Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sfp-machine.h
Go to the documentation of this file.
1 /* Machine-dependent software floating-point definitions. PPC version.
2  Copyright (C) 1997 Free Software Foundation, Inc.
3  This file is part of the GNU C Library.
4 
5  The GNU C Library is free software; you can redistribute it and/or
6  modify it under the terms of the GNU Library General Public License as
7  published by the Free Software Foundation; either version 2 of the
8  License, or (at your option) any later version.
9 
10  The GNU C Library is distributed in the hope that it will be useful,
11  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13  Library General Public License for more details.
14 
15  You should have received a copy of the GNU Library General Public
16  License along with the GNU C Library; see the file COPYING.LIB. If
17  not, write to the Free Software Foundation, Inc.,
18  59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 
20  Actually, this is a PPC (32bit) version, written based on the
21  i386, sparc, and sparc64 versions, by me,
22  Peter Maydell ([email protected]).
23  Comments are by and large also mine, although they may be inaccurate.
24 
25  In picking out asm fragments I've gone with the lowest common
26  denominator, which also happens to be the hardware I have :->
27  That is, a SPARC without hardware multiply and divide.
28  */
29 
30 /* basic word size definitions */
31 #define _FP_W_TYPE_SIZE 32
32 #define _FP_W_TYPE unsigned int
33 #define _FP_WS_TYPE signed int
34 #define _FP_I_TYPE int
35 
36 #define __ll_B ((UWtype) 1 << (W_TYPE_SIZE / 2))
37 #define __ll_lowpart(t) ((UWtype) (t) & (__ll_B - 1))
38 #define __ll_highpart(t) ((UWtype) (t) >> (W_TYPE_SIZE / 2))
39 
40 /* You can optionally code some things like addition in asm. For
41  * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't
42  * then you get a fragment of C code [if you change an #ifdef 0
43  * in op-2.h] or a call to add_ssaaaa (see below).
44  * Good places to look for asm fragments to use are gcc and glibc.
45  * gcc's longlong.h is useful.
46  */
47 
48 /* We need to know how to multiply and divide. If the host word size
49  * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which
50  * codes the multiply with whatever gcc does to 'a * b'.
51  * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm
52  * function that can multiply two 1W values and get a 2W result.
53  * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which
54  * does bitshifting to avoid overflow.
55  * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size
56  * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or
57  * _FP_DIV_HELP_ldiv (see op-1.h).
58  * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W).
59  * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd
60  * to do this.]
61  * In general, 'n' is the number of words required to hold the type,
62  * and 't' is either S, D or Q for single/double/quad.
63  * -- PMM
64  */
65 /* Example: SPARC64:
66  * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_imm(S,R,X,Y)
67  * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm)
68  * #define _FP_MUL_MEAT_Q(R,X,Y) _FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm)
69  *
70  * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm)
71  * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv(D,R,X,Y)
72  * #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv_64(Q,R,X,Y)
73  *
74  * Example: i386:
75  * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64)
76  * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64)
77  *
78  * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32)
79  * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv_64(D,R,X,Y)
80  */
81 
82 #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm)
83 #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)
84 
85 #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv_norm(S,R,X,Y)
86 #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y)
87 
88 /* These macros define what NaN looks like. They're supposed to expand to
89  * a comma-separated set of 32bit unsigned ints that encode NaN.
90  */
91 #define _FP_NANFRAC_S ((_FP_QNANBIT_S << 1) - 1)
92 #define _FP_NANFRAC_D ((_FP_QNANBIT_D << 1) - 1), -1
93 #define _FP_NANFRAC_Q ((_FP_QNANBIT_Q << 1) - 1), -1, -1, -1
94 #define _FP_NANSIGN_S 0
95 #define _FP_NANSIGN_D 0
96 #define _FP_NANSIGN_Q 0
97 
98 #define _FP_KEEPNANFRACP 1
99 
100 #ifdef FP_EX_BOOKE_E500_SPE
101 #define FP_EX_INEXACT (1 << 21)
102 #define FP_EX_INVALID (1 << 20)
103 #define FP_EX_DIVZERO (1 << 19)
104 #define FP_EX_UNDERFLOW (1 << 18)
105 #define FP_EX_OVERFLOW (1 << 17)
106 #define FP_INHIBIT_RESULTS 0
107 
108 #define __FPU_FPSCR (current->thread.spefscr)
109 #define __FPU_ENABLED_EXC \
110 ({ \
111  (__FPU_FPSCR >> 2) & 0x1f; \
112 })
113 #else
114 /* Exception flags. We use the bit positions of the appropriate bits
115  in the FPSCR, which also correspond to the FE_* bits. This makes
116  everything easier ;-). */
117 #define FP_EX_INVALID (1 << (31 - 2))
118 #define FP_EX_INVALID_SNAN EFLAG_VXSNAN
119 #define FP_EX_INVALID_ISI EFLAG_VXISI
120 #define FP_EX_INVALID_IDI EFLAG_VXIDI
121 #define FP_EX_INVALID_ZDZ EFLAG_VXZDZ
122 #define FP_EX_INVALID_IMZ EFLAG_VXIMZ
123 #define FP_EX_OVERFLOW (1 << (31 - 3))
124 #define FP_EX_UNDERFLOW (1 << (31 - 4))
125 #define FP_EX_DIVZERO (1 << (31 - 5))
126 #define FP_EX_INEXACT (1 << (31 - 6))
127 
128 #define __FPU_FPSCR (current->thread.fpscr.val)
129 
130 /* We only actually write to the destination register
131  * if exceptions signalled (if any) will not trap.
132  */
133 #define __FPU_ENABLED_EXC \
134 ({ \
135  (__FPU_FPSCR >> 3) & 0x1f; \
136 })
137 
138 #endif
139 
140 /*
141  * If one NaN is signaling and the other is not,
142  * we choose that one, otherwise we choose X.
143  */
144 #define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \
145  do { \
146  if ((_FP_FRAC_HIGH_RAW_##fs(Y) & _FP_QNANBIT_##fs) \
147  && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
148  { \
149  R##_s = X##_s; \
150  _FP_FRAC_COPY_##wc(R,X); \
151  } \
152  else \
153  { \
154  R##_s = Y##_s; \
155  _FP_FRAC_COPY_##wc(R,Y); \
156  } \
157  R##_c = FP_CLS_NAN; \
158  } while (0)
159 
160 
161 #include <linux/kernel.h>
162 #include <linux/sched.h>
163 
164 #define __FPU_TRAP_P(bits) \
165  ((__FPU_ENABLED_EXC & (bits)) != 0)
166 
167 #define __FP_PACK_S(val,X) \
168 ({ int __exc = _FP_PACK_CANONICAL(S,1,X); \
169  if(!__exc || !__FPU_TRAP_P(__exc)) \
170  _FP_PACK_RAW_1_P(S,val,X); \
171  __exc; \
172 })
173 
174 #define __FP_PACK_D(val,X) \
175  do { \
176  _FP_PACK_CANONICAL(D, 2, X); \
177  if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS)) \
178  _FP_PACK_RAW_2_P(D, val, X); \
179  } while (0)
180 
181 #define __FP_PACK_DS(val,X) \
182  do { \
183  FP_DECL_S(__X); \
184  FP_CONV(S, D, 1, 2, __X, X); \
185  _FP_PACK_CANONICAL(S, 1, __X); \
186  if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS)) { \
187  _FP_UNPACK_CANONICAL(S, 1, __X); \
188  FP_CONV(D, S, 2, 1, X, __X); \
189  _FP_PACK_CANONICAL(D, 2, X); \
190  if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS)) \
191  _FP_PACK_RAW_2_P(D, val, X); \
192  } \
193  } while (0)
194 
195 /* Obtain the current rounding mode. */
196 #define FP_ROUNDMODE \
197 ({ \
198  __FPU_FPSCR & 0x3; \
199 })
200 
201 /* the asm fragments go here: all these are taken from glibc-2.0.5's
202  * stdlib/longlong.h
203  */
204 
205 #include <linux/types.h>
206 #include <asm/byteorder.h>
207 
208 /* add_ssaaaa is used in op-2.h and should be equivalent to
209  * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al))
210  * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1,
211  * high_addend_2, low_addend_2) adds two UWtype integers, composed by
212  * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2
213  * respectively. The result is placed in HIGH_SUM and LOW_SUM. Overflow
214  * (i.e. carry out) is not stored anywhere, and is lost.
215  */
216 #define add_ssaaaa(sh, sl, ah, al, bh, bl) \
217  do { \
218  if (__builtin_constant_p (bh) && (bh) == 0) \
219  __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{aze|addze} %0,%2" \
220  : "=r" ((USItype)(sh)), \
221  "=&r" ((USItype)(sl)) \
222  : "%r" ((USItype)(ah)), \
223  "%r" ((USItype)(al)), \
224  "rI" ((USItype)(bl))); \
225  else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \
226  __asm__ ("{a%I4|add%I4c} %1,%3,%4\n\t{ame|addme} %0,%2" \
227  : "=r" ((USItype)(sh)), \
228  "=&r" ((USItype)(sl)) \
229  : "%r" ((USItype)(ah)), \
230  "%r" ((USItype)(al)), \
231  "rI" ((USItype)(bl))); \
232  else \
233  __asm__ ("{a%I5|add%I5c} %1,%4,%5\n\t{ae|adde} %0,%2,%3" \
234  : "=r" ((USItype)(sh)), \
235  "=&r" ((USItype)(sl)) \
236  : "%r" ((USItype)(ah)), \
237  "r" ((USItype)(bh)), \
238  "%r" ((USItype)(al)), \
239  "rI" ((USItype)(bl))); \
240  } while (0)
241 
242 /* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to
243  * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al))
244  * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend,
245  * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers,
246  * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and
247  * LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE
248  * and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere,
249  * and is lost.
250  */
251 #define sub_ddmmss(sh, sl, ah, al, bh, bl) \
252  do { \
253  if (__builtin_constant_p (ah) && (ah) == 0) \
254  __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfze|subfze} %0,%2" \
255  : "=r" ((USItype)(sh)), \
256  "=&r" ((USItype)(sl)) \
257  : "r" ((USItype)(bh)), \
258  "rI" ((USItype)(al)), \
259  "r" ((USItype)(bl))); \
260  else if (__builtin_constant_p (ah) && (ah) ==~(USItype) 0) \
261  __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{sfme|subfme} %0,%2" \
262  : "=r" ((USItype)(sh)), \
263  "=&r" ((USItype)(sl)) \
264  : "r" ((USItype)(bh)), \
265  "rI" ((USItype)(al)), \
266  "r" ((USItype)(bl))); \
267  else if (__builtin_constant_p (bh) && (bh) == 0) \
268  __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{ame|addme} %0,%2" \
269  : "=r" ((USItype)(sh)), \
270  "=&r" ((USItype)(sl)) \
271  : "r" ((USItype)(ah)), \
272  "rI" ((USItype)(al)), \
273  "r" ((USItype)(bl))); \
274  else if (__builtin_constant_p (bh) && (bh) ==~(USItype) 0) \
275  __asm__ ("{sf%I3|subf%I3c} %1,%4,%3\n\t{aze|addze} %0,%2" \
276  : "=r" ((USItype)(sh)), \
277  "=&r" ((USItype)(sl)) \
278  : "r" ((USItype)(ah)), \
279  "rI" ((USItype)(al)), \
280  "r" ((USItype)(bl))); \
281  else \
282  __asm__ ("{sf%I4|subf%I4c} %1,%5,%4\n\t{sfe|subfe} %0,%3,%2" \
283  : "=r" ((USItype)(sh)), \
284  "=&r" ((USItype)(sl)) \
285  : "r" ((USItype)(ah)), \
286  "r" ((USItype)(bh)), \
287  "rI" ((USItype)(al)), \
288  "r" ((USItype)(bl))); \
289  } while (0)
290 
291 /* asm fragments for mul and div */
292 
293 /* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two
294  * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype
295  * word product in HIGH_PROD and LOW_PROD.
296  */
297 #define umul_ppmm(ph, pl, m0, m1) \
298  do { \
299  USItype __m0 = (m0), __m1 = (m1); \
300  __asm__ ("mulhwu %0,%1,%2" \
301  : "=r" ((USItype)(ph)) \
302  : "%r" (__m0), \
303  "r" (__m1)); \
304  (pl) = __m0 * __m1; \
305  } while (0)
306 
307 /* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
308  * denominator) divides a UDWtype, composed by the UWtype integers
309  * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient
310  * in QUOTIENT and the remainder in REMAINDER. HIGH_NUMERATOR must be less
311  * than DENOMINATOR for correct operation. If, in addition, the most
312  * significant bit of DENOMINATOR must be 1, then the pre-processor symbol
313  * UDIV_NEEDS_NORMALIZATION is defined to 1.
314  */
315 #define udiv_qrnnd(q, r, n1, n0, d) \
316  do { \
317  UWtype __d1, __d0, __q1, __q0, __r1, __r0, __m; \
318  __d1 = __ll_highpart (d); \
319  __d0 = __ll_lowpart (d); \
320  \
321  __r1 = (n1) % __d1; \
322  __q1 = (n1) / __d1; \
323  __m = (UWtype) __q1 * __d0; \
324  __r1 = __r1 * __ll_B | __ll_highpart (n0); \
325  if (__r1 < __m) \
326  { \
327  __q1--, __r1 += (d); \
328  if (__r1 >= (d)) /* we didn't get carry when adding to __r1 */ \
329  if (__r1 < __m) \
330  __q1--, __r1 += (d); \
331  } \
332  __r1 -= __m; \
333  \
334  __r0 = __r1 % __d1; \
335  __q0 = __r1 / __d1; \
336  __m = (UWtype) __q0 * __d0; \
337  __r0 = __r0 * __ll_B | __ll_lowpart (n0); \
338  if (__r0 < __m) \
339  { \
340  __q0--, __r0 += (d); \
341  if (__r0 >= (d)) \
342  if (__r0 < __m) \
343  __q0--, __r0 += (d); \
344  } \
345  __r0 -= __m; \
346  \
347  (q) = (UWtype) __q1 * __ll_B | __q0; \
348  (r) = __r0; \
349  } while (0)
350 
351 #define UDIV_NEEDS_NORMALIZATION 1
352 
353 #define abort() \
354  return 0
355 
356 #ifdef __BIG_ENDIAN
357 #define __BYTE_ORDER __BIG_ENDIAN
358 #else
359 #define __BYTE_ORDER __LITTLE_ENDIAN
360 #endif
361 
362 /* Exception flags. */
363 #define EFLAG_INVALID (1 << (31 - 2))
364 #define EFLAG_OVERFLOW (1 << (31 - 3))
365 #define EFLAG_UNDERFLOW (1 << (31 - 4))
366 #define EFLAG_DIVZERO (1 << (31 - 5))
367 #define EFLAG_INEXACT (1 << (31 - 6))
368 
369 #define EFLAG_VXSNAN (1 << (31 - 7))
370 #define EFLAG_VXISI (1 << (31 - 8))
371 #define EFLAG_VXIDI (1 << (31 - 9))
372 #define EFLAG_VXZDZ (1 << (31 - 10))
373 #define EFLAG_VXIMZ (1 << (31 - 11))
374 #define EFLAG_VXVC (1 << (31 - 12))
375 #define EFLAG_VXSOFT (1 << (31 - 21))
376 #define EFLAG_VXSQRT (1 << (31 - 22))
377 #define EFLAG_VXCVI (1 << (31 - 23))