Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
phy_qmath.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2010 Broadcom Corporation
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "phy_qmath.h"
18 
19 /*
20  * Description: This function make 16 bit unsigned multiplication.
21  * To fit the output into 16 bits the 32 bit multiplication result is right
22  * shifted by 16 bits.
23  */
24 u16 qm_mulu16(u16 op1, u16 op2)
25 {
26  return (u16) (((u32) op1 * (u32) op2) >> 16);
27 }
28 
29 /*
30  * Description: This function make 16 bit multiplication and return the result
31  * in 16 bits. To fit the multiplication result into 16 bits the multiplication
32  * result is right shifted by 15 bits. Right shifting 15 bits instead of 16 bits
33  * is done to remove the extra sign bit formed due to the multiplication.
34  * When both the 16bit inputs are 0x8000 then the output is saturated to
35  * 0x7fffffff.
36  */
37 s16 qm_muls16(s16 op1, s16 op2)
38 {
39  s32 result;
40  if (op1 == (s16) 0x8000 && op2 == (s16) 0x8000)
41  result = 0x7fffffff;
42  else
43  result = ((s32) (op1) * (s32) (op2));
44 
45  return (s16) (result >> 15);
46 }
47 
48 /*
49  * Description: This function add two 32 bit numbers and return the 32bit
50  * result. If the result overflow 32 bits, the output will be saturated to
51  * 32bits.
52  */
53 s32 qm_add32(s32 op1, s32 op2)
54 {
55  s32 result;
56  result = op1 + op2;
57  if (op1 < 0 && op2 < 0 && result > 0)
58  result = 0x80000000;
59  else if (op1 > 0 && op2 > 0 && result < 0)
60  result = 0x7fffffff;
61 
62  return result;
63 }
64 
65 /*
66  * Description: This function add two 16 bit numbers and return the 16bit
67  * result. If the result overflow 16 bits, the output will be saturated to
68  * 16bits.
69  */
70 s16 qm_add16(s16 op1, s16 op2)
71 {
72  s16 result;
73  s32 temp = (s32) op1 + (s32) op2;
74  if (temp > (s32) 0x7fff)
75  result = (s16) 0x7fff;
76  else if (temp < (s32) 0xffff8000)
77  result = (s16) 0xffff8000;
78  else
79  result = (s16) temp;
80 
81  return result;
82 }
83 
84 /*
85  * Description: This function make 16 bit subtraction and return the 16bit
86  * result. If the result overflow 16 bits, the output will be saturated to
87  * 16bits.
88  */
89 s16 qm_sub16(s16 op1, s16 op2)
90 {
91  s16 result;
92  s32 temp = (s32) op1 - (s32) op2;
93  if (temp > (s32) 0x7fff)
94  result = (s16) 0x7fff;
95  else if (temp < (s32) 0xffff8000)
96  result = (s16) 0xffff8000;
97  else
98  result = (s16) temp;
99 
100  return result;
101 }
102 
103 /*
104  * Description: This function make a 32 bit saturated left shift when the
105  * specified shift is +ve. This function will make a 32 bit right shift when
106  * the specified shift is -ve. This function return the result after shifting
107  * operation.
108  */
109 s32 qm_shl32(s32 op, int shift)
110 {
111  int i;
112  s32 result;
113  result = op;
114  if (shift > 31)
115  shift = 31;
116  else if (shift < -31)
117  shift = -31;
118  if (shift >= 0) {
119  for (i = 0; i < shift; i++)
120  result = qm_add32(result, result);
121  } else {
122  result = result >> (-shift);
123  }
124 
125  return result;
126 }
127 
128 /*
129  * Description: This function make a 16 bit saturated left shift when the
130  * specified shift is +ve. This function will make a 16 bit right shift when
131  * the specified shift is -ve. This function return the result after shifting
132  * operation.
133  */
134 s16 qm_shl16(s16 op, int shift)
135 {
136  int i;
137  s16 result;
138  result = op;
139  if (shift > 15)
140  shift = 15;
141  else if (shift < -15)
142  shift = -15;
143  if (shift > 0) {
144  for (i = 0; i < shift; i++)
145  result = qm_add16(result, result);
146  } else {
147  result = result >> (-shift);
148  }
149 
150  return result;
151 }
152 
153 /*
154  * Description: This function make a 16 bit right shift when shift is +ve.
155  * This function make a 16 bit saturated left shift when shift is -ve. This
156  * function return the result of the shift operation.
157  */
158 s16 qm_shr16(s16 op, int shift)
159 {
160  return qm_shl16(op, -shift);
161 }
162 
163 /*
164  * Description: This function return the number of redundant sign bits in a
165  * 32 bit number. Example: qm_norm32(0x00000080) = 23
166  */
168 {
169  u16 u16extraSignBits;
170  if (op == 0) {
171  return 31;
172  } else {
173  u16extraSignBits = 0;
174  while ((op >> 31) == (op >> 30)) {
175  u16extraSignBits++;
176  op = op << 1;
177  }
178  }
179  return u16extraSignBits;
180 }
181 
182 /* This table is log2(1+(i/32)) where i=[0:1:31], in q.15 format */
183 static const s16 log_table[] = {
184  0,
185  1455,
186  2866,
187  4236,
188  5568,
189  6863,
190  8124,
191  9352,
192  10549,
193  11716,
194  12855,
195  13968,
196  15055,
197  16117,
198  17156,
199  18173,
200  19168,
201  20143,
202  21098,
203  22034,
204  22952,
205  23852,
206  24736,
207  25604,
208  26455,
209  27292,
210  28114,
211  28922,
212  29717,
213  30498,
214  31267,
215  32024
216 };
217 
218 #define LOG_TABLE_SIZE 32 /* log_table size */
219 #define LOG2_LOG_TABLE_SIZE 5 /* log2(log_table size) */
220 #define Q_LOG_TABLE 15 /* qformat of log_table */
221 #define LOG10_2 19728 /* log10(2) in q.16 */
222 
223 /*
224  * Description:
225  * This routine takes the input number N and its q format qN and compute
226  * the log10(N). This routine first normalizes the input no N. Then N is in
227  * mag*(2^x) format. mag is any number in the range 2^30-(2^31 - 1).
228  * Then log2(mag * 2^x) = log2(mag) + x is computed. From that
229  * log10(mag * 2^x) = log2(mag * 2^x) * log10(2) is computed.
230  * This routine looks the log2 value in the table considering
231  * LOG2_LOG_TABLE_SIZE+1 MSBs. As the MSB is always 1, only next
232  * LOG2_OF_LOG_TABLE_SIZE MSBs are used for table lookup. Next 16 MSBs are used
233  * for interpolation.
234  * Inputs:
235  * N - number to which log10 has to be found.
236  * qN - q format of N
237  * log10N - address where log10(N) will be written.
238  * qLog10N - address where log10N qformat will be written.
239  * Note/Problem:
240  * For accurate results input should be in normalized or near normalized form.
241  */
242 void qm_log10(s32 N, s16 qN, s16 *log10N, s16 *qLog10N)
243 {
244  s16 s16norm, s16tableIndex, s16errorApproximation;
245  u16 u16offset;
246  s32 s32log;
247 
248  /* normalize the N. */
249  s16norm = qm_norm32(N);
250  N = N << s16norm;
251 
252  /* The qformat of N after normalization.
253  * -30 is added to treat the no as between 1.0 to 2.0
254  * i.e. after adding the -30 to the qformat the decimal point will be
255  * just rigtht of the MSB. (i.e. after sign bit and 1st MSB). i.e.
256  * at the right side of 30th bit.
257  */
258  qN = qN + s16norm - 30;
259 
260  /* take the table index as the LOG2_OF_LOG_TABLE_SIZE bits right of the
261  * MSB */
262  s16tableIndex = (s16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE)));
263 
264  /* remove the MSB. the MSB is always 1 after normalization. */
265  s16tableIndex =
266  s16tableIndex & (s16) ((1 << LOG2_LOG_TABLE_SIZE) - 1);
267 
268  /* remove the (1+LOG2_OF_LOG_TABLE_SIZE) MSBs in the N. */
269  N = N & ((1 << (32 - (2 + LOG2_LOG_TABLE_SIZE))) - 1);
270 
271  /* take the offset as the 16 MSBS after table index.
272  */
273  u16offset = (u16) (N >> (32 - (2 + LOG2_LOG_TABLE_SIZE + 16)));
274 
275  /* look the log value in the table. */
276  s32log = log_table[s16tableIndex]; /* q.15 format */
277 
278  /* interpolate using the offset. q.15 format. */
279  s16errorApproximation = (s16) qm_mulu16(u16offset,
280  (u16) (log_table[s16tableIndex + 1] -
281  log_table[s16tableIndex]));
282 
283  /* q.15 format */
284  s32log = qm_add16((s16) s32log, s16errorApproximation);
285 
286  /* adjust for the qformat of the N as
287  * log2(mag * 2^x) = log2(mag) + x
288  */
289  s32log = qm_add32(s32log, ((s32) -qN) << 15); /* q.15 format */
290 
291  /* normalize the result. */
292  s16norm = qm_norm32(s32log);
293 
294  /* bring all the important bits into lower 16 bits */
295  /* q.15+s16norm-16 format */
296  s32log = qm_shl32(s32log, s16norm - 16);
297 
298  /* compute the log10(N) by multiplying log2(N) with log10(2).
299  * as log10(mag * 2^x) = log2(mag * 2^x) * log10(2)
300  * log10N in q.15+s16norm-16+1 (LOG10_2 is in q.16)
301  */
302  *log10N = qm_muls16((s16) s32log, (s16) LOG10_2);
303 
304  /* write the q format of the result. */
305  *qLog10N = 15 + s16norm - 16 + 1;
306 
307  return;
308 }