Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pmb.c
Go to the documentation of this file.
1 /*
2  * arch/sh/mm/pmb.c
3  *
4  * Privileged Space Mapping Buffer (PMB) Support.
5  *
6  * Copyright (C) 2005 - 2011 Paul Mundt
7  * Copyright (C) 2010 Matt Fleming
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License. See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/syscore_ops.h>
16 #include <linux/cpu.h>
17 #include <linux/module.h>
18 #include <linux/bitops.h>
19 #include <linux/debugfs.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/err.h>
23 #include <linux/io.h>
24 #include <linux/spinlock.h>
25 #include <linux/vmalloc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/sizes.h>
28 #include <asm/uaccess.h>
29 #include <asm/pgtable.h>
30 #include <asm/page.h>
31 #include <asm/mmu.h>
32 #include <asm/mmu_context.h>
33 
34 struct pmb_entry;
35 
36 struct pmb_entry {
37  unsigned long vpn;
38  unsigned long ppn;
39  unsigned long flags;
40  unsigned long size;
41 
43 
44  /*
45  * 0 .. NR_PMB_ENTRIES for specific entry selection, or
46  * PMB_NO_ENTRY to search for a free one
47  */
48  int entry;
49 
50  /* Adjacent entry link for contiguous multi-entry mappings */
51  struct pmb_entry *link;
52 };
53 
54 static struct {
55  unsigned long size;
56  int flag;
57 } pmb_sizes[] = {
58  { .size = SZ_512M, .flag = PMB_SZ_512M, },
59  { .size = SZ_128M, .flag = PMB_SZ_128M, },
60  { .size = SZ_64M, .flag = PMB_SZ_64M, },
61  { .size = SZ_16M, .flag = PMB_SZ_16M, },
62 };
63 
64 static void pmb_unmap_entry(struct pmb_entry *, int depth);
65 
66 static DEFINE_RWLOCK(pmb_rwlock);
67 static struct pmb_entry pmb_entry_list[NR_PMB_ENTRIES];
68 static DECLARE_BITMAP(pmb_map, NR_PMB_ENTRIES);
69 
70 static unsigned int pmb_iomapping_enabled;
71 
72 static __always_inline unsigned long mk_pmb_entry(unsigned int entry)
73 {
74  return (entry & PMB_E_MASK) << PMB_E_SHIFT;
75 }
76 
77 static __always_inline unsigned long mk_pmb_addr(unsigned int entry)
78 {
79  return mk_pmb_entry(entry) | PMB_ADDR;
80 }
81 
82 static __always_inline unsigned long mk_pmb_data(unsigned int entry)
83 {
84  return mk_pmb_entry(entry) | PMB_DATA;
85 }
86 
87 static __always_inline unsigned int pmb_ppn_in_range(unsigned long ppn)
88 {
89  return ppn >= __pa(memory_start) && ppn < __pa(memory_end);
90 }
91 
92 /*
93  * Ensure that the PMB entries match our cache configuration.
94  *
95  * When we are in 32-bit address extended mode, CCR.CB becomes
96  * invalid, so care must be taken to manually adjust cacheable
97  * translations.
98  */
99 static __always_inline unsigned long pmb_cache_flags(void)
100 {
101  unsigned long flags = 0;
102 
103 #if defined(CONFIG_CACHE_OFF)
104  flags |= PMB_WT | PMB_UB;
105 #elif defined(CONFIG_CACHE_WRITETHROUGH)
106  flags |= PMB_C | PMB_WT | PMB_UB;
107 #elif defined(CONFIG_CACHE_WRITEBACK)
108  flags |= PMB_C;
109 #endif
110 
111  return flags;
112 }
113 
114 /*
115  * Convert typical pgprot value to the PMB equivalent
116  */
117 static inline unsigned long pgprot_to_pmb_flags(pgprot_t prot)
118 {
119  unsigned long pmb_flags = 0;
120  u64 flags = pgprot_val(prot);
121 
122  if (flags & _PAGE_CACHABLE)
123  pmb_flags |= PMB_C;
124  if (flags & _PAGE_WT)
125  pmb_flags |= PMB_WT | PMB_UB;
126 
127  return pmb_flags;
128 }
129 
130 static inline bool pmb_can_merge(struct pmb_entry *a, struct pmb_entry *b)
131 {
132  return (b->vpn == (a->vpn + a->size)) &&
133  (b->ppn == (a->ppn + a->size)) &&
134  (b->flags == a->flags);
135 }
136 
137 static bool pmb_mapping_exists(unsigned long vaddr, phys_addr_t phys,
138  unsigned long size)
139 {
140  int i;
141 
142  read_lock(&pmb_rwlock);
143 
144  for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
145  struct pmb_entry *pmbe, *iter;
146  unsigned long span;
147 
148  if (!test_bit(i, pmb_map))
149  continue;
150 
151  pmbe = &pmb_entry_list[i];
152 
153  /*
154  * See if VPN and PPN are bounded by an existing mapping.
155  */
156  if ((vaddr < pmbe->vpn) || (vaddr >= (pmbe->vpn + pmbe->size)))
157  continue;
158  if ((phys < pmbe->ppn) || (phys >= (pmbe->ppn + pmbe->size)))
159  continue;
160 
161  /*
162  * Now see if we're in range of a simple mapping.
163  */
164  if (size <= pmbe->size) {
165  read_unlock(&pmb_rwlock);
166  return true;
167  }
168 
169  span = pmbe->size;
170 
171  /*
172  * Finally for sizes that involve compound mappings, walk
173  * the chain.
174  */
175  for (iter = pmbe->link; iter; iter = iter->link)
176  span += iter->size;
177 
178  /*
179  * Nothing else to do if the range requirements are met.
180  */
181  if (size <= span) {
182  read_unlock(&pmb_rwlock);
183  return true;
184  }
185  }
186 
187  read_unlock(&pmb_rwlock);
188  return false;
189 }
190 
191 static bool pmb_size_valid(unsigned long size)
192 {
193  int i;
194 
195  for (i = 0; i < ARRAY_SIZE(pmb_sizes); i++)
196  if (pmb_sizes[i].size == size)
197  return true;
198 
199  return false;
200 }
201 
202 static inline bool pmb_addr_valid(unsigned long addr, unsigned long size)
203 {
204  return (addr >= P1SEG && (addr + size - 1) < P3SEG);
205 }
206 
207 static inline bool pmb_prot_valid(pgprot_t prot)
208 {
209  return (pgprot_val(prot) & _PAGE_USER) == 0;
210 }
211 
212 static int pmb_size_to_flags(unsigned long size)
213 {
214  int i;
215 
216  for (i = 0; i < ARRAY_SIZE(pmb_sizes); i++)
217  if (pmb_sizes[i].size == size)
218  return pmb_sizes[i].flag;
219 
220  return 0;
221 }
222 
223 static int pmb_alloc_entry(void)
224 {
225  int pos;
226 
227  pos = find_first_zero_bit(pmb_map, NR_PMB_ENTRIES);
228  if (pos >= 0 && pos < NR_PMB_ENTRIES)
229  __set_bit(pos, pmb_map);
230  else
231  pos = -ENOSPC;
232 
233  return pos;
234 }
235 
236 static struct pmb_entry *pmb_alloc(unsigned long vpn, unsigned long ppn,
237  unsigned long flags, int entry)
238 {
239  struct pmb_entry *pmbe;
240  unsigned long irqflags;
241  void *ret = NULL;
242  int pos;
243 
244  write_lock_irqsave(&pmb_rwlock, irqflags);
245 
246  if (entry == PMB_NO_ENTRY) {
247  pos = pmb_alloc_entry();
248  if (unlikely(pos < 0)) {
249  ret = ERR_PTR(pos);
250  goto out;
251  }
252  } else {
253  if (__test_and_set_bit(entry, pmb_map)) {
254  ret = ERR_PTR(-ENOSPC);
255  goto out;
256  }
257 
258  pos = entry;
259  }
260 
261  write_unlock_irqrestore(&pmb_rwlock, irqflags);
262 
263  pmbe = &pmb_entry_list[pos];
264 
265  memset(pmbe, 0, sizeof(struct pmb_entry));
266 
267  raw_spin_lock_init(&pmbe->lock);
268 
269  pmbe->vpn = vpn;
270  pmbe->ppn = ppn;
271  pmbe->flags = flags;
272  pmbe->entry = pos;
273 
274  return pmbe;
275 
276 out:
277  write_unlock_irqrestore(&pmb_rwlock, irqflags);
278  return ret;
279 }
280 
281 static void pmb_free(struct pmb_entry *pmbe)
282 {
283  __clear_bit(pmbe->entry, pmb_map);
284 
285  pmbe->entry = PMB_NO_ENTRY;
286  pmbe->link = NULL;
287 }
288 
289 /*
290  * Must be run uncached.
291  */
292 static void __set_pmb_entry(struct pmb_entry *pmbe)
293 {
294  unsigned long addr, data;
295 
296  addr = mk_pmb_addr(pmbe->entry);
297  data = mk_pmb_data(pmbe->entry);
298 
300 
301  /* Set V-bit */
302  __raw_writel(pmbe->vpn | PMB_V, addr);
303  __raw_writel(pmbe->ppn | pmbe->flags | PMB_V, data);
304 
305  back_to_cached();
306 }
307 
308 static void __clear_pmb_entry(struct pmb_entry *pmbe)
309 {
310  unsigned long addr, data;
311  unsigned long addr_val, data_val;
312 
313  addr = mk_pmb_addr(pmbe->entry);
314  data = mk_pmb_data(pmbe->entry);
315 
316  addr_val = __raw_readl(addr);
317  data_val = __raw_readl(data);
318 
319  /* Clear V-bit */
320  writel_uncached(addr_val & ~PMB_V, addr);
321  writel_uncached(data_val & ~PMB_V, data);
322 }
323 
324 #ifdef CONFIG_PM
325 static void set_pmb_entry(struct pmb_entry *pmbe)
326 {
327  unsigned long flags;
328 
329  raw_spin_lock_irqsave(&pmbe->lock, flags);
330  __set_pmb_entry(pmbe);
331  raw_spin_unlock_irqrestore(&pmbe->lock, flags);
332 }
333 #endif /* CONFIG_PM */
334 
335 int pmb_bolt_mapping(unsigned long vaddr, phys_addr_t phys,
336  unsigned long size, pgprot_t prot)
337 {
338  struct pmb_entry *pmbp, *pmbe;
339  unsigned long orig_addr, orig_size;
340  unsigned long flags, pmb_flags;
341  int i, mapped;
342 
343  if (size < SZ_16M)
344  return -EINVAL;
345  if (!pmb_addr_valid(vaddr, size))
346  return -EFAULT;
347  if (pmb_mapping_exists(vaddr, phys, size))
348  return 0;
349 
350  orig_addr = vaddr;
351  orig_size = size;
352 
353  flush_tlb_kernel_range(vaddr, vaddr + size);
354 
355  pmb_flags = pgprot_to_pmb_flags(prot);
356  pmbp = NULL;
357 
358  do {
359  for (i = mapped = 0; i < ARRAY_SIZE(pmb_sizes); i++) {
360  if (size < pmb_sizes[i].size)
361  continue;
362 
363  pmbe = pmb_alloc(vaddr, phys, pmb_flags |
364  pmb_sizes[i].flag, PMB_NO_ENTRY);
365  if (IS_ERR(pmbe)) {
366  pmb_unmap_entry(pmbp, mapped);
367  return PTR_ERR(pmbe);
368  }
369 
370  raw_spin_lock_irqsave(&pmbe->lock, flags);
371 
372  pmbe->size = pmb_sizes[i].size;
373 
374  __set_pmb_entry(pmbe);
375 
376  phys += pmbe->size;
377  vaddr += pmbe->size;
378  size -= pmbe->size;
379 
380  /*
381  * Link adjacent entries that span multiple PMB
382  * entries for easier tear-down.
383  */
384  if (likely(pmbp)) {
385  raw_spin_lock_nested(&pmbp->lock,
387  pmbp->link = pmbe;
388  raw_spin_unlock(&pmbp->lock);
389  }
390 
391  pmbp = pmbe;
392 
393  /*
394  * Instead of trying smaller sizes on every
395  * iteration (even if we succeed in allocating
396  * space), try using pmb_sizes[i].size again.
397  */
398  i--;
399  mapped++;
400 
401  raw_spin_unlock_irqrestore(&pmbe->lock, flags);
402  }
403  } while (size >= SZ_16M);
404 
405  flush_cache_vmap(orig_addr, orig_addr + orig_size);
406 
407  return 0;
408 }
409 
410 void __iomem *pmb_remap_caller(phys_addr_t phys, unsigned long size,
411  pgprot_t prot, void *caller)
412 {
413  unsigned long vaddr;
414  phys_addr_t offset, last_addr;
415  phys_addr_t align_mask;
416  unsigned long aligned;
417  struct vm_struct *area;
418  int i, ret;
419 
420  if (!pmb_iomapping_enabled)
421  return NULL;
422 
423  /*
424  * Small mappings need to go through the TLB.
425  */
426  if (size < SZ_16M)
427  return ERR_PTR(-EINVAL);
428  if (!pmb_prot_valid(prot))
429  return ERR_PTR(-EINVAL);
430 
431  for (i = 0; i < ARRAY_SIZE(pmb_sizes); i++)
432  if (size >= pmb_sizes[i].size)
433  break;
434 
435  last_addr = phys + size;
436  align_mask = ~(pmb_sizes[i].size - 1);
437  offset = phys & ~align_mask;
438  phys &= align_mask;
439  aligned = ALIGN(last_addr, pmb_sizes[i].size) - phys;
440 
441  /*
442  * XXX: This should really start from uncached_end, but this
443  * causes the MMU to reset, so for now we restrict it to the
444  * 0xb000...0xc000 range.
445  */
446  area = __get_vm_area_caller(aligned, VM_IOREMAP, 0xb0000000,
447  P3SEG, caller);
448  if (!area)
449  return NULL;
450 
451  area->phys_addr = phys;
452  vaddr = (unsigned long)area->addr;
453 
454  ret = pmb_bolt_mapping(vaddr, phys, size, prot);
455  if (unlikely(ret != 0))
456  return ERR_PTR(ret);
457 
458  return (void __iomem *)(offset + (char *)vaddr);
459 }
460 
461 int pmb_unmap(void __iomem *addr)
462 {
463  struct pmb_entry *pmbe = NULL;
464  unsigned long vaddr = (unsigned long __force)addr;
465  int i, found = 0;
466 
467  read_lock(&pmb_rwlock);
468 
469  for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
470  if (test_bit(i, pmb_map)) {
471  pmbe = &pmb_entry_list[i];
472  if (pmbe->vpn == vaddr) {
473  found = 1;
474  break;
475  }
476  }
477  }
478 
479  read_unlock(&pmb_rwlock);
480 
481  if (found) {
482  pmb_unmap_entry(pmbe, NR_PMB_ENTRIES);
483  return 0;
484  }
485 
486  return -EINVAL;
487 }
488 
489 static void __pmb_unmap_entry(struct pmb_entry *pmbe, int depth)
490 {
491  do {
492  struct pmb_entry *pmblink = pmbe;
493 
494  /*
495  * We may be called before this pmb_entry has been
496  * entered into the PMB table via set_pmb_entry(), but
497  * that's OK because we've allocated a unique slot for
498  * this entry in pmb_alloc() (even if we haven't filled
499  * it yet).
500  *
501  * Therefore, calling __clear_pmb_entry() is safe as no
502  * other mapping can be using that slot.
503  */
504  __clear_pmb_entry(pmbe);
505 
506  flush_cache_vunmap(pmbe->vpn, pmbe->vpn + pmbe->size);
507 
508  pmbe = pmblink->link;
509 
510  pmb_free(pmblink);
511  } while (pmbe && --depth);
512 }
513 
514 static void pmb_unmap_entry(struct pmb_entry *pmbe, int depth)
515 {
516  unsigned long flags;
517 
518  if (unlikely(!pmbe))
519  return;
520 
521  write_lock_irqsave(&pmb_rwlock, flags);
522  __pmb_unmap_entry(pmbe, depth);
523  write_unlock_irqrestore(&pmb_rwlock, flags);
524 }
525 
526 static void __init pmb_notify(void)
527 {
528  int i;
529 
530  pr_info("PMB: boot mappings:\n");
531 
532  read_lock(&pmb_rwlock);
533 
534  for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
535  struct pmb_entry *pmbe;
536 
537  if (!test_bit(i, pmb_map))
538  continue;
539 
540  pmbe = &pmb_entry_list[i];
541 
542  pr_info(" 0x%08lx -> 0x%08lx [ %4ldMB %2scached ]\n",
543  pmbe->vpn >> PAGE_SHIFT, pmbe->ppn >> PAGE_SHIFT,
544  pmbe->size >> 20, (pmbe->flags & PMB_C) ? "" : "un");
545  }
546 
547  read_unlock(&pmb_rwlock);
548 }
549 
550 /*
551  * Sync our software copy of the PMB mappings with those in hardware. The
552  * mappings in the hardware PMB were either set up by the bootloader or
553  * very early on by the kernel.
554  */
555 static void __init pmb_synchronize(void)
556 {
557  struct pmb_entry *pmbp = NULL;
558  int i, j;
559 
560  /*
561  * Run through the initial boot mappings, log the established
562  * ones, and blow away anything that falls outside of the valid
563  * PPN range. Specifically, we only care about existing mappings
564  * that impact the cached/uncached sections.
565  *
566  * Note that touching these can be a bit of a minefield; the boot
567  * loader can establish multi-page mappings with the same caching
568  * attributes, so we need to ensure that we aren't modifying a
569  * mapping that we're presently executing from, or may execute
570  * from in the case of straddling page boundaries.
571  *
572  * In the future we will have to tidy up after the boot loader by
573  * jumping between the cached and uncached mappings and tearing
574  * down alternating mappings while executing from the other.
575  */
576  for (i = 0; i < NR_PMB_ENTRIES; i++) {
577  unsigned long addr, data;
578  unsigned long addr_val, data_val;
579  unsigned long ppn, vpn, flags;
580  unsigned long irqflags;
581  unsigned int size;
582  struct pmb_entry *pmbe;
583 
584  addr = mk_pmb_addr(i);
585  data = mk_pmb_data(i);
586 
587  addr_val = __raw_readl(addr);
588  data_val = __raw_readl(data);
589 
590  /*
591  * Skip over any bogus entries
592  */
593  if (!(data_val & PMB_V) || !(addr_val & PMB_V))
594  continue;
595 
596  ppn = data_val & PMB_PFN_MASK;
597  vpn = addr_val & PMB_PFN_MASK;
598 
599  /*
600  * Only preserve in-range mappings.
601  */
602  if (!pmb_ppn_in_range(ppn)) {
603  /*
604  * Invalidate anything out of bounds.
605  */
606  writel_uncached(addr_val & ~PMB_V, addr);
607  writel_uncached(data_val & ~PMB_V, data);
608  continue;
609  }
610 
611  /*
612  * Update the caching attributes if necessary
613  */
614  if (data_val & PMB_C) {
615  data_val &= ~PMB_CACHE_MASK;
616  data_val |= pmb_cache_flags();
617 
618  writel_uncached(data_val, data);
619  }
620 
621  size = data_val & PMB_SZ_MASK;
622  flags = size | (data_val & PMB_CACHE_MASK);
623 
624  pmbe = pmb_alloc(vpn, ppn, flags, i);
625  if (IS_ERR(pmbe)) {
626  WARN_ON_ONCE(1);
627  continue;
628  }
629 
630  raw_spin_lock_irqsave(&pmbe->lock, irqflags);
631 
632  for (j = 0; j < ARRAY_SIZE(pmb_sizes); j++)
633  if (pmb_sizes[j].flag == size)
634  pmbe->size = pmb_sizes[j].size;
635 
636  if (pmbp) {
638  /*
639  * Compare the previous entry against the current one to
640  * see if the entries span a contiguous mapping. If so,
641  * setup the entry links accordingly. Compound mappings
642  * are later coalesced.
643  */
644  if (pmb_can_merge(pmbp, pmbe))
645  pmbp->link = pmbe;
646  raw_spin_unlock(&pmbp->lock);
647  }
648 
649  pmbp = pmbe;
650 
651  raw_spin_unlock_irqrestore(&pmbe->lock, irqflags);
652  }
653 }
654 
655 static void __init pmb_merge(struct pmb_entry *head)
656 {
657  unsigned long span, newsize;
658  struct pmb_entry *tail;
659  int i = 1, depth = 0;
660 
661  span = newsize = head->size;
662 
663  tail = head->link;
664  while (tail) {
665  span += tail->size;
666 
667  if (pmb_size_valid(span)) {
668  newsize = span;
669  depth = i;
670  }
671 
672  /* This is the end of the line.. */
673  if (!tail->link)
674  break;
675 
676  tail = tail->link;
677  i++;
678  }
679 
680  /*
681  * The merged page size must be valid.
682  */
683  if (!depth || !pmb_size_valid(newsize))
684  return;
685 
686  head->flags &= ~PMB_SZ_MASK;
687  head->flags |= pmb_size_to_flags(newsize);
688 
689  head->size = newsize;
690 
691  __pmb_unmap_entry(head->link, depth);
692  __set_pmb_entry(head);
693 }
694 
695 static void __init pmb_coalesce(void)
696 {
697  unsigned long flags;
698  int i;
699 
700  write_lock_irqsave(&pmb_rwlock, flags);
701 
702  for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
703  struct pmb_entry *pmbe;
704 
705  if (!test_bit(i, pmb_map))
706  continue;
707 
708  pmbe = &pmb_entry_list[i];
709 
710  /*
711  * We're only interested in compound mappings
712  */
713  if (!pmbe->link)
714  continue;
715 
716  /*
717  * Nothing to do if it already uses the largest possible
718  * page size.
719  */
720  if (pmbe->size == SZ_512M)
721  continue;
722 
723  pmb_merge(pmbe);
724  }
725 
726  write_unlock_irqrestore(&pmb_rwlock, flags);
727 }
728 
729 #ifdef CONFIG_UNCACHED_MAPPING
730 static void __init pmb_resize(void)
731 {
732  int i;
733 
734  /*
735  * If the uncached mapping was constructed by the kernel, it will
736  * already be a reasonable size.
737  */
738  if (uncached_size == SZ_16M)
739  return;
740 
741  read_lock(&pmb_rwlock);
742 
743  for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
744  struct pmb_entry *pmbe;
745  unsigned long flags;
746 
747  if (!test_bit(i, pmb_map))
748  continue;
749 
750  pmbe = &pmb_entry_list[i];
751 
752  if (pmbe->vpn != uncached_start)
753  continue;
754 
755  /*
756  * Found it, now resize it.
757  */
758  raw_spin_lock_irqsave(&pmbe->lock, flags);
759 
760  pmbe->size = SZ_16M;
761  pmbe->flags &= ~PMB_SZ_MASK;
762  pmbe->flags |= pmb_size_to_flags(pmbe->size);
763 
764  uncached_resize(pmbe->size);
765 
766  __set_pmb_entry(pmbe);
767 
768  raw_spin_unlock_irqrestore(&pmbe->lock, flags);
769  }
770 
771  read_unlock(&pmb_rwlock);
772 }
773 #endif
774 
775 static int __init early_pmb(char *p)
776 {
777  if (!p)
778  return 0;
779 
780  if (strstr(p, "iomap"))
781  pmb_iomapping_enabled = 1;
782 
783  return 0;
784 }
785 early_param("pmb", early_pmb);
786 
787 void __init pmb_init(void)
788 {
789  /* Synchronize software state */
790  pmb_synchronize();
791 
792  /* Attempt to combine compound mappings */
793  pmb_coalesce();
794 
795 #ifdef CONFIG_UNCACHED_MAPPING
796  /* Resize initial mappings, if necessary */
797  pmb_resize();
798 #endif
799 
800  /* Log them */
801  pmb_notify();
802 
803  writel_uncached(0, PMB_IRMCR);
804 
805  /* Flush out the TLB */
807  ctrl_barrier();
808 }
809 
810 bool __in_29bit_mode(void)
811 {
812  return (__raw_readl(PMB_PASCR) & PASCR_SE) == 0;
813 }
814 
815 static int pmb_seq_show(struct seq_file *file, void *iter)
816 {
817  int i;
818 
819  seq_printf(file, "V: Valid, C: Cacheable, WT: Write-Through\n"
820  "CB: Copy-Back, B: Buffered, UB: Unbuffered\n");
821  seq_printf(file, "ety vpn ppn size flags\n");
822 
823  for (i = 0; i < NR_PMB_ENTRIES; i++) {
824  unsigned long addr, data;
825  unsigned int size;
826  char *sz_str = NULL;
827 
828  addr = __raw_readl(mk_pmb_addr(i));
829  data = __raw_readl(mk_pmb_data(i));
830 
831  size = data & PMB_SZ_MASK;
832  sz_str = (size == PMB_SZ_16M) ? " 16MB":
833  (size == PMB_SZ_64M) ? " 64MB":
834  (size == PMB_SZ_128M) ? "128MB":
835  "512MB";
836 
837  /* 02: V 0x88 0x08 128MB C CB B */
838  seq_printf(file, "%02d: %c 0x%02lx 0x%02lx %s %c %s %s\n",
839  i, ((addr & PMB_V) && (data & PMB_V)) ? 'V' : ' ',
840  (addr >> 24) & 0xff, (data >> 24) & 0xff,
841  sz_str, (data & PMB_C) ? 'C' : ' ',
842  (data & PMB_WT) ? "WT" : "CB",
843  (data & PMB_UB) ? "UB" : " B");
844  }
845 
846  return 0;
847 }
848 
849 static int pmb_debugfs_open(struct inode *inode, struct file *file)
850 {
851  return single_open(file, pmb_seq_show, NULL);
852 }
853 
854 static const struct file_operations pmb_debugfs_fops = {
855  .owner = THIS_MODULE,
856  .open = pmb_debugfs_open,
857  .read = seq_read,
858  .llseek = seq_lseek,
859  .release = single_release,
860 };
861 
862 static int __init pmb_debugfs_init(void)
863 {
864  struct dentry *dentry;
865 
866  dentry = debugfs_create_file("pmb", S_IFREG | S_IRUGO,
867  arch_debugfs_dir, NULL, &pmb_debugfs_fops);
868  if (!dentry)
869  return -ENOMEM;
870 
871  return 0;
872 }
873 subsys_initcall(pmb_debugfs_init);
874 
875 #ifdef CONFIG_PM
876 static void pmb_syscore_resume(void)
877 {
878  struct pmb_entry *pmbe;
879  int i;
880 
881  read_lock(&pmb_rwlock);
882 
883  for (i = 0; i < ARRAY_SIZE(pmb_entry_list); i++) {
884  if (test_bit(i, pmb_map)) {
885  pmbe = &pmb_entry_list[i];
886  set_pmb_entry(pmbe);
887  }
888  }
889 
890  read_unlock(&pmb_rwlock);
891 }
892 
893 static struct syscore_ops pmb_syscore_ops = {
894  .resume = pmb_syscore_resume,
895 };
896 
897 static int __init pmb_sysdev_init(void)
898 {
899  register_syscore_ops(&pmb_syscore_ops);
900  return 0;
901 }
902 subsys_initcall(pmb_sysdev_init);
903 #endif