Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
parse_vdso.c
Go to the documentation of this file.
1 /*
2  * parse_vdso.c: Linux reference vDSO parser
3  * Written by Andrew Lutomirski, 2011.
4  *
5  * This code is meant to be linked in to various programs that run on Linux.
6  * As such, it is available with as few restrictions as possible. This file
7  * is licensed under the Creative Commons Zero License, version 1.0,
8  * available at http://creativecommons.org/publicdomain/zero/1.0/legalcode
9  *
10  * The vDSO is a regular ELF DSO that the kernel maps into user space when
11  * it starts a program. It works equally well in statically and dynamically
12  * linked binaries.
13  *
14  * This code is tested on x86_64. In principle it should work on any 64-bit
15  * architecture that has a vDSO.
16  */
17 
18 #include <stdbool.h>
19 #include <stdint.h>
20 #include <string.h>
21 #include <elf.h>
22 
23 /*
24  * To use this vDSO parser, first call one of the vdso_init_* functions.
25  * If you've already parsed auxv, then pass the value of AT_SYSINFO_EHDR
26  * to vdso_init_from_sysinfo_ehdr. Otherwise pass auxv to vdso_init_from_auxv.
27  * Then call vdso_sym for each symbol you want. For example, to look up
28  * gettimeofday on x86_64, use:
29  *
30  * <some pointer> = vdso_sym("LINUX_2.6", "gettimeofday");
31  * or
32  * <some pointer> = vdso_sym("LINUX_2.6", "__vdso_gettimeofday");
33  *
34  * vdso_sym will return 0 if the symbol doesn't exist or if the init function
35  * failed or was not called. vdso_sym is a little slow, so its return value
36  * should be cached.
37  *
38  * vdso_sym is threadsafe; the init functions are not.
39  *
40  * These are the prototypes:
41  */
42 extern void vdso_init_from_auxv(void *auxv);
43 extern void vdso_init_from_sysinfo_ehdr(uintptr_t base);
44 extern void *vdso_sym(const char *version, const char *name);
45 
46 
47 /* And here's the code. */
48 
49 #ifndef __x86_64__
50 # error Not yet ported to non-x86_64 architectures
51 #endif
52 
53 static struct vdso_info
54 {
55  bool valid;
56 
57  /* Load information */
58  uintptr_t load_addr;
59  uintptr_t load_offset; /* load_addr - recorded vaddr */
60 
61  /* Symbol table */
63  const char *symstrings;
64  Elf64_Word *bucket, *chain;
65  Elf64_Word nbucket, nchain;
66 
67  /* Version table */
68  Elf64_Versym *versym;
69  Elf64_Verdef *verdef;
70 } vdso_info;
71 
72 /* Straight from the ELF specification. */
73 static unsigned long elf_hash(const unsigned char *name)
74 {
75  unsigned long h = 0, g;
76  while (*name)
77  {
78  h = (h << 4) + *name++;
79  if (g = h & 0xf0000000)
80  h ^= g >> 24;
81  h &= ~g;
82  }
83  return h;
84 }
85 
87 {
88  size_t i;
89  bool found_vaddr = false;
90 
91  vdso_info.valid = false;
92 
93  vdso_info.load_addr = base;
94 
95  Elf64_Ehdr *hdr = (Elf64_Ehdr*)base;
96  Elf64_Phdr *pt = (Elf64_Phdr*)(vdso_info.load_addr + hdr->e_phoff);
97  Elf64_Dyn *dyn = 0;
98 
99  /*
100  * We need two things from the segment table: the load offset
101  * and the dynamic table.
102  */
103  for (i = 0; i < hdr->e_phnum; i++)
104  {
105  if (pt[i].p_type == PT_LOAD && !found_vaddr) {
106  found_vaddr = true;
107  vdso_info.load_offset = base
108  + (uintptr_t)pt[i].p_offset
109  - (uintptr_t)pt[i].p_vaddr;
110  } else if (pt[i].p_type == PT_DYNAMIC) {
111  dyn = (Elf64_Dyn*)(base + pt[i].p_offset);
112  }
113  }
114 
115  if (!found_vaddr || !dyn)
116  return; /* Failed */
117 
118  /*
119  * Fish out the useful bits of the dynamic table.
120  */
121  Elf64_Word *hash = 0;
122  vdso_info.symstrings = 0;
123  vdso_info.symtab = 0;
124  vdso_info.versym = 0;
125  vdso_info.verdef = 0;
126  for (i = 0; dyn[i].d_tag != DT_NULL; i++) {
127  switch (dyn[i].d_tag) {
128  case DT_STRTAB:
129  vdso_info.symstrings = (const char *)
130  ((uintptr_t)dyn[i].d_un.d_ptr
131  + vdso_info.load_offset);
132  break;
133  case DT_SYMTAB:
134  vdso_info.symtab = (Elf64_Sym *)
135  ((uintptr_t)dyn[i].d_un.d_ptr
136  + vdso_info.load_offset);
137  break;
138  case DT_HASH:
139  hash = (Elf64_Word *)
140  ((uintptr_t)dyn[i].d_un.d_ptr
141  + vdso_info.load_offset);
142  break;
143  case DT_VERSYM:
144  vdso_info.versym = (Elf64_Versym *)
145  ((uintptr_t)dyn[i].d_un.d_ptr
146  + vdso_info.load_offset);
147  break;
148  case DT_VERDEF:
149  vdso_info.verdef = (Elf64_Verdef *)
150  ((uintptr_t)dyn[i].d_un.d_ptr
151  + vdso_info.load_offset);
152  break;
153  }
154  }
155  if (!vdso_info.symstrings || !vdso_info.symtab || !hash)
156  return; /* Failed */
157 
158  if (!vdso_info.verdef)
159  vdso_info.versym = 0;
160 
161  /* Parse the hash table header. */
162  vdso_info.nbucket = hash[0];
163  vdso_info.nchain = hash[1];
164  vdso_info.bucket = &hash[2];
165  vdso_info.chain = &hash[vdso_info.nbucket + 2];
166 
167  /* That's all we need. */
168  vdso_info.valid = true;
169 }
170 
171 static bool vdso_match_version(Elf64_Versym ver,
172  const char *name, Elf64_Word hash)
173 {
174  /*
175  * This is a helper function to check if the version indexed by
176  * ver matches name (which hashes to hash).
177  *
178  * The version definition table is a mess, and I don't know how
179  * to do this in better than linear time without allocating memory
180  * to build an index. I also don't know why the table has
181  * variable size entries in the first place.
182  *
183  * For added fun, I can't find a comprehensible specification of how
184  * to parse all the weird flags in the table.
185  *
186  * So I just parse the whole table every time.
187  */
188 
189  /* First step: find the version definition */
190  ver &= 0x7fff; /* Apparently bit 15 means "hidden" */
191  Elf64_Verdef *def = vdso_info.verdef;
192  while(true) {
193  if ((def->vd_flags & VER_FLG_BASE) == 0
194  && (def->vd_ndx & 0x7fff) == ver)
195  break;
196 
197  if (def->vd_next == 0)
198  return false; /* No definition. */
199 
200  def = (Elf64_Verdef *)((char *)def + def->vd_next);
201  }
202 
203  /* Now figure out whether it matches. */
204  Elf64_Verdaux *aux = (Elf64_Verdaux*)((char *)def + def->vd_aux);
205  return def->vd_hash == hash
206  && !strcmp(name, vdso_info.symstrings + aux->vda_name);
207 }
208 
209 void *vdso_sym(const char *version, const char *name)
210 {
211  unsigned long ver_hash;
212  if (!vdso_info.valid)
213  return 0;
214 
215  ver_hash = elf_hash(version);
216  Elf64_Word chain = vdso_info.bucket[elf_hash(name) % vdso_info.nbucket];
217 
218  for (; chain != STN_UNDEF; chain = vdso_info.chain[chain]) {
219  Elf64_Sym *sym = &vdso_info.symtab[chain];
220 
221  /* Check for a defined global or weak function w/ right name. */
222  if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
223  continue;
224  if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
225  ELF64_ST_BIND(sym->st_info) != STB_WEAK)
226  continue;
227  if (sym->st_shndx == SHN_UNDEF)
228  continue;
229  if (strcmp(name, vdso_info.symstrings + sym->st_name))
230  continue;
231 
232  /* Check symbol version. */
233  if (vdso_info.versym
234  && !vdso_match_version(vdso_info.versym[chain],
235  version, ver_hash))
236  continue;
237 
238  return (void *)(vdso_info.load_offset + sym->st_value);
239  }
240 
241  return 0;
242 }
243 
244 void vdso_init_from_auxv(void *auxv)
245 {
246  Elf64_auxv_t *elf_auxv = auxv;
247  for (int i = 0; elf_auxv[i].a_type != AT_NULL; i++)
248  {
249  if (elf_auxv[i].a_type == AT_SYSINFO_EHDR) {
250  vdso_init_from_sysinfo_ehdr(elf_auxv[i].a_un.a_val);
251  return;
252  }
253  }
254 
255  vdso_info.valid = false;
256 }