Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rbtree.c
Go to the documentation of this file.
1 /*
2  Red Black Trees
3  (C) 1999 Andrea Arcangeli <[email protected]>
4  (C) 2002 David Woodhouse <[email protected]>
5  (C) 2012 Michel Lespinasse <[email protected]>
6 
7  This program is free software; you can redistribute it and/or modify
8  it under the terms of the GNU General Public License as published by
9  the Free Software Foundation; either version 2 of the License, or
10  (at your option) any later version.
11 
12  This program is distributed in the hope that it will be useful,
13  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  GNU General Public License for more details.
16 
17  You should have received a copy of the GNU General Public License
18  along with this program; if not, write to the Free Software
19  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 
21  linux/lib/rbtree.c
22 */
23 
24 #include <linux/rbtree_augmented.h>
25 #include <linux/export.h>
26 
27 /*
28  * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
29  *
30  * 1) A node is either red or black
31  * 2) The root is black
32  * 3) All leaves (NULL) are black
33  * 4) Both children of every red node are black
34  * 5) Every simple path from root to leaves contains the same number
35  * of black nodes.
36  *
37  * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38  * consecutive red nodes in a path and every red node is therefore followed by
39  * a black. So if B is the number of black nodes on every simple path (as per
40  * 5), then the longest possible path due to 4 is 2B.
41  *
42  * We shall indicate color with case, where black nodes are uppercase and red
43  * nodes will be lowercase. Unknown color nodes shall be drawn as red within
44  * parentheses and have some accompanying text comment.
45  */
46 
47 static inline void rb_set_black(struct rb_node *rb)
48 {
50 }
51 
52 static inline struct rb_node *rb_red_parent(struct rb_node *red)
53 {
54  return (struct rb_node *)red->__rb_parent_color;
55 }
56 
57 /*
58  * Helper function for rotations:
59  * - old's parent and color get assigned to new
60  * - old gets assigned new as a parent and 'color' as a color.
61  */
62 static inline void
63 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
64  struct rb_root *root, int color)
65 {
66  struct rb_node *parent = rb_parent(old);
67  new->__rb_parent_color = old->__rb_parent_color;
68  rb_set_parent_color(old, new, color);
69  __rb_change_child(old, new, parent, root);
70 }
71 
72 static __always_inline void
73 __rb_insert(struct rb_node *node, struct rb_root *root,
74  void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
75 {
76  struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
77 
78  while (true) {
79  /*
80  * Loop invariant: node is red
81  *
82  * If there is a black parent, we are done.
83  * Otherwise, take some corrective action as we don't
84  * want a red root or two consecutive red nodes.
85  */
86  if (!parent) {
87  rb_set_parent_color(node, NULL, RB_BLACK);
88  break;
89  } else if (rb_is_black(parent))
90  break;
91 
92  gparent = rb_red_parent(parent);
93 
94  tmp = gparent->rb_right;
95  if (parent != tmp) { /* parent == gparent->rb_left */
96  if (tmp && rb_is_red(tmp)) {
97  /*
98  * Case 1 - color flips
99  *
100  * G g
101  * / \ / \
102  * p u --> P U
103  * / /
104  * n N
105  *
106  * However, since g's parent might be red, and
107  * 4) does not allow this, we need to recurse
108  * at g.
109  */
110  rb_set_parent_color(tmp, gparent, RB_BLACK);
111  rb_set_parent_color(parent, gparent, RB_BLACK);
112  node = gparent;
113  parent = rb_parent(node);
114  rb_set_parent_color(node, parent, RB_RED);
115  continue;
116  }
117 
118  tmp = parent->rb_right;
119  if (node == tmp) {
120  /*
121  * Case 2 - left rotate at parent
122  *
123  * G G
124  * / \ / \
125  * p U --> n U
126  * \ /
127  * n p
128  *
129  * This still leaves us in violation of 4), the
130  * continuation into Case 3 will fix that.
131  */
132  parent->rb_right = tmp = node->rb_left;
133  node->rb_left = parent;
134  if (tmp)
135  rb_set_parent_color(tmp, parent,
136  RB_BLACK);
137  rb_set_parent_color(parent, node, RB_RED);
138  augment_rotate(parent, node);
139  parent = node;
140  tmp = node->rb_right;
141  }
142 
143  /*
144  * Case 3 - right rotate at gparent
145  *
146  * G P
147  * / \ / \
148  * p U --> n g
149  * / \
150  * n U
151  */
152  gparent->rb_left = tmp; /* == parent->rb_right */
153  parent->rb_right = gparent;
154  if (tmp)
155  rb_set_parent_color(tmp, gparent, RB_BLACK);
156  __rb_rotate_set_parents(gparent, parent, root, RB_RED);
157  augment_rotate(gparent, parent);
158  break;
159  } else {
160  tmp = gparent->rb_left;
161  if (tmp && rb_is_red(tmp)) {
162  /* Case 1 - color flips */
163  rb_set_parent_color(tmp, gparent, RB_BLACK);
164  rb_set_parent_color(parent, gparent, RB_BLACK);
165  node = gparent;
166  parent = rb_parent(node);
167  rb_set_parent_color(node, parent, RB_RED);
168  continue;
169  }
170 
171  tmp = parent->rb_left;
172  if (node == tmp) {
173  /* Case 2 - right rotate at parent */
174  parent->rb_left = tmp = node->rb_right;
175  node->rb_right = parent;
176  if (tmp)
177  rb_set_parent_color(tmp, parent,
178  RB_BLACK);
179  rb_set_parent_color(parent, node, RB_RED);
180  augment_rotate(parent, node);
181  parent = node;
182  tmp = node->rb_left;
183  }
184 
185  /* Case 3 - left rotate at gparent */
186  gparent->rb_right = tmp; /* == parent->rb_left */
187  parent->rb_left = gparent;
188  if (tmp)
189  rb_set_parent_color(tmp, gparent, RB_BLACK);
190  __rb_rotate_set_parents(gparent, parent, root, RB_RED);
191  augment_rotate(gparent, parent);
192  break;
193  }
194  }
195 }
196 
197 __always_inline void
198 __rb_erase_color(struct rb_node *parent, struct rb_root *root,
199  void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
200 {
201  struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
202 
203  while (true) {
204  /*
205  * Loop invariants:
206  * - node is black (or NULL on first iteration)
207  * - node is not the root (parent is not NULL)
208  * - All leaf paths going through parent and node have a
209  * black node count that is 1 lower than other leaf paths.
210  */
211  sibling = parent->rb_right;
212  if (node != sibling) { /* node == parent->rb_left */
213  if (rb_is_red(sibling)) {
214  /*
215  * Case 1 - left rotate at parent
216  *
217  * P S
218  * / \ / \
219  * N s --> p Sr
220  * / \ / \
221  * Sl Sr N Sl
222  */
223  parent->rb_right = tmp1 = sibling->rb_left;
224  sibling->rb_left = parent;
225  rb_set_parent_color(tmp1, parent, RB_BLACK);
226  __rb_rotate_set_parents(parent, sibling, root,
227  RB_RED);
228  augment_rotate(parent, sibling);
229  sibling = tmp1;
230  }
231  tmp1 = sibling->rb_right;
232  if (!tmp1 || rb_is_black(tmp1)) {
233  tmp2 = sibling->rb_left;
234  if (!tmp2 || rb_is_black(tmp2)) {
235  /*
236  * Case 2 - sibling color flip
237  * (p could be either color here)
238  *
239  * (p) (p)
240  * / \ / \
241  * N S --> N s
242  * / \ / \
243  * Sl Sr Sl Sr
244  *
245  * This leaves us violating 5) which
246  * can be fixed by flipping p to black
247  * if it was red, or by recursing at p.
248  * p is red when coming from Case 1.
249  */
250  rb_set_parent_color(sibling, parent,
251  RB_RED);
252  if (rb_is_red(parent))
253  rb_set_black(parent);
254  else {
255  node = parent;
256  parent = rb_parent(node);
257  if (parent)
258  continue;
259  }
260  break;
261  }
262  /*
263  * Case 3 - right rotate at sibling
264  * (p could be either color here)
265  *
266  * (p) (p)
267  * / \ / \
268  * N S --> N Sl
269  * / \ \
270  * sl Sr s
271  * \
272  * Sr
273  */
274  sibling->rb_left = tmp1 = tmp2->rb_right;
275  tmp2->rb_right = sibling;
276  parent->rb_right = tmp2;
277  if (tmp1)
278  rb_set_parent_color(tmp1, sibling,
279  RB_BLACK);
280  augment_rotate(sibling, tmp2);
281  tmp1 = sibling;
282  sibling = tmp2;
283  }
284  /*
285  * Case 4 - left rotate at parent + color flips
286  * (p and sl could be either color here.
287  * After rotation, p becomes black, s acquires
288  * p's color, and sl keeps its color)
289  *
290  * (p) (s)
291  * / \ / \
292  * N S --> P Sr
293  * / \ / \
294  * (sl) sr N (sl)
295  */
296  parent->rb_right = tmp2 = sibling->rb_left;
297  sibling->rb_left = parent;
298  rb_set_parent_color(tmp1, sibling, RB_BLACK);
299  if (tmp2)
300  rb_set_parent(tmp2, parent);
301  __rb_rotate_set_parents(parent, sibling, root,
302  RB_BLACK);
303  augment_rotate(parent, sibling);
304  break;
305  } else {
306  sibling = parent->rb_left;
307  if (rb_is_red(sibling)) {
308  /* Case 1 - right rotate at parent */
309  parent->rb_left = tmp1 = sibling->rb_right;
310  sibling->rb_right = parent;
311  rb_set_parent_color(tmp1, parent, RB_BLACK);
312  __rb_rotate_set_parents(parent, sibling, root,
313  RB_RED);
314  augment_rotate(parent, sibling);
315  sibling = tmp1;
316  }
317  tmp1 = sibling->rb_left;
318  if (!tmp1 || rb_is_black(tmp1)) {
319  tmp2 = sibling->rb_right;
320  if (!tmp2 || rb_is_black(tmp2)) {
321  /* Case 2 - sibling color flip */
322  rb_set_parent_color(sibling, parent,
323  RB_RED);
324  if (rb_is_red(parent))
325  rb_set_black(parent);
326  else {
327  node = parent;
328  parent = rb_parent(node);
329  if (parent)
330  continue;
331  }
332  break;
333  }
334  /* Case 3 - right rotate at sibling */
335  sibling->rb_right = tmp1 = tmp2->rb_left;
336  tmp2->rb_left = sibling;
337  parent->rb_left = tmp2;
338  if (tmp1)
339  rb_set_parent_color(tmp1, sibling,
340  RB_BLACK);
341  augment_rotate(sibling, tmp2);
342  tmp1 = sibling;
343  sibling = tmp2;
344  }
345  /* Case 4 - left rotate at parent + color flips */
346  parent->rb_left = tmp2 = sibling->rb_right;
347  sibling->rb_right = parent;
348  rb_set_parent_color(tmp1, sibling, RB_BLACK);
349  if (tmp2)
350  rb_set_parent(tmp2, parent);
351  __rb_rotate_set_parents(parent, sibling, root,
352  RB_BLACK);
353  augment_rotate(parent, sibling);
354  break;
355  }
356  }
357 }
359 
360 /*
361  * Non-augmented rbtree manipulation functions.
362  *
363  * We use dummy augmented callbacks here, and have the compiler optimize them
364  * out of the rb_insert_color() and rb_erase() function definitions.
365  */
366 
367 static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
368 static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
369 static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
370 
371 static const struct rb_augment_callbacks dummy_callbacks = {
372  dummy_propagate, dummy_copy, dummy_rotate
373 };
374 
375 void rb_insert_color(struct rb_node *node, struct rb_root *root)
376 {
377  __rb_insert(node, root, dummy_rotate);
378 }
380 
381 void rb_erase(struct rb_node *node, struct rb_root *root)
382 {
383  rb_erase_augmented(node, root, &dummy_callbacks);
384 }
386 
387 /*
388  * Augmented rbtree manipulation functions.
389  *
390  * This instantiates the same __always_inline functions as in the non-augmented
391  * case, but this time with user-defined callbacks.
392  */
393 
394 void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
395  void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
396 {
397  __rb_insert(node, root, augment_rotate);
398 }
400 
401 /*
402  * This function returns the first node (in sort order) of the tree.
403  */
404 struct rb_node *rb_first(const struct rb_root *root)
405 {
406  struct rb_node *n;
407 
408  n = root->rb_node;
409  if (!n)
410  return NULL;
411  while (n->rb_left)
412  n = n->rb_left;
413  return n;
414 }
416 
417 struct rb_node *rb_last(const struct rb_root *root)
418 {
419  struct rb_node *n;
420 
421  n = root->rb_node;
422  if (!n)
423  return NULL;
424  while (n->rb_right)
425  n = n->rb_right;
426  return n;
427 }
429 
430 struct rb_node *rb_next(const struct rb_node *node)
431 {
432  struct rb_node *parent;
433 
434  if (RB_EMPTY_NODE(node))
435  return NULL;
436 
437  /*
438  * If we have a right-hand child, go down and then left as far
439  * as we can.
440  */
441  if (node->rb_right) {
442  node = node->rb_right;
443  while (node->rb_left)
444  node=node->rb_left;
445  return (struct rb_node *)node;
446  }
447 
448  /*
449  * No right-hand children. Everything down and left is smaller than us,
450  * so any 'next' node must be in the general direction of our parent.
451  * Go up the tree; any time the ancestor is a right-hand child of its
452  * parent, keep going up. First time it's a left-hand child of its
453  * parent, said parent is our 'next' node.
454  */
455  while ((parent = rb_parent(node)) && node == parent->rb_right)
456  node = parent;
457 
458  return parent;
459 }
461 
462 struct rb_node *rb_prev(const struct rb_node *node)
463 {
464  struct rb_node *parent;
465 
466  if (RB_EMPTY_NODE(node))
467  return NULL;
468 
469  /*
470  * If we have a left-hand child, go down and then right as far
471  * as we can.
472  */
473  if (node->rb_left) {
474  node = node->rb_left;
475  while (node->rb_right)
476  node=node->rb_right;
477  return (struct rb_node *)node;
478  }
479 
480  /*
481  * No left-hand children. Go up till we find an ancestor which
482  * is a right-hand child of its parent.
483  */
484  while ((parent = rb_parent(node)) && node == parent->rb_left)
485  node = parent;
486 
487  return parent;
488 }
490 
491 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
492  struct rb_root *root)
493 {
494  struct rb_node *parent = rb_parent(victim);
495 
496  /* Set the surrounding nodes to point to the replacement */
497  __rb_change_child(victim, new, parent, root);
498  if (victim->rb_left)
499  rb_set_parent(victim->rb_left, new);
500  if (victim->rb_right)
501  rb_set_parent(victim->rb_right, new);
502 
503  /* Copy the pointers/colour from the victim to the replacement */
504  *new = *victim;
505 }