Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
revoke.c
Go to the documentation of this file.
1 /*
2  * linux/fs/jbd/revoke.c
3  *
4  * Written by Stephen C. Tweedie <[email protected]>, 2000
5  *
6  * Copyright 2000 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Journal revoke routines for the generic filesystem journaling code;
13  * part of the ext2fs journaling system.
14  *
15  * Revoke is the mechanism used to prevent old log records for deleted
16  * metadata from being replayed on top of newer data using the same
17  * blocks. The revoke mechanism is used in two separate places:
18  *
19  * + Commit: during commit we write the entire list of the current
20  * transaction's revoked blocks to the journal
21  *
22  * + Recovery: during recovery we record the transaction ID of all
23  * revoked blocks. If there are multiple revoke records in the log
24  * for a single block, only the last one counts, and if there is a log
25  * entry for a block beyond the last revoke, then that log entry still
26  * gets replayed.
27  *
28  * We can get interactions between revokes and new log data within a
29  * single transaction:
30  *
31  * Block is revoked and then journaled:
32  * The desired end result is the journaling of the new block, so we
33  * cancel the revoke before the transaction commits.
34  *
35  * Block is journaled and then revoked:
36  * The revoke must take precedence over the write of the block, so we
37  * need either to cancel the journal entry or to write the revoke
38  * later in the log than the log block. In this case, we choose the
39  * latter: journaling a block cancels any revoke record for that block
40  * in the current transaction, so any revoke for that block in the
41  * transaction must have happened after the block was journaled and so
42  * the revoke must take precedence.
43  *
44  * Block is revoked and then written as data:
45  * The data write is allowed to succeed, but the revoke is _not_
46  * cancelled. We still need to prevent old log records from
47  * overwriting the new data. We don't even need to clear the revoke
48  * bit here.
49  *
50  * We cache revoke status of a buffer in the current transaction in b_states
51  * bits. As the name says, revokevalid flag indicates that the cached revoke
52  * status of a buffer is valid and we can rely on the cached status.
53  *
54  * Revoke information on buffers is a tri-state value:
55  *
56  * RevokeValid clear: no cached revoke status, need to look it up
57  * RevokeValid set, Revoked clear:
58  * buffer has not been revoked, and cancel_revoke
59  * need do nothing.
60  * RevokeValid set, Revoked set:
61  * buffer has been revoked.
62  *
63  * Locking rules:
64  * We keep two hash tables of revoke records. One hashtable belongs to the
65  * running transaction (is pointed to by journal->j_revoke), the other one
66  * belongs to the committing transaction. Accesses to the second hash table
67  * happen only from the kjournald and no other thread touches this table. Also
68  * journal_switch_revoke_table() which switches which hashtable belongs to the
69  * running and which to the committing transaction is called only from
70  * kjournald. Therefore we need no locks when accessing the hashtable belonging
71  * to the committing transaction.
72  *
73  * All users operating on the hash table belonging to the running transaction
74  * have a handle to the transaction. Therefore they are safe from kjournald
75  * switching hash tables under them. For operations on the lists of entries in
76  * the hash table j_revoke_lock is used.
77  *
78  * Finally, also replay code uses the hash tables but at this moment no one else
79  * can touch them (filesystem isn't mounted yet) and hence no locking is
80  * needed.
81  */
82 
83 #ifndef __KERNEL__
84 #include "jfs_user.h"
85 #else
86 #include <linux/time.h>
87 #include <linux/fs.h>
88 #include <linux/jbd.h>
89 #include <linux/errno.h>
90 #include <linux/slab.h>
91 #include <linux/list.h>
92 #include <linux/init.h>
93 #include <linux/bio.h>
94 #endif
95 #include <linux/log2.h>
96 
97 static struct kmem_cache *revoke_record_cache;
98 static struct kmem_cache *revoke_table_cache;
99 
100 /* Each revoke record represents one single revoked block. During
101  journal replay, this involves recording the transaction ID of the
102  last transaction to revoke this block. */
103 
105 {
106  struct list_head hash;
107  tid_t sequence; /* Used for recovery only */
108  unsigned int blocknr;
109 };
110 
111 
112 /* The revoke table is just a simple hash table of revoke records. */
114 {
115  /* It is conceivable that we might want a larger hash table
116  * for recovery. Must be a power of two. */
120 };
121 
122 
123 #ifdef __KERNEL__
124 static void write_one_revoke_record(journal_t *, transaction_t *,
125  struct journal_head **, int *,
126  struct jbd_revoke_record_s *, int);
127 static void flush_descriptor(journal_t *, struct journal_head *, int, int);
128 #endif
129 
130 /* Utility functions to maintain the revoke table */
131 
132 /* Borrowed from buffer.c: this is a tried and tested block hash function */
133 static inline int hash(journal_t *journal, unsigned int block)
134 {
135  struct jbd_revoke_table_s *table = journal->j_revoke;
136  int hash_shift = table->hash_shift;
137 
138  return ((block << (hash_shift - 6)) ^
139  (block >> 13) ^
140  (block << (hash_shift - 12))) & (table->hash_size - 1);
141 }
142 
143 static int insert_revoke_hash(journal_t *journal, unsigned int blocknr,
144  tid_t seq)
145 {
146  struct list_head *hash_list;
147  struct jbd_revoke_record_s *record;
148 
149 repeat:
150  record = kmem_cache_alloc(revoke_record_cache, GFP_NOFS);
151  if (!record)
152  goto oom;
153 
154  record->sequence = seq;
155  record->blocknr = blocknr;
156  hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
157  spin_lock(&journal->j_revoke_lock);
158  list_add(&record->hash, hash_list);
159  spin_unlock(&journal->j_revoke_lock);
160  return 0;
161 
162 oom:
163  if (!journal_oom_retry)
164  return -ENOMEM;
165  jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
166  yield();
167  goto repeat;
168 }
169 
170 /* Find a revoke record in the journal's hash table. */
171 
172 static struct jbd_revoke_record_s *find_revoke_record(journal_t *journal,
173  unsigned int blocknr)
174 {
175  struct list_head *hash_list;
176  struct jbd_revoke_record_s *record;
177 
178  hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
179 
180  spin_lock(&journal->j_revoke_lock);
181  record = (struct jbd_revoke_record_s *) hash_list->next;
182  while (&(record->hash) != hash_list) {
183  if (record->blocknr == blocknr) {
184  spin_unlock(&journal->j_revoke_lock);
185  return record;
186  }
187  record = (struct jbd_revoke_record_s *) record->hash.next;
188  }
189  spin_unlock(&journal->j_revoke_lock);
190  return NULL;
191 }
192 
194 {
195  if (revoke_record_cache) {
196  kmem_cache_destroy(revoke_record_cache);
197  revoke_record_cache = NULL;
198  }
199  if (revoke_table_cache) {
200  kmem_cache_destroy(revoke_table_cache);
201  revoke_table_cache = NULL;
202  }
203 }
204 
206 {
207  J_ASSERT(!revoke_record_cache);
208  J_ASSERT(!revoke_table_cache);
209 
210  revoke_record_cache = kmem_cache_create("revoke_record",
211  sizeof(struct jbd_revoke_record_s),
212  0,
214  NULL);
215  if (!revoke_record_cache)
216  goto record_cache_failure;
217 
218  revoke_table_cache = kmem_cache_create("revoke_table",
219  sizeof(struct jbd_revoke_table_s),
220  0, SLAB_TEMPORARY, NULL);
221  if (!revoke_table_cache)
222  goto table_cache_failure;
223 
224  return 0;
225 
226 table_cache_failure:
228 record_cache_failure:
229  return -ENOMEM;
230 }
231 
232 static struct jbd_revoke_table_s *journal_init_revoke_table(int hash_size)
233 {
234  int shift = 0;
235  int tmp = hash_size;
236  struct jbd_revoke_table_s *table;
237 
238  table = kmem_cache_alloc(revoke_table_cache, GFP_KERNEL);
239  if (!table)
240  goto out;
241 
242  while((tmp >>= 1UL) != 0UL)
243  shift++;
244 
245  table->hash_size = hash_size;
246  table->hash_shift = shift;
247  table->hash_table =
248  kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
249  if (!table->hash_table) {
250  kmem_cache_free(revoke_table_cache, table);
251  table = NULL;
252  goto out;
253  }
254 
255  for (tmp = 0; tmp < hash_size; tmp++)
256  INIT_LIST_HEAD(&table->hash_table[tmp]);
257 
258 out:
259  return table;
260 }
261 
262 static void journal_destroy_revoke_table(struct jbd_revoke_table_s *table)
263 {
264  int i;
265  struct list_head *hash_list;
266 
267  for (i = 0; i < table->hash_size; i++) {
268  hash_list = &table->hash_table[i];
269  J_ASSERT(list_empty(hash_list));
270  }
271 
272  kfree(table->hash_table);
273  kmem_cache_free(revoke_table_cache, table);
274 }
275 
276 /* Initialise the revoke table for a given journal to a given size. */
277 int journal_init_revoke(journal_t *journal, int hash_size)
278 {
279  J_ASSERT(journal->j_revoke_table[0] == NULL);
280  J_ASSERT(is_power_of_2(hash_size));
281 
282  journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
283  if (!journal->j_revoke_table[0])
284  goto fail0;
285 
286  journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
287  if (!journal->j_revoke_table[1])
288  goto fail1;
289 
290  journal->j_revoke = journal->j_revoke_table[1];
291 
292  spin_lock_init(&journal->j_revoke_lock);
293 
294  return 0;
295 
296 fail1:
297  journal_destroy_revoke_table(journal->j_revoke_table[0]);
298 fail0:
299  return -ENOMEM;
300 }
301 
302 /* Destroy a journal's revoke table. The table must already be empty! */
303 void journal_destroy_revoke(journal_t *journal)
304 {
305  journal->j_revoke = NULL;
306  if (journal->j_revoke_table[0])
307  journal_destroy_revoke_table(journal->j_revoke_table[0]);
308  if (journal->j_revoke_table[1])
309  journal_destroy_revoke_table(journal->j_revoke_table[1]);
310 }
311 
312 
313 #ifdef __KERNEL__
314 
315 /*
316  * journal_revoke: revoke a given buffer_head from the journal. This
317  * prevents the block from being replayed during recovery if we take a
318  * crash after this current transaction commits. Any subsequent
319  * metadata writes of the buffer in this transaction cancel the
320  * revoke.
321  *
322  * Note that this call may block --- it is up to the caller to make
323  * sure that there are no further calls to journal_write_metadata
324  * before the revoke is complete. In ext3, this implies calling the
325  * revoke before clearing the block bitmap when we are deleting
326  * metadata.
327  *
328  * Revoke performs a journal_forget on any buffer_head passed in as a
329  * parameter, but does _not_ forget the buffer_head if the bh was only
330  * found implicitly.
331  *
332  * bh_in may not be a journalled buffer - it may have come off
333  * the hash tables without an attached journal_head.
334  *
335  * If bh_in is non-zero, journal_revoke() will decrement its b_count
336  * by one.
337  */
338 
339 int journal_revoke(handle_t *handle, unsigned int blocknr,
340  struct buffer_head *bh_in)
341 {
342  struct buffer_head *bh = NULL;
343  journal_t *journal;
344  struct block_device *bdev;
345  int err;
346 
347  might_sleep();
348  if (bh_in)
349  BUFFER_TRACE(bh_in, "enter");
350 
351  journal = handle->h_transaction->t_journal;
353  J_ASSERT (!"Cannot set revoke feature!");
354  return -EINVAL;
355  }
356 
357  bdev = journal->j_fs_dev;
358  bh = bh_in;
359 
360  if (!bh) {
361  bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
362  if (bh)
363  BUFFER_TRACE(bh, "found on hash");
364  }
365 #ifdef JBD_EXPENSIVE_CHECKING
366  else {
367  struct buffer_head *bh2;
368 
369  /* If there is a different buffer_head lying around in
370  * memory anywhere... */
371  bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
372  if (bh2) {
373  /* ... and it has RevokeValid status... */
374  if (bh2 != bh && buffer_revokevalid(bh2))
375  /* ...then it better be revoked too,
376  * since it's illegal to create a revoke
377  * record against a buffer_head which is
378  * not marked revoked --- that would
379  * risk missing a subsequent revoke
380  * cancel. */
381  J_ASSERT_BH(bh2, buffer_revoked(bh2));
382  put_bh(bh2);
383  }
384  }
385 #endif
386 
387  /* We really ought not ever to revoke twice in a row without
388  first having the revoke cancelled: it's illegal to free a
389  block twice without allocating it in between! */
390  if (bh) {
391  if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
392  "inconsistent data on disk")) {
393  if (!bh_in)
394  brelse(bh);
395  return -EIO;
396  }
397  set_buffer_revoked(bh);
398  set_buffer_revokevalid(bh);
399  if (bh_in) {
400  BUFFER_TRACE(bh_in, "call journal_forget");
401  journal_forget(handle, bh_in);
402  } else {
403  BUFFER_TRACE(bh, "call brelse");
404  __brelse(bh);
405  }
406  }
407 
408  jbd_debug(2, "insert revoke for block %u, bh_in=%p\n", blocknr, bh_in);
409  err = insert_revoke_hash(journal, blocknr,
410  handle->h_transaction->t_tid);
411  BUFFER_TRACE(bh_in, "exit");
412  return err;
413 }
414 
415 /*
416  * Cancel an outstanding revoke. For use only internally by the
417  * journaling code (called from journal_get_write_access).
418  *
419  * We trust buffer_revoked() on the buffer if the buffer is already
420  * being journaled: if there is no revoke pending on the buffer, then we
421  * don't do anything here.
422  *
423  * This would break if it were possible for a buffer to be revoked and
424  * discarded, and then reallocated within the same transaction. In such
425  * a case we would have lost the revoked bit, but when we arrived here
426  * the second time we would still have a pending revoke to cancel. So,
427  * do not trust the Revoked bit on buffers unless RevokeValid is also
428  * set.
429  */
430 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
431 {
432  struct jbd_revoke_record_s *record;
433  journal_t *journal = handle->h_transaction->t_journal;
434  int need_cancel;
435  int did_revoke = 0; /* akpm: debug */
436  struct buffer_head *bh = jh2bh(jh);
437 
438  jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
439 
440  /* Is the existing Revoke bit valid? If so, we trust it, and
441  * only perform the full cancel if the revoke bit is set. If
442  * not, we can't trust the revoke bit, and we need to do the
443  * full search for a revoke record. */
444  if (test_set_buffer_revokevalid(bh)) {
445  need_cancel = test_clear_buffer_revoked(bh);
446  } else {
447  need_cancel = 1;
448  clear_buffer_revoked(bh);
449  }
450 
451  if (need_cancel) {
452  record = find_revoke_record(journal, bh->b_blocknr);
453  if (record) {
454  jbd_debug(4, "cancelled existing revoke on "
455  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
456  spin_lock(&journal->j_revoke_lock);
457  list_del(&record->hash);
458  spin_unlock(&journal->j_revoke_lock);
459  kmem_cache_free(revoke_record_cache, record);
460  did_revoke = 1;
461  }
462  }
463 
464 #ifdef JBD_EXPENSIVE_CHECKING
465  /* There better not be one left behind by now! */
466  record = find_revoke_record(journal, bh->b_blocknr);
467  J_ASSERT_JH(jh, record == NULL);
468 #endif
469 
470  /* Finally, have we just cleared revoke on an unhashed
471  * buffer_head? If so, we'd better make sure we clear the
472  * revoked status on any hashed alias too, otherwise the revoke
473  * state machine will get very upset later on. */
474  if (need_cancel) {
475  struct buffer_head *bh2;
476  bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
477  if (bh2) {
478  if (bh2 != bh)
479  clear_buffer_revoked(bh2);
480  __brelse(bh2);
481  }
482  }
483  return did_revoke;
484 }
485 
486 /*
487  * journal_clear_revoked_flags clears revoked flag of buffers in
488  * revoke table to reflect there is no revoked buffer in the next
489  * transaction which is going to be started.
490  */
491 void journal_clear_buffer_revoked_flags(journal_t *journal)
492 {
493  struct jbd_revoke_table_s *revoke = journal->j_revoke;
494  int i = 0;
495 
496  for (i = 0; i < revoke->hash_size; i++) {
497  struct list_head *hash_list;
498  struct list_head *list_entry;
499  hash_list = &revoke->hash_table[i];
500 
501  list_for_each(list_entry, hash_list) {
502  struct jbd_revoke_record_s *record;
503  struct buffer_head *bh;
504  record = (struct jbd_revoke_record_s *)list_entry;
505  bh = __find_get_block(journal->j_fs_dev,
506  record->blocknr,
507  journal->j_blocksize);
508  if (bh) {
509  clear_buffer_revoked(bh);
510  __brelse(bh);
511  }
512  }
513  }
514 }
515 
516 /* journal_switch_revoke table select j_revoke for next transaction
517  * we do not want to suspend any processing until all revokes are
518  * written -bzzz
519  */
520 void journal_switch_revoke_table(journal_t *journal)
521 {
522  int i;
523 
524  if (journal->j_revoke == journal->j_revoke_table[0])
525  journal->j_revoke = journal->j_revoke_table[1];
526  else
527  journal->j_revoke = journal->j_revoke_table[0];
528 
529  for (i = 0; i < journal->j_revoke->hash_size; i++)
530  INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
531 }
532 
533 /*
534  * Write revoke records to the journal for all entries in the current
535  * revoke hash, deleting the entries as we go.
536  */
537 void journal_write_revoke_records(journal_t *journal,
538  transaction_t *transaction, int write_op)
539 {
540  struct journal_head *descriptor;
541  struct jbd_revoke_record_s *record;
542  struct jbd_revoke_table_s *revoke;
543  struct list_head *hash_list;
544  int i, offset, count;
545 
546  descriptor = NULL;
547  offset = 0;
548  count = 0;
549 
550  /* select revoke table for committing transaction */
551  revoke = journal->j_revoke == journal->j_revoke_table[0] ?
552  journal->j_revoke_table[1] : journal->j_revoke_table[0];
553 
554  for (i = 0; i < revoke->hash_size; i++) {
555  hash_list = &revoke->hash_table[i];
556 
557  while (!list_empty(hash_list)) {
558  record = (struct jbd_revoke_record_s *)
559  hash_list->next;
560  write_one_revoke_record(journal, transaction,
561  &descriptor, &offset,
562  record, write_op);
563  count++;
564  list_del(&record->hash);
565  kmem_cache_free(revoke_record_cache, record);
566  }
567  }
568  if (descriptor)
569  flush_descriptor(journal, descriptor, offset, write_op);
570  jbd_debug(1, "Wrote %d revoke records\n", count);
571 }
572 
573 /*
574  * Write out one revoke record. We need to create a new descriptor
575  * block if the old one is full or if we have not already created one.
576  */
577 
578 static void write_one_revoke_record(journal_t *journal,
579  transaction_t *transaction,
580  struct journal_head **descriptorp,
581  int *offsetp,
582  struct jbd_revoke_record_s *record,
583  int write_op)
584 {
585  struct journal_head *descriptor;
586  int offset;
588 
589  /* If we are already aborting, this all becomes a noop. We
590  still need to go round the loop in
591  journal_write_revoke_records in order to free all of the
592  revoke records: only the IO to the journal is omitted. */
593  if (is_journal_aborted(journal))
594  return;
595 
596  descriptor = *descriptorp;
597  offset = *offsetp;
598 
599  /* Make sure we have a descriptor with space left for the record */
600  if (descriptor) {
601  if (offset == journal->j_blocksize) {
602  flush_descriptor(journal, descriptor, offset, write_op);
603  descriptor = NULL;
604  }
605  }
606 
607  if (!descriptor) {
608  descriptor = journal_get_descriptor_buffer(journal);
609  if (!descriptor)
610  return;
611  header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
614  header->h_sequence = cpu_to_be32(transaction->t_tid);
615 
616  /* Record it so that we can wait for IO completion later */
617  JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
618  journal_file_buffer(descriptor, transaction, BJ_LogCtl);
619 
620  offset = sizeof(journal_revoke_header_t);
621  *descriptorp = descriptor;
622  }
623 
624  * ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
625  cpu_to_be32(record->blocknr);
626  offset += 4;
627  *offsetp = offset;
628 }
629 
630 /*
631  * Flush a revoke descriptor out to the journal. If we are aborting,
632  * this is a noop; otherwise we are generating a buffer which needs to
633  * be waited for during commit, so it has to go onto the appropriate
634  * journal buffer list.
635  */
636 
637 static void flush_descriptor(journal_t *journal,
638  struct journal_head *descriptor,
639  int offset, int write_op)
640 {
641  journal_revoke_header_t *header;
642  struct buffer_head *bh = jh2bh(descriptor);
643 
644  if (is_journal_aborted(journal)) {
645  put_bh(bh);
646  return;
647  }
648 
649  header = (journal_revoke_header_t *) jh2bh(descriptor)->b_data;
650  header->r_count = cpu_to_be32(offset);
651  set_buffer_jwrite(bh);
652  BUFFER_TRACE(bh, "write");
653  set_buffer_dirty(bh);
654  write_dirty_buffer(bh, write_op);
655 }
656 #endif
657 
658 /*
659  * Revoke support for recovery.
660  *
661  * Recovery needs to be able to:
662  *
663  * record all revoke records, including the tid of the latest instance
664  * of each revoke in the journal
665  *
666  * check whether a given block in a given transaction should be replayed
667  * (ie. has not been revoked by a revoke record in that or a subsequent
668  * transaction)
669  *
670  * empty the revoke table after recovery.
671  */
672 
673 /*
674  * First, setting revoke records. We create a new revoke record for
675  * every block ever revoked in the log as we scan it for recovery, and
676  * we update the existing records if we find multiple revokes for a
677  * single block.
678  */
679 
680 int journal_set_revoke(journal_t *journal,
681  unsigned int blocknr,
682  tid_t sequence)
683 {
684  struct jbd_revoke_record_s *record;
685 
686  record = find_revoke_record(journal, blocknr);
687  if (record) {
688  /* If we have multiple occurrences, only record the
689  * latest sequence number in the hashed record */
690  if (tid_gt(sequence, record->sequence))
691  record->sequence = sequence;
692  return 0;
693  }
694  return insert_revoke_hash(journal, blocknr, sequence);
695 }
696 
697 /*
698  * Test revoke records. For a given block referenced in the log, has
699  * that block been revoked? A revoke record with a given transaction
700  * sequence number revokes all blocks in that transaction and earlier
701  * ones, but later transactions still need replayed.
702  */
703 
704 int journal_test_revoke(journal_t *journal,
705  unsigned int blocknr,
706  tid_t sequence)
707 {
708  struct jbd_revoke_record_s *record;
709 
710  record = find_revoke_record(journal, blocknr);
711  if (!record)
712  return 0;
713  if (tid_gt(sequence, record->sequence))
714  return 0;
715  return 1;
716 }
717 
718 /*
719  * Finally, once recovery is over, we need to clear the revoke table so
720  * that it can be reused by the running filesystem.
721  */
722 
723 void journal_clear_revoke(journal_t *journal)
724 {
725  int i;
726  struct list_head *hash_list;
727  struct jbd_revoke_record_s *record;
728  struct jbd_revoke_table_s *revoke;
729 
730  revoke = journal->j_revoke;
731 
732  for (i = 0; i < revoke->hash_size; i++) {
733  hash_list = &revoke->hash_table[i];
734  while (!list_empty(hash_list)) {
735  record = (struct jbd_revoke_record_s*) hash_list->next;
736  list_del(&record->hash);
737  kmem_cache_free(revoke_record_cache, record);
738  }
739  }
740 }