183  * 3.2 to determine if the missing report count for
184  * TSN t SHOULD NOT be incremented.
185  *
186  * 3.3) If 3.1 and 3.2 do not dictate that the missing
187  * report count for t should not be incremented, then
188  * the sender SHOULD increment missing report count for
189  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
190  */
191 static inline int sctp_cacc_skip(struct sctp_transport *primary,
192  struct sctp_transport *transport,
193  int count_of_newacks,
194  __u32 tsn)
195 {
196  if (primary->cacc.changeover_active &&
197  (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
198  sctp_cacc_skip_3_2(primary, tsn)))
199  return 1;
200  return 0;
201 }
202 
203 /* Initialize an existing sctp_outq. This does the boring stuff.
204  * You still need to define handlers if you really want to DO
205  * something with this structure...
206  */
207 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
208 {
209  q->asoc = asoc;
210  INIT_LIST_HEAD(&q->out_chunk_list);
211  INIT_LIST_HEAD(&q->control_chunk_list);
212  INIT_LIST_HEAD(&q->retransmit);
213  INIT_LIST_HEAD(&q->sacked);
214  INIT_LIST_HEAD(&q->abandoned);
215 
216  q->fast_rtx = 0;
217  q->outstanding_bytes = 0;
218  q->empty = 1;
219  q->cork = 0;
220 
221  q->malloced = 0;
222  q->out_qlen = 0;
223 }
224 
225 /* Free the outqueue structure and any related pending chunks.
226  */
228 {
229  struct sctp_transport *transport;
230  struct list_head *lchunk, *temp;
231  struct sctp_chunk *chunk, *tmp;
232 
233  /* Throw away unacknowledged chunks. */
234  list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
235  transports) {
236  while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
237  chunk = list_entry(lchunk, struct sctp_chunk,
239  /* Mark as part of a failed message. */
240  sctp_chunk_fail(chunk, q->error);
241  sctp_chunk_free(chunk);
242  }
243  }
244 
245  /* Throw away chunks that have been gap ACKed. */
246  list_for_each_safe(lchunk, temp, &q->sacked) {
247  list_del_init(lchunk);
248  chunk = list_entry(lchunk, struct sctp_chunk,
250  sctp_chunk_fail(chunk, q->error);
251  sctp_chunk_free(chunk);
252  }
253 
254  /* Throw away any chunks in the retransmit queue. */
255  list_for_each_safe(lchunk, temp, &q->retransmit) {
256  list_del_init(lchunk);
257  chunk = list_entry(lchunk, struct sctp_chunk,
259  sctp_chunk_fail(chunk, q->error);
260  sctp_chunk_free(chunk);
261  }
262 
263  /* Throw away any chunks that are in the abandoned queue. */
264  list_for_each_safe(lchunk, temp, &q->abandoned) {
265  list_del_init(lchunk);
266  chunk = list_entry(lchunk, struct sctp_chunk,
268  sctp_chunk_fail(chunk, q->error);
269  sctp_chunk_free(chunk);
270  }
271 
272  /* Throw away any leftover data chunks. */
273  while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
274 
275  /* Mark as send failure. */
276  sctp_chunk_fail(chunk, q->error);
277  sctp_chunk_free(chunk);
278  }
279 
280  q->error = 0;
281 
282  /* Throw away any leftover control chunks. */
284  list_del_init(&chunk->list);
285  sctp_chunk_free(chunk);
286  }
287 }
288 
289 /* Free the outqueue structure and any related pending chunks. */
290 void sctp_outq_free(struct sctp_outq *q)
291 {
292  /* Throw away leftover chunks. */
294 
295  /* If we were kmalloc()'d, free the memory. */
296  if (q->malloced)
297  kfree(q);
298 }
299 
300 /* Put a new chunk in an sctp_outq. */
301 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
302 {
303  struct net *net = sock_net(q->asoc->base.sk);
304  int error = 0;
305 
306  SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
307  q, chunk, chunk && chunk->chunk_hdr ?
308  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
309  : "Illegal Chunk");
310 
311  /* If it is data, queue it up, otherwise, send it
312  * immediately.
313  */
314  if (sctp_chunk_is_data(chunk)) {
315  /* Is it OK to queue data chunks? */
316  /* From 9. Termination of Association
317  *
318  * When either endpoint performs a shutdown, the
319  * association on each peer will stop accepting new
320  * data from its user and only deliver data in queue
321  * at the time of sending or receiving the SHUTDOWN
322  * chunk.
323  */
324  switch (q->asoc->state) {
325  case SCTP_STATE_CLOSED:
330  /* Cannot send after transport endpoint shutdown */
331  error = -ESHUTDOWN;
332  break;
333 
334  default:
335  SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
336  q, chunk, chunk && chunk->chunk_hdr ?
337  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
338  : "Illegal Chunk");
339 
340  sctp_outq_tail_data(q, chunk);
341  if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
343  else
345  q->empty = 0;
346  break;
347  }
348  } else {
349  list_add_tail(&chunk->list, &q->control_chunk_list);
351  }
352 
353  if (error < 0)
354  return error;
355 
356  if (!q->cork)
357  error = sctp_outq_flush(q, 0);
358 
359  return error;
360 }
361 
362 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
363  * and the abandoned list are in ascending order.
364  */
365 static void sctp_insert_list(struct list_head *head, struct list_head *new)
366 {
367  struct list_head *pos;
368  struct sctp_chunk *nchunk, *lchunk;
369  __u32 ntsn, ltsn;
370  int done = 0;
371 
372  nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
373  ntsn = ntohl(nchunk->subh.data_hdr->tsn);
374 
375  list_for_each(pos, head) {
376  lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
377  ltsn = ntohl(lchunk->subh.data_hdr->tsn);
378  if (TSN_lt(ntsn, ltsn)) {
379  list_add(new, pos->prev);
380  done = 1;
381  break;
382  }
383  }
384  if (!done)
385  list_add_tail(new, head);
386 }
387 
388 /* Mark all the eligible packets on a transport for retransmission. */
390  struct sctp_transport *transport,
391  __u8 reason)
392 {
393  struct list_head *lchunk, *ltemp;
394  struct sctp_chunk *chunk;
395 
396  /* Walk through the specified transmitted queue. */
397  list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
398  chunk = list_entry(lchunk, struct sctp_chunk,
400 
401  /* If the chunk is abandoned, move it to abandoned list. */
402  if (sctp_chunk_abandoned(chunk)) {
403  list_del_init(lchunk);
404  sctp_insert_list(&q->abandoned, lchunk);
405 
406  /* If this chunk has not been previousely acked,
407  * stop considering it 'outstanding'. Our peer
408  * will most likely never see it since it will
409  * not be retransmitted
410  */
411  if (!chunk->tsn_gap_acked) {
412  if (chunk->transport)
413  chunk->transport->flight_size -=
414  sctp_data_size(chunk);
415  q->outstanding_bytes -= sctp_data_size(chunk);
416  q->asoc->peer.rwnd += sctp_data_size(chunk);
417  }
418  continue;
419  }
420 
421  /* If we are doing retransmission due to a timeout or pmtu
422  * discovery, only the chunks that are not yet acked should
423  * be added to the retransmit queue.
424  */
425  if ((reason == SCTP_RTXR_FAST_RTX &&
426  (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
427  (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) {
428  /* RFC 2960 6.2.1 Processing a Received SACK
429  *
430  * C) Any time a DATA chunk is marked for
431  * retransmission (via either T3-rtx timer expiration
432  * (Section 6.3.3) or via fast retransmit
433  * (Section 7.2.4)), add the data size of those
434  * chunks to the rwnd.
435  */
436  q->asoc->peer.rwnd += sctp_data_size(chunk);
437  q->outstanding_bytes -= sctp_data_size(chunk);
438  if (chunk->transport)
439  transport->flight_size -= sctp_data_size(chunk);
440 
441  /* sctpimpguide-05 Section 2.8.2
442  * M5) If a T3-rtx timer expires, the
443  * 'TSN.Missing.Report' of all affected TSNs is set
444  * to 0.
445  */
446  chunk->tsn_missing_report = 0;
447 
448  /* If a chunk that is being used for RTT measurement
449  * has to be retransmitted, we cannot use this chunk
450  * anymore for RTT measurements. Reset rto_pending so
451  * that a new RTT measurement is started when a new
452  * data chunk is sent.
453  */
454  if (chunk->rtt_in_progress) {
455  chunk->rtt_in_progress = 0;
456  transport->rto_pending = 0;
457  }
458 
459  /* Move the chunk to the retransmit queue. The chunks
460  * on the retransmit queue are always kept in order.
461  */
462  list_del_init(lchunk);
463  sctp_insert_list(&q->retransmit, lchunk);
464  }
465  }
466 
467  SCTP_DEBUG_PRINTK("%s: transport: %p, reason: %d, "
468  "cwnd: %d, ssthresh: %d, flight_size: %d, "
469  "pba: %d\n", __func__,
470  transport, reason,
471  transport->cwnd, transport->ssthresh,
472  transport->flight_size,
473  transport->partial_bytes_acked);
474 
475 }
476 
477 /* Mark all the eligible packets on a transport for retransmission and force
478  * one packet out.
479  */
480 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
482 {
483  struct net *net = sock_net(q->asoc->base.sk);
484  int error = 0;
485 
486  switch(reason) {
487  case SCTP_RTXR_T3_RTX:
490  /* Update the retran path if the T3-rtx timer has expired for
491  * the current retran path.
492  */
493  if (transport == transport->asoc->peer.retran_path)
495  transport->asoc->rtx_data_chunks +=
496  transport->asoc->unack_data;
497  break;
498  case SCTP_RTXR_FAST_RTX:
501  q->fast_rtx = 1;
502  break;
503  case SCTP_RTXR_PMTUD:
505  break;
506  case SCTP_RTXR_T1_RTX:
508  transport->asoc->init_retries++;
509  break;
510  default:
511  BUG();
512  }
513 
514  sctp_retransmit_mark(q, transport, reason);
515 
516  /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
517  * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
518  * following the procedures outlined in C1 - C5.
519  */
520  if (reason == SCTP_RTXR_T3_RTX)
521  sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
522 
523  /* Flush the queues only on timeout, since fast_rtx is only
524  * triggered during sack processing and the queue
525  * will be flushed at the end.
526  */
527  if (reason != SCTP_RTXR_FAST_RTX)
528  error = sctp_outq_flush(q, /* rtx_timeout */ 1);
529 
530  if (error)
531  q->asoc->base.sk->sk_err = -error;
532 }
533 
534 /*
535  * Transmit DATA chunks on the retransmit queue. Upon return from
536  * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
537  * need to be transmitted by the caller.
538  * We assume that pkt->transport has already been set.
539  *
540  * The return value is a normal kernel error return value.
541  */
542 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
543  int rtx_timeout, int *start_timer)
544 {
545  struct list_head *lqueue;
546  struct sctp_transport *transport = pkt->transport;
548  struct sctp_chunk *chunk, *chunk1;
549  int fast_rtx;
550  int error = 0;
551  int timer = 0;
552  int done = 0;
553 
554  lqueue = &q->retransmit;
555  fast_rtx = q->fast_rtx;
556 
557  /* This loop handles time-out retransmissions, fast retransmissions,
558  * and retransmissions due to opening of whindow.
559  *
560  * RFC 2960 6.3.3 Handle T3-rtx Expiration
561  *
562  * E3) Determine how many of the earliest (i.e., lowest TSN)
563  * outstanding DATA chunks for the address for which the
564  * T3-rtx has expired will fit into a single packet, subject
565  * to the MTU constraint for the path corresponding to the
566  * destination transport address to which the retransmission
567  * is being sent (this may be different from the address for
568  * which the timer expires [see Section 6.4]). Call this value
569  * K. Bundle and retransmit those K DATA chunks in a single
570  * packet to the destination endpoint.
571  *
572  * [Just to be painfully clear, if we are retransmitting
573  * because a timeout just happened, we should send only ONE
574  * packet of retransmitted data.]
575  *
576  * For fast retransmissions we also send only ONE packet. However,
577  * if we are just flushing the queue due to open window, we'll
578  * try to send as much as possible.
579  */
580  list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
581  /* If the chunk is abandoned, move it to abandoned list. */
582  if (sctp_chunk_abandoned(chunk)) {
583  list_del_init(&chunk->transmitted_list);
584  sctp_insert_list(&q->abandoned,
585  &chunk->transmitted_list);
586  continue;
587  }
588 
589  /* Make sure that Gap Acked TSNs are not retransmitted. A
590  * simple approach is just to move such TSNs out of the
591  * way and into a 'transmitted' queue and skip to the
592  * next chunk.
593  */
594  if (chunk->tsn_gap_acked) {
595  list_move_tail(&chunk->transmitted_list,
596  &transport->transmitted);
597  continue;
598  }
599 
600  /* If we are doing fast retransmit, ignore non-fast_rtransmit
601  * chunks
602  */
603  if (fast_rtx && !chunk->fast_retransmit)
604  continue;
605 
606 redo:
607  /* Attempt to append this chunk to the packet. */
608  status = sctp_packet_append_chunk(pkt, chunk);
609 
610  switch (status) {
611  case SCTP_XMIT_PMTU_FULL:
612  if (!pkt->has_data && !pkt->has_cookie_echo) {
613  /* If this packet did not contain DATA then
614  * retransmission did not happen, so do it
615  * again. We'll ignore the error here since
616  * control chunks are already freed so there
617  * is nothing we can do.
618  */
620  goto redo;
621  }
622 
623  /* Send this packet. */
624  error = sctp_packet_transmit(pkt);
625 
626  /* If we are retransmitting, we should only
627  * send a single packet.
628  * Otherwise, try appending this chunk again.
629  */
630  if (rtx_timeout || fast_rtx)
631  done = 1;
632  else
633  goto redo;
634 
635  /* Bundle next chunk in the next round. */
636  break;
637 
638  case SCTP_XMIT_RWND_FULL:
639  /* Send this packet. */
640  error = sctp_packet_transmit(pkt);
641 
642  /* Stop sending DATA as there is no more room
643  * at the receiver.
644  */
645  done = 1;
646  break;
647 
649  /* Send this packet. */
650  error = sctp_packet_transmit(pkt);
651 
652  /* Stop sending DATA because of nagle delay. */
653  done = 1;
654  break;
655 
656  default:
657  /* The append was successful, so add this chunk to
658  * the transmitted list.
659  */
660  list_move_tail(&chunk->transmitted_list,
661  &transport->transmitted);
662 
663  /* Mark the chunk as ineligible for fast retransmit
664  * after it is retransmitted.
665  */
666  if (chunk->fast_retransmit == SCTP_NEED_FRTX)
668 
669  q->empty = 0;
670  break;
671  }
672 
673  /* Set the timer if there were no errors */
674  if (!error && !timer)
675  timer = 1;
676 
677  if (done)
678  break;
679  }
680 
681  /* If we are here due to a retransmit timeout or a fast
682  * retransmit and if there are any chunks left in the retransmit
683  * queue that could not fit in the PMTU sized packet, they need
684  * to be marked as ineligible for a subsequent fast retransmit.
685  */
686  if (rtx_timeout || fast_rtx) {
687  list_for_each_entry(chunk1, lqueue, transmitted_list) {
688  if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
690  }
691  }
692 
693  *start_timer = timer;
694 
695  /* Clear fast retransmit hint */
696  if (fast_rtx)
697  q->fast_rtx = 0;
698 
699  return error;
700 }
701 
702 /* Cork the outqueue so queued chunks are really queued. */
704 {
705  int error = 0;
706  if (q->cork)
707  q->cork = 0;
708  error = sctp_outq_flush(q, 0);
709  return error;
710 }
711 
712 
713 /*
714  * Try to flush an outqueue.
715  *
716  * Description: Send everything in q which we legally can, subject to
717  * congestion limitations.
718  * * Note: This function can be called from multiple contexts so appropriate
719  * locking concerns must be made. Today we use the sock lock to protect
720  * this function.
721  */
722 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
723 {
724  struct sctp_packet *packet;
725  struct sctp_packet singleton;
726  struct sctp_association *asoc = q->asoc;
727  __u16 sport = asoc->base.bind_addr.port;
728  __u16 dport = asoc->peer.port;
729  __u32 vtag = asoc->peer.i.init_tag;
730  struct sctp_transport *transport = NULL;
731  struct sctp_transport *new_transport;
732  struct sctp_chunk *chunk, *tmp;
734  int error = 0;
735  int start_timer = 0;
736  int one_packet = 0;
737 
738  /* These transports have chunks to send. */
739  struct list_head transport_list;
740  struct list_head *ltransport;
741 
742  INIT_LIST_HEAD(&transport_list);
743  packet = NULL;
744 
745  /*
746  * 6.10 Bundling
747  * ...
748  * When bundling control chunks with DATA chunks, an
749  * endpoint MUST place control chunks first in the outbound
750  * SCTP packet. The transmitter MUST transmit DATA chunks
751  * within a SCTP packet in increasing order of TSN.
752  * ...
753  */
754 
756  /* RFC 5061, 5.3
757  * F1) This means that until such time as the ASCONF
758  * containing the add is acknowledged, the sender MUST
759  * NOT use the new IP address as a source for ANY SCTP
760  * packet except on carrying an ASCONF Chunk.
761  */
762  if (asoc->src_out_of_asoc_ok &&
763  chunk->chunk_hdr->type != SCTP_CID_ASCONF)
764  continue;
765 
766  list_del_init(&chunk->list);
767 
768  /* Pick the right transport to use. */
769  new_transport = chunk->transport;
770 
771  if (!new_transport) {
772  /*
773  * If we have a prior transport pointer, see if
774  * the destination address of the chunk
775  * matches the destination address of the
776  * current transport. If not a match, then
777  * try to look up the transport with a given
778  * destination address. We do this because
779  * after processing ASCONFs, we may have new
780  * transports created.
781  */
782  if (transport &&
783  sctp_cmp_addr_exact(&chunk->dest,
784  &transport->ipaddr))
785  new_transport = transport;
786  else
787  new_transport = sctp_assoc_lookup_paddr(asoc,
788  &chunk->dest);
789 
790  /* if we still don't have a new transport, then
791  * use the current active path.
792  */
793  if (!new_transport)
794  new_transport = asoc->peer.active_path;
795  } else if ((new_transport->state == SCTP_INACTIVE) ||
796  (new_transport->state == SCTP_UNCONFIRMED) ||
797  (new_transport->state == SCTP_PF)) {
798  /* If the chunk is Heartbeat or Heartbeat Ack,
799  * send it to chunk->transport, even if it's
800  * inactive.
801  *
802  * 3.3.6 Heartbeat Acknowledgement:
803  * ...
804  * A HEARTBEAT ACK is always sent to the source IP
805  * address of the IP datagram containing the
806  * HEARTBEAT chunk to which this ack is responding.
807  * ...
808  *
809  * ASCONF_ACKs also must be sent to the source.
810  */
811  if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
812  chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
813  chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
814  new_transport = asoc->peer.active_path;
815  }
816 
817  /* Are we switching transports?
818  * Take care of transport locks.
819  */
820  if (new_transport != transport) {
821  transport = new_transport;
822  if (list_empty(&transport->send_ready)) {
823  list_add_tail(&transport->send_ready,
824  &transport_list);
825  }
826  packet = &transport->packet;
827  sctp_packet_config(packet, vtag,
828  asoc->peer.ecn_capable);
829  }
830 
831  switch (chunk->chunk_hdr->type) {
832  /*
833  * 6.10 Bundling
834  * ...
835  * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
836  * COMPLETE with any other chunks. [Send them immediately.]
837  */
838  case SCTP_CID_INIT:
839  case SCTP_CID_INIT_ACK:
841  sctp_packet_init(&singleton, transport, sport, dport);
842  sctp_packet_config(&singleton, vtag, 0);
843  sctp_packet_append_chunk(&singleton, chunk);
844  error = sctp_packet_transmit(&singleton);
845  if (error < 0)
846  return error;
847  break;
848 
849  case SCTP_CID_ABORT:
850  if (sctp_test_T_bit(chunk)) {
851  packet->vtag = asoc->c.my_vtag;
852  }
853  /* The following chunks are "response" chunks, i.e.
854  * they are generated in response to something we
855  * received. If we are sending these, then we can
856  * send only 1 packet containing these chunks.
857  */
860  case SCTP_CID_COOKIE_ACK:
862  case SCTP_CID_ERROR:
863  case SCTP_CID_ECN_CWR:
864  case SCTP_CID_ASCONF_ACK:
865  one_packet = 1;
866  /* Fall through */
867 
868  case SCTP_CID_SACK:
869  case SCTP_CID_HEARTBEAT:
870  case SCTP_CID_SHUTDOWN:
871  case SCTP_CID_ECN_ECNE:
872  case SCTP_CID_ASCONF:
873  case SCTP_CID_FWD_TSN:
874  status = sctp_packet_transmit_chunk(packet, chunk,
875  one_packet);
876  if (status != SCTP_XMIT_OK) {
877  /* put the chunk back */
878  list_add(&chunk->list, &q->control_chunk_list);
879  } else if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN) {
880  /* PR-SCTP C5) If a FORWARD TSN is sent, the
881  * sender MUST assure that at least one T3-rtx
882  * timer is running.
883  */
884  sctp_transport_reset_timers(transport);
885  }
886  break;
887 
888  default:
889  /* We built a chunk with an illegal type! */
890  BUG();
891  }
892  }
893 
894  if (q->asoc->src_out_of_asoc_ok)
895  goto sctp_flush_out;
896 
897  /* Is it OK to send data chunks? */
898  switch (asoc->state) {
900  /* Only allow bundling when this packet has a COOKIE-ECHO
901  * chunk.
902  */
903  if (!packet || !packet->has_cookie_echo)
904  break;
905 
906  /* fallthru */
910  /*
911  * RFC 2960 6.1 Transmission of DATA Chunks
912  *
913  * C) When the time comes for the sender to transmit,
914  * before sending new DATA chunks, the sender MUST
915  * first transmit any outstanding DATA chunks which
916  * are marked for retransmission (limited by the
917  * current cwnd).
918  */
919  if (!list_empty(&q->retransmit)) {
920  if (asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
921  goto sctp_flush_out;
922  if (transport == asoc->peer.retran_path)
923  goto retran;
924 
925  /* Switch transports & prepare the packet. */
926 
927  transport = asoc->peer.retran_path;
928 
929  if (list_empty(&transport->send_ready)) {
930  list_add_tail(&transport->send_ready,
931  &transport_list);
932  }
933 
934  packet = &transport->packet;
935  sctp_packet_config(packet, vtag,
936  asoc->peer.ecn_capable);
937  retran:
938  error = sctp_outq_flush_rtx(q, packet,
939  rtx_timeout, &start_timer);
940 
941  if (start_timer)
942  sctp_transport_reset_timers(transport);
943 
944  /* This can happen on COOKIE-ECHO resend. Only
945  * one chunk can get bundled with a COOKIE-ECHO.
946  */
947  if (packet->has_cookie_echo)
948  goto sctp_flush_out;
949 
950  /* Don't send new data if there is still data
951  * waiting to retransmit.
952  */
953  if (!list_empty(&q->retransmit))
954  goto sctp_flush_out;
955  }
956 
957  /* Apply Max.Burst limitation to the current transport in
958  * case it will be used for new data. We are going to
959  * rest it before we return, but we want to apply the limit
960  * to the currently queued data.
961  */
962  if (transport)
963  sctp_transport_burst_limited(transport);
964 
965  /* Finally, transmit new packets. */
966  while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
967  /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
968  * stream identifier.
969  */
970  if (chunk->sinfo.sinfo_stream >=
971  asoc->c.sinit_num_ostreams) {
972 
973  /* Mark as failed send. */
975  sctp_chunk_free(chunk);
976  continue;
977  }
978 
979  /* Has this chunk expired? */
980  if (sctp_chunk_abandoned(chunk)) {
981  sctp_chunk_fail(chunk, 0);
982  sctp_chunk_free(chunk);
983  continue;
984  }
985 
986  /* If there is a specified transport, use it.
987  * Otherwise, we want to use the active path.
988  */
989  new_transport = chunk->transport;
990  if (!new_transport ||
991  ((new_transport->state == SCTP_INACTIVE) ||
992  (new_transport->state == SCTP_UNCONFIRMED) ||
993  (new_transport->state == SCTP_PF)))
994  new_transport = asoc->peer.active_path;
995  if (new_transport->state == SCTP_UNCONFIRMED)
996  continue;
997 
998  /* Change packets if necessary. */
999  if (new_transport != transport) {
1000  transport = new_transport;
1001 
1002  /* Schedule to have this transport's
1003  * packet flushed.
1004  */
1005  if (list_empty(&transport->send_ready)) {
1006  list_add_tail(&transport->send_ready,
1007  &transport_list);
1008  }
1009 
1010  packet = &transport->packet;
1011  sctp_packet_config(packet, vtag,
1012  asoc->peer.ecn_capable);
1013  /* We've switched transports, so apply the
1014  * Burst limit to the new transport.
1015  */
1016  sctp_transport_burst_limited(transport);
1017  }
1018 
1019  SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
1020  q, chunk,
1021  chunk && chunk->chunk_hdr ?
1022  sctp_cname(SCTP_ST_CHUNK(
1023  chunk->chunk_hdr->type))
1024  : "Illegal Chunk");
1025 
1026  SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
1027  "%p skb->users %d.\n",
1028  ntohl(chunk->subh.data_hdr->tsn),
1029  chunk->skb ?chunk->skb->head : NULL,
1030  chunk->skb ?
1031  atomic_read(&chunk->skb->users) : -1);
1032 
1033  /* Add the chunk to the packet. */
1034  status = sctp_packet_transmit_chunk(packet, chunk, 0);
1035 
1036  switch (status) {
1037  case SCTP_XMIT_PMTU_FULL:
1038  case SCTP_XMIT_RWND_FULL:
1039  case SCTP_XMIT_NAGLE_DELAY:
1040  /* We could not append this chunk, so put
1041  * the chunk back on the output queue.
1042  */
1043  SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
1044  "not transmit TSN: 0x%x, status: %d\n",
1045  ntohl(chunk->subh.data_hdr->tsn),
1046  status);
1047  sctp_outq_head_data(q, chunk);
1048  goto sctp_flush_out;
1049  break;
1050 
1051  case SCTP_XMIT_OK:
1052  /* The sender is in the SHUTDOWN-PENDING state,
1053  * The sender MAY set the I-bit in the DATA
1054  * chunk header.
1055  */
1056  if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1057  chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1058 
1059  break;
1060 
1061  default:
1062  BUG();
1063  }
1064 
1065  /* BUG: We assume that the sctp_packet_transmit()
1066  * call below will succeed all the time and add the
1067  * chunk to the transmitted list and restart the
1068  * timers.
1069  * It is possible that the call can fail under OOM
1070  * conditions.
1071  *
1072  * Is this really a problem? Won't this behave
1073  * like a lost TSN?
1074  */
1076  &transport->transmitted);
1077 
1078  sctp_transport_reset_timers(transport);
1079 
1080  q->empty = 0;
1081 
1082  /* Only let one DATA chunk get bundled with a
1083  * COOKIE-ECHO chunk.
1084  */
1085  if (packet->has_cookie_echo)
1086  goto sctp_flush_out;
1087  }
1088  break;
1089 
1090  default:
1091  /* Do nothing. */
1092  break;
1093  }
1094 
1095 sctp_flush_out:
1096 
1097  /* Before returning, examine all the transports touched in
1098  * this call. Right now, we bluntly force clear all the
1099  * transports. Things might change after we implement Nagle.
1100  * But such an examination is still required.
1101  *
1102  * --xguo
1103  */
1104  while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
1105  struct sctp_transport *t = list_entry(ltransport,
1106  struct sctp_transport,
1107  send_ready);
1108  packet = &t->packet;
1109  if (!sctp_packet_empty(packet))
1110  error = sctp_packet_transmit(packet);
1111 
1112  /* Clear the burst limited state, if any */
1114  }
1115 
1116  return error;
1117 }
1118 
1119 /* Update unack_data based on the incoming SACK chunk */
1120 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1121  struct sctp_sackhdr *sack)
1122 {
1123  sctp_sack_variable_t *frags;
1124  __u16 unack_data;
1125  int i;
1126 
1127  unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1128 
1129  frags = sack->variable;
1130  for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1131  unack_data -= ((ntohs(frags[i].gab.end) -
1132  ntohs(frags[i].gab.start) + 1));
1133  }
1134 
1135  assoc->unack_data = unack_data;
1136 }
1137 
1138 /* This is where we REALLY process a SACK.
1139  *
1140  * Process the SACK against the outqueue. Mostly, this just frees
1141  * things off the transmitted queue.
1142  */
1143 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1144 {
1145  struct sctp_association *asoc = q->asoc;
1146  struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1147  struct sctp_transport *transport;
1148  struct sctp_chunk *tchunk = NULL;
1149  struct list_head *lchunk, *transport_list, *temp;
1150  sctp_sack_variable_t *frags = sack->variable;
1151  __u32 sack_ctsn, ctsn, tsn;
1152  __u32 highest_tsn, highest_new_tsn;
1153  __u32 sack_a_rwnd;
1154  unsigned int outstanding;
1155  struct sctp_transport *primary = asoc->peer.primary_path;
1156  int count_of_newacks = 0;
1157  int gap_ack_blocks;
1158  u8 accum_moved = 0;
1159 
1160  /* Grab the association's destination address list. */
1161  transport_list = &asoc->peer.transport_addr_list;
1162 
1163  sack_ctsn = ntohl(sack->cum_tsn_ack);
1164  gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1165  /*
1166  * SFR-CACC algorithm:
1167  * On receipt of a SACK the sender SHOULD execute the
1168  * following statements.
1169  *
1170  * 1) If the cumulative ack in the SACK passes next tsn_at_change
1171  * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1172  * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1173  * all destinations.
1174  * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1175  * is set the receiver of the SACK MUST take the following actions:
1176  *
1177  * A) Initialize the cacc_saw_newack to 0 for all destination
1178  * addresses.
1179  *
1180  * Only bother if changeover_active is set. Otherwise, this is
1181  * totally suboptimal to do on every SACK.
1182  */
1183  if (primary->cacc.changeover_active) {
1184  u8 clear_cycling = 0;
1185 
1186  if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1187  primary->cacc.changeover_active = 0;
1188  clear_cycling = 1;
1189  }
1190 
1191  if (clear_cycling || gap_ack_blocks) {
1192  list_for_each_entry(transport, transport_list,
1193  transports) {
1194  if (clear_cycling)
1195  transport->cacc.cycling_changeover = 0;
1196  if (gap_ack_blocks)
1197  transport->cacc.cacc_saw_newack = 0;
1198  }
1199  }
1200  }
1201 
1202  /* Get the highest TSN in the sack. */
1203  highest_tsn = sack_ctsn;
1204  if (gap_ack_blocks)
1205  highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1206 
1207  if (TSN_lt(asoc->highest_sacked, highest_tsn))
1208  asoc->highest_sacked = highest_tsn;
1209 
1210  highest_new_tsn = sack_ctsn;
1211 
1212  /* Run through the retransmit queue. Credit bytes received
1213  * and free those chunks that we can.
1214  */
1215  sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1216 
1217  /* Run through the transmitted queue.
1218  * Credit bytes received and free those chunks which we can.
1219  *
1220  * This is a MASSIVE candidate for optimization.
1221  */
1222  list_for_each_entry(transport, transport_list, transports) {
1223  sctp_check_transmitted(q, &transport->transmitted,
1224  transport, &chunk->source, sack,
1225  &highest_new_tsn);
1226  /*
1227  * SFR-CACC algorithm:
1228  * C) Let count_of_newacks be the number of
1229  * destinations for which cacc_saw_newack is set.
1230  */
1231  if (transport->cacc.cacc_saw_newack)
1232  count_of_newacks ++;
1233  }
1234 
1235  /* Move the Cumulative TSN Ack Point if appropriate. */
1236  if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1237  asoc->ctsn_ack_point = sack_ctsn;
1238  accum_moved = 1;
1239  }
1240 
1241  if (gap_ack_blocks) {
1242 
1243  if (asoc->fast_recovery && accum_moved)
1244  highest_new_tsn = highest_tsn;
1245 
1246  list_for_each_entry(transport, transport_list, transports)
1247  sctp_mark_missing(q, &transport->transmitted, transport,
1248  highest_new_tsn, count_of_newacks);
1249  }
1250 
1251  /* Update unack_data field in the assoc. */
1252  sctp_sack_update_unack_data(asoc, sack);
1253 
1254  ctsn = asoc->ctsn_ack_point;
1255 
1256  /* Throw away stuff rotting on the sack queue. */
1257  list_for_each_safe(lchunk, temp, &q->sacked) {
1258  tchunk = list_entry(lchunk, struct sctp_chunk,
1259  transmitted_list);
1260  tsn = ntohl(tchunk->subh.data_hdr->tsn);
1261  if (TSN_lte(tsn, ctsn)) {
1262  list_del_init(&tchunk->transmitted_list);
1263  sctp_chunk_free(tchunk);
1264  }
1265  }
1266 
1267  /* ii) Set rwnd equal to the newly received a_rwnd minus the
1268  * number of bytes still outstanding after processing the
1269  * Cumulative TSN Ack and the Gap Ack Blocks.
1270  */
1271 
1272  sack_a_rwnd = ntohl(sack->a_rwnd);
1273  outstanding = q->outstanding_bytes;
1274 
1275  if (outstanding < sack_a_rwnd)
1276  sack_a_rwnd -= outstanding;
1277  else
1278  sack_a_rwnd = 0;
1279 
1280  asoc->peer.rwnd = sack_a_rwnd;
1281 
1282  sctp_generate_fwdtsn(q, sack_ctsn);
1283 
1284  SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1285  __func__, sack_ctsn);
1286  SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1287  "%p is 0x%x. Adv peer ack point: 0x%x\n",
1288  __func__, asoc, ctsn, asoc->adv_peer_ack_point);
1289 
1290  /* See if all chunks are acked.
1291  * Make sure the empty queue handler will get run later.
1292  */
1293  q->empty = (list_empty(&q->out_chunk_list) &&
1294  list_empty(&q->retransmit));
1295  if (!q->empty)
1296  goto finish;
1297 
1298  list_for_each_entry(transport, transport_list, transports) {
1299  q->empty = q->empty && list_empty(&transport->transmitted);
1300  if (!q->empty)
1301  goto finish;
1302  }
1303 
1304  SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1305 finish:
1306  return q->empty;
1307 }
1308 
1309 /* Is the outqueue empty? */
1310 int sctp_outq_is_empty(const struct sctp_outq *q)
1311 {
1312  return q->empty;
1313 }
1314 
1315 /********************************************************************
1316  * 2nd Level Abstractions
1317  ********************************************************************/
1318 
1319 /* Go through a transport's transmitted list or the association's retransmit
1320  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1321  * The retransmit list will not have an associated transport.
1322  *
1323  * I added coherent debug information output. --xguo
1324  *
1325  * Instead of printing 'sacked' or 'kept' for each TSN on the
1326  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1327  * KEPT TSN6-TSN7, etc.
1328  */
1329 static void sctp_check_transmitted(struct sctp_outq *q,
1330  struct list_head *transmitted_queue,
1331  struct sctp_transport *transport,
1332  union sctp_addr *saddr,
1333  struct sctp_sackhdr *sack,
1334  __u32 *highest_new_tsn_in_sack)
1335 {
1336  struct list_head *lchunk;
1337  struct sctp_chunk *tchunk;
1338  struct list_head tlist;
1339  __u32 tsn;
1340  __u32 sack_ctsn;
1341  __u32 rtt;
1342  __u8 restart_timer = 0;
1343  int bytes_acked = 0;
1344  int migrate_bytes = 0;
1345 
1346  /* These state variables are for coherent debug output. --xguo */
1347 
1348 #if SCTP_DEBUG
1349  __u32 dbg_ack_tsn = 0; /* An ACKed TSN range starts here... */
1350  __u32 dbg_last_ack_tsn = 0; /* ...and finishes here. */
1351  __u32 dbg_kept_tsn = 0; /* An un-ACKed range starts here... */
1352  __u32 dbg_last_kept_tsn = 0; /* ...and finishes here. */
1353 
1354  /* 0 : The last TSN was ACKed.
1355  * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1356  * -1: We need to initialize.
1357  */
1358  int dbg_prt_state = -1;
1359 #endif /* SCTP_DEBUG */
1360 
1361  sack_ctsn = ntohl(sack->cum_tsn_ack);
1362 
1363  INIT_LIST_HEAD(&tlist);
1364 
1365  /* The while loop will skip empty transmitted queues. */
1366  while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1367  tchunk = list_entry(lchunk, struct sctp_chunk,
1368  transmitted_list);
1369 
1370  if (sctp_chunk_abandoned(tchunk)) {
1371  /* Move the chunk to abandoned list. */
1372  sctp_insert_list(&q->abandoned, lchunk);
1373 
1374  /* If this chunk has not been acked, stop
1375  * considering it as 'outstanding'.
1376  */
1377  if (!tchunk->tsn_gap_acked) {
1378  if (tchunk->transport)
1379  tchunk->transport->flight_size -=
1380  sctp_data_size(tchunk);
1381  q->outstanding_bytes -= sctp_data_size(tchunk);
1382  }
1383  continue;
1384  }
1385 
1386  tsn = ntohl(tchunk->subh.data_hdr->tsn);
1387  if (sctp_acked(sack, tsn)) {
1388  /* If this queue is the retransmit queue, the
1389  * retransmit timer has already reclaimed
1390  * the outstanding bytes for this chunk, so only
1391  * count bytes associated with a transport.
1392  */
1393  if (transport) {
1394  /* If this chunk is being used for RTT
1395  * measurement, calculate the RTT and update
1396  * the RTO using this value.
1397  *
1398  * 6.3.1 C5) Karn's algorithm: RTT measurements
1399  * MUST NOT be made using packets that were
1400  * retransmitted (and thus for which it is
1401  * ambiguous whether the reply was for the
1402  * first instance of the packet or a later
1403  * instance).
1404  */
1405  if (!tchunk->tsn_gap_acked &&
1406  tchunk->rtt_in_progress) {
1407  tchunk->rtt_in_progress = 0;
1408  rtt = jiffies - tchunk->sent_at;
1409  sctp_transport_update_rto(transport,
1410  rtt);
1411  }
1412  }
1413 
1414  /* If the chunk hasn't been marked as ACKED,
1415  * mark it and account bytes_acked if the
1416  * chunk had a valid transport (it will not
1417  * have a transport if ASCONF had deleted it
1418  * while DATA was outstanding).
1419  */
1420  if (!tchunk->tsn_gap_acked) {
1421  tchunk->tsn_gap_acked = 1;
1422  *highest_new_tsn_in_sack = tsn;
1423  bytes_acked += sctp_data_size(tchunk);
1424  if (!tchunk->transport)
1425  migrate_bytes += sctp_data_size(tchunk);
1426  }
1427 
1428  if (TSN_lte(tsn, sack_ctsn)) {
1429  /* RFC 2960 6.3.2 Retransmission Timer Rules
1430  *
1431  * R3) Whenever a SACK is received
1432  * that acknowledges the DATA chunk
1433  * with the earliest outstanding TSN
1434  * for that address, restart T3-rtx
1435  * timer for that address with its
1436  * current RTO.
1437  */
1438  restart_timer = 1;
1439 
1440  if (!tchunk->tsn_gap_acked) {
1441  /*
1442  * SFR-CACC algorithm:
1443  * 2) If the SACK contains gap acks
1444  * and the flag CHANGEOVER_ACTIVE is
1445  * set the receiver of the SACK MUST
1446  * take the following action:
1447  *
1448  * B) For each TSN t being acked that
1449  * has not been acked in any SACK so
1450  * far, set cacc_saw_newack to 1 for
1451  * the destination that the TSN was
1452  * sent to.
1453  */
1454  if (transport &&
1455  sack->num_gap_ack_blocks &&
1456  q->asoc->peer.primary_path->cacc.
1457  changeover_active)
1458  transport->cacc.cacc_saw_newack
1459  = 1;
1460  }
1461 
1463  &q->sacked);
1464  } else {
1465  /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1466  * M2) Each time a SACK arrives reporting
1467  * 'Stray DATA chunk(s)' record the highest TSN
1468  * reported as newly acknowledged, call this
1469  * value 'HighestTSNinSack'. A newly
1470  * acknowledged DATA chunk is one not
1471  * previously acknowledged in a SACK.
1472  *
1473  * When the SCTP sender of data receives a SACK
1474  * chunk that acknowledges, for the first time,
1475  * the receipt of a DATA chunk, all the still
1476  * unacknowledged DATA chunks whose TSN is
1477  * older than that newly acknowledged DATA
1478  * chunk, are qualified as 'Stray DATA chunks'.
1479  */
1480  list_add_tail(lchunk, &tlist);
1481  }
1482 
1483 #if SCTP_DEBUG
1484  switch (dbg_prt_state) {
1485  case 0: /* last TSN was ACKed */
1486  if (dbg_last_ack_tsn + 1 == tsn) {
1487  /* This TSN belongs to the
1488  * current ACK range.
1489  */
1490  break;
1491  }
1492 
1493  if (dbg_last_ack_tsn != dbg_ack_tsn) {
1494  /* Display the end of the
1495  * current range.
1496  */
1497  SCTP_DEBUG_PRINTK_CONT("-%08x",
1498  dbg_last_ack_tsn);
1499  }
1500 
1501  /* Start a new range. */
1502  SCTP_DEBUG_PRINTK_CONT(",%08x", tsn);
1503  dbg_ack_tsn = tsn;
1504  break;
1505 
1506  case 1: /* The last TSN was NOT ACKed. */
1507  if (dbg_last_kept_tsn != dbg_kept_tsn) {
1508  /* Display the end of current range. */
1509  SCTP_DEBUG_PRINTK_CONT("-%08x",
1510  dbg_last_kept_tsn);
1511  }
1512 
1513  SCTP_DEBUG_PRINTK_CONT("\n");
1514 
1515  /* FALL THROUGH... */
1516  default:
1517  /* This is the first-ever TSN we examined. */
1518  /* Start a new range of ACK-ed TSNs. */
1519  SCTP_DEBUG_PRINTK("ACKed: %08x", tsn);
1520  dbg_prt_state = 0;
1521  dbg_ack_tsn = tsn;
1522  }
1523 
1524  dbg_last_ack_tsn = tsn;
1525 #endif /* SCTP_DEBUG */
1526 
1527  } else {
1528  if (tchunk->tsn_gap_acked) {
1529  SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1530  "data TSN: 0x%x\n",
1531  __func__,
1532  tsn);
1533  tchunk->tsn_gap_acked = 0;
1534 
1535  if (tchunk->transport)
1536  bytes_acked -= sctp_data_size(tchunk);
1537 
1538  /* RFC 2960 6.3.2 Retransmission Timer Rules
1539  *
1540  * R4) Whenever a SACK is received missing a
1541  * TSN that was previously acknowledged via a
1542  * Gap Ack Block, start T3-rtx for the
1543  * destination address to which the DATA
1544  * chunk was originally
1545  * transmitted if it is not already running.
1546  */
1547  restart_timer = 1;
1548  }
1549 
1550  list_add_tail(lchunk, &tlist);
1551 
1552 #if SCTP_DEBUG
1553  /* See the above comments on ACK-ed TSNs. */
1554  switch (dbg_prt_state) {
1555  case 1:
1556  if (dbg_last_kept_tsn + 1 == tsn)
1557  break;
1558 
1559  if (dbg_last_kept_tsn != dbg_kept_tsn)
1560  SCTP_DEBUG_PRINTK_CONT("-%08x",
1561  dbg_last_kept_tsn);
1562 
1563  SCTP_DEBUG_PRINTK_CONT(",%08x", tsn);
1564  dbg_kept_tsn = tsn;
1565  break;
1566 
1567  case 0:
1568  if (dbg_last_ack_tsn != dbg_ack_tsn)
1569  SCTP_DEBUG_PRINTK_CONT("-%08x",
1570  dbg_last_ack_tsn);
1571  SCTP_DEBUG_PRINTK_CONT("\n");
1572 
1573  /* FALL THROUGH... */
1574  default:
1575  SCTP_DEBUG_PRINTK("KEPT: %08x",tsn);
1576  dbg_prt_state = 1;
1577  dbg_kept_tsn = tsn;
1578  }
1579 
1580  dbg_last_kept_tsn = tsn;
1581 #endif /* SCTP_DEBUG */
1582  }
1583  }
1584 
1585 #if SCTP_DEBUG
1586  /* Finish off the last range, displaying its ending TSN. */
1587  switch (dbg_prt_state) {
1588  case 0:
1589  if (dbg_last_ack_tsn != dbg_ack_tsn) {
1590  SCTP_DEBUG_PRINTK_CONT("-%08x\n", dbg_last_ack_tsn);
1591  } else {
1592  SCTP_DEBUG_PRINTK_CONT("\n");
1593  }
1594  break;
1595 
1596  case 1:
1597  if (dbg_last_kept_tsn != dbg_kept_tsn) {
1598  SCTP_DEBUG_PRINTK_CONT("-%08x\n", dbg_last_kept_tsn);
1599  } else {
1600  SCTP_DEBUG_PRINTK_CONT("\n");
1601  }
1602  }
1603 #endif /* SCTP_DEBUG */
1604  if (transport) {
1605  if (bytes_acked) {
1606  struct sctp_association *asoc = transport->asoc;
1607 
1608  /* We may have counted DATA that was migrated
1609  * to this transport due to DEL-IP operation.
1610  * Subtract those bytes, since the were never
1611  * send on this transport and shouldn't be
1612  * credited to this transport.
1613  */
1614  bytes_acked -= migrate_bytes;
1615 
1616  /* 8.2. When an outstanding TSN is acknowledged,
1617  * the endpoint shall clear the error counter of
1618  * the destination transport address to which the
1619  * DATA chunk was last sent.
1620  * The association's overall error counter is
1621  * also cleared.
1622  */
1623  transport->error_count = 0;
1624  transport->asoc->overall_error_count = 0;
1625 
1626  /*
1627  * While in SHUTDOWN PENDING, we may have started
1628  * the T5 shutdown guard timer after reaching the
1629  * retransmission limit. Stop that timer as soon
1630  * as the receiver acknowledged any data.
1631  */
1632  if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1633  del_timer(&asoc->timers
1635  sctp_association_put(asoc);
1636 
1637  /* Mark the destination transport address as
1638  * active if it is not so marked.
1639  */
1640  if ((transport->state == SCTP_INACTIVE ||
1641  transport->state == SCTP_UNCONFIRMED) &&
1642  sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1644  transport->asoc,
1645  transport,
1648  }
1649 
1650  sctp_transport_raise_cwnd(transport, sack_ctsn,
1651  bytes_acked);
1652 
1653  transport->flight_size -= bytes_acked;
1654  if (transport->flight_size == 0)
1655  transport->partial_bytes_acked = 0;
1656  q->outstanding_bytes -= bytes_acked + migrate_bytes;
1657  } else {
1658  /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1659  * When a sender is doing zero window probing, it
1660  * should not timeout the association if it continues
1661  * to receive new packets from the receiver. The
1662  * reason is that the receiver MAY keep its window
1663  * closed for an indefinite time.
1664  * A sender is doing zero window probing when the
1665  * receiver's advertised window is zero, and there is
1666  * only one data chunk in flight to the receiver.
1667  *
1668  * Allow the association to timeout while in SHUTDOWN
1669  * PENDING or SHUTDOWN RECEIVED in case the receiver
1670  * stays in zero window mode forever.
1671  */
1672  if (!q->asoc->peer.rwnd &&
1673  !list_empty(&tlist) &&
1674  (sack_ctsn+2 == q->asoc->next_tsn) &&
1675  q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1676  SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1677  "window probe: %u\n",
1678  __func__, sack_ctsn);
1679  q->asoc->overall_error_count = 0;
1680  transport->error_count = 0;
1681  }
1682  }
1683 
1684  /* RFC 2960 6.3.2 Retransmission Timer Rules
1685  *
1686  * R2) Whenever all outstanding data sent to an address have
1687  * been acknowledged, turn off the T3-rtx timer of that
1688  * address.
1689  */
1690  if (!transport->flight_size) {
1691  if (timer_pending(&transport->T3_rtx_timer) &&
1692  del_timer(&transport->T3_rtx_timer)) {
1693  sctp_transport_put(transport);
1694  }
1695  } else if (restart_timer) {
1696  if (!mod_timer(&transport->T3_rtx_timer,
1697  jiffies + transport->rto))
1698  sctp_transport_hold(transport);
1699  }
1700  }
1701 
1702  list_splice(&tlist, transmitted_queue);
1703 }
1704 
1705 /* Mark chunks as missing and consequently may get retransmitted. */
1706 static void sctp_mark_missing(struct sctp_outq *q,
1707  struct list_head *transmitted_queue,
1708  struct sctp_transport *transport,
1709  __u32 highest_new_tsn_in_sack,
1710  int count_of_newacks)
1711 {
1712  struct sctp_chunk *chunk;
1713  __u32 tsn;
1714  char do_fast_retransmit = 0;
1715  struct sctp_association *asoc = q->asoc;
1716  struct sctp_transport *primary = asoc->peer.primary_path;
1717 
1718  list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1719 
1720  tsn = ntohl(chunk->subh.data_hdr->tsn);
1721 
1722  /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1723  * 'Unacknowledged TSN's', if the TSN number of an
1724  * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1725  * value, increment the 'TSN.Missing.Report' count on that
1726  * chunk if it has NOT been fast retransmitted or marked for
1727  * fast retransmit already.
1728  */
1729  if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1730  !chunk->tsn_gap_acked &&
1731  TSN_lt(tsn, highest_new_tsn_in_sack)) {
1732 
1733  /* SFR-CACC may require us to skip marking
1734  * this chunk as missing.
1735  */
1736  if (!transport || !sctp_cacc_skip(primary,
1737  chunk->transport,
1738  count_of_newacks, tsn)) {
1739  chunk->tsn_missing_report++;
1740 
1742  "%s: TSN 0x%x missing counter: %d\n",
1743  __func__, tsn,
1744  chunk->tsn_missing_report);
1745  }
1746  }
1747  /*
1748  * M4) If any DATA chunk is found to have a
1749  * 'TSN.Missing.Report'
1750  * value larger than or equal to 3, mark that chunk for
1751  * retransmission and start the fast retransmit procedure.
1752  */
1753 
1754  if (chunk->tsn_missing_report >= 3) {
1756  do_fast_retransmit = 1;
1757  }
1758  }
1759 
1760  if (transport) {
1761  if (do_fast_retransmit)
1762  sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1763 
1764  SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1765  "ssthresh: %d, flight_size: %d, pba: %d\n",
1766  __func__, transport, transport->cwnd,
1767  transport->ssthresh, transport->flight_size,
1768  transport->partial_bytes_acked);
1769  }
1770 }
1771 
1772 /* Is the given TSN acked by this packet? */
1773 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1774 {
1775  int i;
1776  sctp_sack_variable_t *frags;
1777  __u16 gap;
1778  __u32 ctsn = ntohl(sack->cum_tsn_ack);
1779 
1780  if (TSN_lte(tsn, ctsn))
1781  goto pass;
1782 
1783  /* 3.3.4 Selective Acknowledgement (SACK) (3):
1784  *
1785  * Gap Ack Blocks:
1786  * These fields contain the Gap Ack Blocks. They are repeated
1787  * for each Gap Ack Block up to the number of Gap Ack Blocks
1788  * defined in the Number of Gap Ack Blocks field. All DATA
1789  * chunks with TSNs greater than or equal to (Cumulative TSN
1790  * Ack + Gap Ack Block Start) and less than or equal to
1791  * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1792  * Block are assumed to have been received correctly.
1793  */
1794 
1795  frags = sack->variable;
1796  gap = tsn - ctsn;
1797  for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1798  if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1799  TSN_lte(gap, ntohs(frags[i].gab.end)))
1800  goto pass;
1801  }
1802 
1803  return 0;
1804 pass:
1805  return 1;
1806 }
1807 
1808 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1809  int nskips, __be16 stream)
1810 {
1811  int i;
1812 
1813  for (i = 0; i < nskips; i++) {
1814  if (skiplist[i].stream == stream)
1815  return i;
1816  }
1817  return i;
1818 }
1819 
1820 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1821 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1822 {
1823  struct sctp_association *asoc = q->asoc;
1824  struct sctp_chunk *ftsn_chunk = NULL;
1825  struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1826  int nskips = 0;
1827  int skip_pos = 0;
1828  __u32 tsn;
1829  struct sctp_chunk *chunk;
1830  struct list_head *lchunk, *temp;
1831 
1832  if (!asoc->peer.prsctp_capable)
1833  return;
1834 
1835  /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1836  * received SACK.
1837  *
1838  * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1839  * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1840  */
1841  if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1842  asoc->adv_peer_ack_point = ctsn;
1843 
1844  /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1845  * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1846  * the chunk next in the out-queue space is marked as "abandoned" as
1847  * shown in the following example:
1848  *
1849  * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1850  * and the Advanced.Peer.Ack.Point is updated to this value:
1851  *
1852  * out-queue at the end of ==> out-queue after Adv.Ack.Point
1853  * normal SACK processing local advancement
1854  * ... ...
1855  * Adv.Ack.Pt-> 102 acked 102 acked
1856  * 103 abandoned 103 abandoned
1857  * 104 abandoned Adv.Ack.P-> 104 abandoned
1858  * 105 105
1859  * 106 acked 106 acked
1860  * ... ...
1861  *
1862  * In this example, the data sender successfully advanced the
1863  * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1864  */
1865  list_for_each_safe(lchunk, temp, &q->abandoned) {
1866  chunk = list_entry(lchunk, struct sctp_chunk,
1867  transmitted_list);
1868  tsn = ntohl(chunk->subh.data_hdr->tsn);
1869 
1870  /* Remove any chunks in the abandoned queue that are acked by
1871  * the ctsn.
1872  */
1873  if (TSN_lte(tsn, ctsn)) {
1874  list_del_init(lchunk);
1875  sctp_chunk_free(chunk);
1876  } else {
1877  if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1878  asoc->adv_peer_ack_point = tsn;
1879  if (chunk->chunk_hdr->flags &
1881  continue;
1882  skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1883  nskips,
1884  chunk->subh.data_hdr->stream);
1885  ftsn_skip_arr[skip_pos].stream =
1886  chunk->subh.data_hdr->stream;
1887  ftsn_skip_arr[skip_pos].ssn =
1888  chunk->subh.data_hdr->ssn;
1889  if (skip_pos == nskips)
1890  nskips++;
1891  if (nskips == 10)
1892  break;
1893  } else
1894  break;
1895  }
1896  }
1897 
1898  /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1899  * is greater than the Cumulative TSN ACK carried in the received
1900  * SACK, the data sender MUST send the data receiver a FORWARD TSN
1901  * chunk containing the latest value of the
1902  * "Advanced.Peer.Ack.Point".
1903  *
1904  * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1905  * list each stream and sequence number in the forwarded TSN. This
1906  * information will enable the receiver to easily find any
1907  * stranded TSN's waiting on stream reorder queues. Each stream
1908  * SHOULD only be reported once; this means that if multiple
1909  * abandoned messages occur in the same stream then only the
1910  * highest abandoned stream sequence number is reported. If the
1911  * total size of the FORWARD TSN does NOT fit in a single MTU then
1912  * the sender of the FORWARD TSN SHOULD lower the
1913  * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1914  * single MTU.
1915  */
1916  if (asoc->adv_peer_ack_point > ctsn)
1917  ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1918  nskips, &ftsn_skip_arr[0]);
1919 
1920  if (ftsn_chunk) {
1921  list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1922  SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1923  }
1924 }