Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ring.h
Go to the documentation of this file.
1 /******************************************************************************
2  * ring.h
3  *
4  * Shared producer-consumer ring macros.
5  *
6  * Tim Deegan and Andrew Warfield November 2004.
7  */
8 
9 #ifndef __XEN_PUBLIC_IO_RING_H__
10 #define __XEN_PUBLIC_IO_RING_H__
11 
12 typedef unsigned int RING_IDX;
13 
14 /* Round a 32-bit unsigned constant down to the nearest power of two. */
15 #define __RD2(_x) (((_x) & 0x00000002) ? 0x2 : ((_x) & 0x1))
16 #define __RD4(_x) (((_x) & 0x0000000c) ? __RD2((_x)>>2)<<2 : __RD2(_x))
17 #define __RD8(_x) (((_x) & 0x000000f0) ? __RD4((_x)>>4)<<4 : __RD4(_x))
18 #define __RD16(_x) (((_x) & 0x0000ff00) ? __RD8((_x)>>8)<<8 : __RD8(_x))
19 #define __RD32(_x) (((_x) & 0xffff0000) ? __RD16((_x)>>16)<<16 : __RD16(_x))
20 
21 /*
22  * Calculate size of a shared ring, given the total available space for the
23  * ring and indexes (_sz), and the name tag of the request/response structure.
24  * A ring contains as many entries as will fit, rounded down to the nearest
25  * power of two (so we can mask with (size-1) to loop around).
26  */
27 #define __CONST_RING_SIZE(_s, _sz) \
28  (__RD32(((_sz) - offsetof(struct _s##_sring, ring)) / \
29  sizeof(((struct _s##_sring *)0)->ring[0])))
30 
31 /*
32  * The same for passing in an actual pointer instead of a name tag.
33  */
34 #define __RING_SIZE(_s, _sz) \
35  (__RD32(((_sz) - (long)&(_s)->ring + (long)(_s)) / sizeof((_s)->ring[0])))
36 
37 /*
38  * Macros to make the correct C datatypes for a new kind of ring.
39  *
40  * To make a new ring datatype, you need to have two message structures,
41  * let's say struct request, and struct response already defined.
42  *
43  * In a header where you want the ring datatype declared, you then do:
44  *
45  * DEFINE_RING_TYPES(mytag, struct request, struct response);
46  *
47  * These expand out to give you a set of types, as you can see below.
48  * The most important of these are:
49  *
50  * struct mytag_sring - The shared ring.
51  * struct mytag_front_ring - The 'front' half of the ring.
52  * struct mytag_back_ring - The 'back' half of the ring.
53  *
54  * To initialize a ring in your code you need to know the location and size
55  * of the shared memory area (PAGE_SIZE, for instance). To initialise
56  * the front half:
57  *
58  * struct mytag_front_ring front_ring;
59  * SHARED_RING_INIT((struct mytag_sring *)shared_page);
60  * FRONT_RING_INIT(&front_ring, (struct mytag_sring *)shared_page,
61  * PAGE_SIZE);
62  *
63  * Initializing the back follows similarly (note that only the front
64  * initializes the shared ring):
65  *
66  * struct mytag_back_ring back_ring;
67  * BACK_RING_INIT(&back_ring, (struct mytag_sring *)shared_page,
68  * PAGE_SIZE);
69  */
70 
71 #define DEFINE_RING_TYPES(__name, __req_t, __rsp_t) \
72  \
73 /* Shared ring entry */ \
74 union __name##_sring_entry { \
75  __req_t req; \
76  __rsp_t rsp; \
77 }; \
78  \
79 /* Shared ring page */ \
80 struct __name##_sring { \
81  RING_IDX req_prod, req_event; \
82  RING_IDX rsp_prod, rsp_event; \
83  uint8_t pad[48]; \
84  union __name##_sring_entry ring[1]; /* variable-length */ \
85 }; \
86  \
87 /* "Front" end's private variables */ \
88 struct __name##_front_ring { \
89  RING_IDX req_prod_pvt; \
90  RING_IDX rsp_cons; \
91  unsigned int nr_ents; \
92  struct __name##_sring *sring; \
93 }; \
94  \
95 /* "Back" end's private variables */ \
96 struct __name##_back_ring { \
97  RING_IDX rsp_prod_pvt; \
98  RING_IDX req_cons; \
99  unsigned int nr_ents; \
100  struct __name##_sring *sring; \
101 };
102 
103 /*
104  * Macros for manipulating rings.
105  *
106  * FRONT_RING_whatever works on the "front end" of a ring: here
107  * requests are pushed on to the ring and responses taken off it.
108  *
109  * BACK_RING_whatever works on the "back end" of a ring: here
110  * requests are taken off the ring and responses put on.
111  *
112  * N.B. these macros do NO INTERLOCKS OR FLOW CONTROL.
113  * This is OK in 1-for-1 request-response situations where the
114  * requestor (front end) never has more than RING_SIZE()-1
115  * outstanding requests.
116  */
117 
118 /* Initialising empty rings */
119 #define SHARED_RING_INIT(_s) do { \
120  (_s)->req_prod = (_s)->rsp_prod = 0; \
121  (_s)->req_event = (_s)->rsp_event = 1; \
122  memset((_s)->pad, 0, sizeof((_s)->pad)); \
123 } while(0)
124 
125 #define FRONT_RING_INIT(_r, _s, __size) do { \
126  (_r)->req_prod_pvt = 0; \
127  (_r)->rsp_cons = 0; \
128  (_r)->nr_ents = __RING_SIZE(_s, __size); \
129  (_r)->sring = (_s); \
130 } while (0)
131 
132 #define BACK_RING_INIT(_r, _s, __size) do { \
133  (_r)->rsp_prod_pvt = 0; \
134  (_r)->req_cons = 0; \
135  (_r)->nr_ents = __RING_SIZE(_s, __size); \
136  (_r)->sring = (_s); \
137 } while (0)
138 
139 /* Initialize to existing shared indexes -- for recovery */
140 #define FRONT_RING_ATTACH(_r, _s, __size) do { \
141  (_r)->sring = (_s); \
142  (_r)->req_prod_pvt = (_s)->req_prod; \
143  (_r)->rsp_cons = (_s)->rsp_prod; \
144  (_r)->nr_ents = __RING_SIZE(_s, __size); \
145 } while (0)
146 
147 #define BACK_RING_ATTACH(_r, _s, __size) do { \
148  (_r)->sring = (_s); \
149  (_r)->rsp_prod_pvt = (_s)->rsp_prod; \
150  (_r)->req_cons = (_s)->req_prod; \
151  (_r)->nr_ents = __RING_SIZE(_s, __size); \
152 } while (0)
153 
154 /* How big is this ring? */
155 #define RING_SIZE(_r) \
156  ((_r)->nr_ents)
157 
158 /* Number of free requests (for use on front side only). */
159 #define RING_FREE_REQUESTS(_r) \
160  (RING_SIZE(_r) - ((_r)->req_prod_pvt - (_r)->rsp_cons))
161 
162 /* Test if there is an empty slot available on the front ring.
163  * (This is only meaningful from the front. )
164  */
165 #define RING_FULL(_r) \
166  (RING_FREE_REQUESTS(_r) == 0)
167 
168 /* Test if there are outstanding messages to be processed on a ring. */
169 #define RING_HAS_UNCONSUMED_RESPONSES(_r) \
170  ((_r)->sring->rsp_prod - (_r)->rsp_cons)
171 
172 #define RING_HAS_UNCONSUMED_REQUESTS(_r) \
173  ({ \
174  unsigned int req = (_r)->sring->req_prod - (_r)->req_cons; \
175  unsigned int rsp = RING_SIZE(_r) - \
176  ((_r)->req_cons - (_r)->rsp_prod_pvt); \
177  req < rsp ? req : rsp; \
178  })
179 
180 /* Direct access to individual ring elements, by index. */
181 #define RING_GET_REQUEST(_r, _idx) \
182  (&((_r)->sring->ring[((_idx) & (RING_SIZE(_r) - 1))].req))
183 
184 #define RING_GET_RESPONSE(_r, _idx) \
185  (&((_r)->sring->ring[((_idx) & (RING_SIZE(_r) - 1))].rsp))
186 
187 /* Loop termination condition: Would the specified index overflow the ring? */
188 #define RING_REQUEST_CONS_OVERFLOW(_r, _cons) \
189  (((_cons) - (_r)->rsp_prod_pvt) >= RING_SIZE(_r))
190 
191 #define RING_PUSH_REQUESTS(_r) do { \
192  wmb(); /* back sees requests /before/ updated producer index */ \
193  (_r)->sring->req_prod = (_r)->req_prod_pvt; \
194 } while (0)
195 
196 #define RING_PUSH_RESPONSES(_r) do { \
197  wmb(); /* front sees responses /before/ updated producer index */ \
198  (_r)->sring->rsp_prod = (_r)->rsp_prod_pvt; \
199 } while (0)
200 
201 /*
202  * Notification hold-off (req_event and rsp_event):
203  *
204  * When queueing requests or responses on a shared ring, it may not always be
205  * necessary to notify the remote end. For example, if requests are in flight
206  * in a backend, the front may be able to queue further requests without
207  * notifying the back (if the back checks for new requests when it queues
208  * responses).
209  *
210  * When enqueuing requests or responses:
211  *
212  * Use RING_PUSH_{REQUESTS,RESPONSES}_AND_CHECK_NOTIFY(). The second argument
213  * is a boolean return value. True indicates that the receiver requires an
214  * asynchronous notification.
215  *
216  * After dequeuing requests or responses (before sleeping the connection):
217  *
218  * Use RING_FINAL_CHECK_FOR_REQUESTS() or RING_FINAL_CHECK_FOR_RESPONSES().
219  * The second argument is a boolean return value. True indicates that there
220  * are pending messages on the ring (i.e., the connection should not be put
221  * to sleep).
222  *
223  * These macros will set the req_event/rsp_event field to trigger a
224  * notification on the very next message that is enqueued. If you want to
225  * create batches of work (i.e., only receive a notification after several
226  * messages have been enqueued) then you will need to create a customised
227  * version of the FINAL_CHECK macro in your own code, which sets the event
228  * field appropriately.
229  */
230 
231 #define RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(_r, _notify) do { \
232  RING_IDX __old = (_r)->sring->req_prod; \
233  RING_IDX __new = (_r)->req_prod_pvt; \
234  wmb(); /* back sees requests /before/ updated producer index */ \
235  (_r)->sring->req_prod = __new; \
236  mb(); /* back sees new requests /before/ we check req_event */ \
237  (_notify) = ((RING_IDX)(__new - (_r)->sring->req_event) < \
238  (RING_IDX)(__new - __old)); \
239 } while (0)
240 
241 #define RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(_r, _notify) do { \
242  RING_IDX __old = (_r)->sring->rsp_prod; \
243  RING_IDX __new = (_r)->rsp_prod_pvt; \
244  wmb(); /* front sees responses /before/ updated producer index */ \
245  (_r)->sring->rsp_prod = __new; \
246  mb(); /* front sees new responses /before/ we check rsp_event */ \
247  (_notify) = ((RING_IDX)(__new - (_r)->sring->rsp_event) < \
248  (RING_IDX)(__new - __old)); \
249 } while (0)
250 
251 #define RING_FINAL_CHECK_FOR_REQUESTS(_r, _work_to_do) do { \
252  (_work_to_do) = RING_HAS_UNCONSUMED_REQUESTS(_r); \
253  if (_work_to_do) break; \
254  (_r)->sring->req_event = (_r)->req_cons + 1; \
255  mb(); \
256  (_work_to_do) = RING_HAS_UNCONSUMED_REQUESTS(_r); \
257 } while (0)
258 
259 #define RING_FINAL_CHECK_FOR_RESPONSES(_r, _work_to_do) do { \
260  (_work_to_do) = RING_HAS_UNCONSUMED_RESPONSES(_r); \
261  if (_work_to_do) break; \
262  (_r)->sring->rsp_event = (_r)->rsp_cons + 1; \
263  mb(); \
264  (_work_to_do) = RING_HAS_UNCONSUMED_RESPONSES(_r); \
265 } while (0)
266 
267 #endif /* __XEN_PUBLIC_IO_RING_H__ */