Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rtasd.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001 Anton Blanchard <[email protected]>, IBM
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  *
9  * Communication to userspace based on kernel/printk.c
10  */
11 
12 #include <linux/types.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/init.h>
19 #include <linux/vmalloc.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpu.h>
22 #include <linux/workqueue.h>
23 #include <linux/slab.h>
24 
25 #include <asm/uaccess.h>
26 #include <asm/io.h>
27 #include <asm/rtas.h>
28 #include <asm/prom.h>
29 #include <asm/nvram.h>
30 #include <linux/atomic.h>
31 #include <asm/machdep.h>
32 
33 
34 static DEFINE_SPINLOCK(rtasd_log_lock);
35 
36 static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
37 
38 static char *rtas_log_buf;
39 static unsigned long rtas_log_start;
40 static unsigned long rtas_log_size;
41 
42 static int surveillance_timeout = -1;
43 
44 static unsigned int rtas_error_log_max;
45 static unsigned int rtas_error_log_buffer_max;
46 
47 /* RTAS service tokens */
48 static unsigned int event_scan;
49 static unsigned int rtas_event_scan_rate;
50 
51 static int full_rtas_msgs = 0;
52 
53 /* Stop logging to nvram after first fatal error */
54 static int logging_enabled; /* Until we initialize everything,
55  * make sure we don't try logging
56  * anything */
57 static int error_log_cnt;
58 
59 /*
60  * Since we use 32 bit RTAS, the physical address of this must be below
61  * 4G or else bad things happen. Allocate this in the kernel data and
62  * make it big enough.
63  */
64 static unsigned char logdata[RTAS_ERROR_LOG_MAX];
65 
66 static char *rtas_type[] = {
67  "Unknown", "Retry", "TCE Error", "Internal Device Failure",
68  "Timeout", "Data Parity", "Address Parity", "Cache Parity",
69  "Address Invalid", "ECC Uncorrected", "ECC Corrupted",
70 };
71 
72 static char *rtas_event_type(int type)
73 {
74  if ((type > 0) && (type < 11))
75  return rtas_type[type];
76 
77  switch (type) {
78  case RTAS_TYPE_EPOW:
79  return "EPOW";
80  case RTAS_TYPE_PLATFORM:
81  return "Platform Error";
82  case RTAS_TYPE_IO:
83  return "I/O Event";
84  case RTAS_TYPE_INFO:
85  return "Platform Information Event";
86  case RTAS_TYPE_DEALLOC:
87  return "Resource Deallocation Event";
88  case RTAS_TYPE_DUMP:
89  return "Dump Notification Event";
90  }
91 
92  return rtas_type[0];
93 }
94 
95 /* To see this info, grep RTAS /var/log/messages and each entry
96  * will be collected together with obvious begin/end.
97  * There will be a unique identifier on the begin and end lines.
98  * This will persist across reboots.
99  *
100  * format of error logs returned from RTAS:
101  * bytes (size) : contents
102  * --------------------------------------------------------
103  * 0-7 (8) : rtas_error_log
104  * 8-47 (40) : extended info
105  * 48-51 (4) : vendor id
106  * 52-1023 (vendor specific) : location code and debug data
107  */
108 static void printk_log_rtas(char *buf, int len)
109 {
110 
111  int i,j,n = 0;
112  int perline = 16;
113  char buffer[64];
114  char * str = "RTAS event";
115 
116  if (full_rtas_msgs) {
117  printk(RTAS_DEBUG "%d -------- %s begin --------\n",
118  error_log_cnt, str);
119 
120  /*
121  * Print perline bytes on each line, each line will start
122  * with RTAS and a changing number, so syslogd will
123  * print lines that are otherwise the same. Separate every
124  * 4 bytes with a space.
125  */
126  for (i = 0; i < len; i++) {
127  j = i % perline;
128  if (j == 0) {
129  memset(buffer, 0, sizeof(buffer));
130  n = sprintf(buffer, "RTAS %d:", i/perline);
131  }
132 
133  if ((i % 4) == 0)
134  n += sprintf(buffer+n, " ");
135 
136  n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
137 
138  if (j == (perline-1))
139  printk(KERN_DEBUG "%s\n", buffer);
140  }
141  if ((i % perline) != 0)
142  printk(KERN_DEBUG "%s\n", buffer);
143 
144  printk(RTAS_DEBUG "%d -------- %s end ----------\n",
145  error_log_cnt, str);
146  } else {
147  struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
148 
149  printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
150  error_log_cnt, rtas_event_type(errlog->type),
151  errlog->severity);
152  }
153 }
154 
155 static int log_rtas_len(char * buf)
156 {
157  int len;
158  struct rtas_error_log *err;
159 
160  /* rtas fixed header */
161  len = 8;
162  err = (struct rtas_error_log *)buf;
163  if (err->extended && err->extended_log_length) {
164 
165  /* extended header */
166  len += err->extended_log_length;
167  }
168 
169  if (rtas_error_log_max == 0)
170  rtas_error_log_max = rtas_get_error_log_max();
171 
172  if (len > rtas_error_log_max)
173  len = rtas_error_log_max;
174 
175  return len;
176 }
177 
178 /*
179  * First write to nvram, if fatal error, that is the only
180  * place we log the info. The error will be picked up
181  * on the next reboot by rtasd. If not fatal, run the
182  * method for the type of error. Currently, only RTAS
183  * errors have methods implemented, but in the future
184  * there might be a need to store data in nvram before a
185  * call to panic().
186  *
187  * XXX We write to nvram periodically, to indicate error has
188  * been written and sync'd, but there is a possibility
189  * that if we don't shutdown correctly, a duplicate error
190  * record will be created on next reboot.
191  */
192 void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
193 {
194  unsigned long offset;
195  unsigned long s;
196  int len = 0;
197 
198  pr_debug("rtasd: logging event\n");
199  if (buf == NULL)
200  return;
201 
202  spin_lock_irqsave(&rtasd_log_lock, s);
203 
204  /* get length and increase count */
205  switch (err_type & ERR_TYPE_MASK) {
206  case ERR_TYPE_RTAS_LOG:
207  len = log_rtas_len(buf);
208  if (!(err_type & ERR_FLAG_BOOT))
209  error_log_cnt++;
210  break;
211  case ERR_TYPE_KERNEL_PANIC:
212  default:
213  WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
214  spin_unlock_irqrestore(&rtasd_log_lock, s);
215  return;
216  }
217 
218 #ifdef CONFIG_PPC64
219  /* Write error to NVRAM */
220  if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
221  nvram_write_error_log(buf, len, err_type, error_log_cnt);
222 #endif /* CONFIG_PPC64 */
223 
224  /*
225  * rtas errors can occur during boot, and we do want to capture
226  * those somewhere, even if nvram isn't ready (why not?), and even
227  * if rtasd isn't ready. Put them into the boot log, at least.
228  */
229  if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
230  printk_log_rtas(buf, len);
231 
232  /* Check to see if we need to or have stopped logging */
233  if (fatal || !logging_enabled) {
234  logging_enabled = 0;
235  WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
236  spin_unlock_irqrestore(&rtasd_log_lock, s);
237  return;
238  }
239 
240  /* call type specific method for error */
241  switch (err_type & ERR_TYPE_MASK) {
242  case ERR_TYPE_RTAS_LOG:
243  offset = rtas_error_log_buffer_max *
244  ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
245 
246  /* First copy over sequence number */
247  memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
248 
249  /* Second copy over error log data */
250  offset += sizeof(int);
251  memcpy(&rtas_log_buf[offset], buf, len);
252 
253  if (rtas_log_size < LOG_NUMBER)
254  rtas_log_size += 1;
255  else
256  rtas_log_start += 1;
257 
258  WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
259  spin_unlock_irqrestore(&rtasd_log_lock, s);
260  wake_up_interruptible(&rtas_log_wait);
261  break;
262  case ERR_TYPE_KERNEL_PANIC:
263  default:
264  WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
265  spin_unlock_irqrestore(&rtasd_log_lock, s);
266  return;
267  }
268 
269 }
270 
271 static int rtas_log_open(struct inode * inode, struct file * file)
272 {
273  return 0;
274 }
275 
276 static int rtas_log_release(struct inode * inode, struct file * file)
277 {
278  return 0;
279 }
280 
281 /* This will check if all events are logged, if they are then, we
282  * know that we can safely clear the events in NVRAM.
283  * Next we'll sit and wait for something else to log.
284  */
285 static ssize_t rtas_log_read(struct file * file, char __user * buf,
286  size_t count, loff_t *ppos)
287 {
288  int error;
289  char *tmp;
290  unsigned long s;
291  unsigned long offset;
292 
293  if (!buf || count < rtas_error_log_buffer_max)
294  return -EINVAL;
295 
296  count = rtas_error_log_buffer_max;
297 
298  if (!access_ok(VERIFY_WRITE, buf, count))
299  return -EFAULT;
300 
301  tmp = kmalloc(count, GFP_KERNEL);
302  if (!tmp)
303  return -ENOMEM;
304 
305  spin_lock_irqsave(&rtasd_log_lock, s);
306 
307  /* if it's 0, then we know we got the last one (the one in NVRAM) */
308  while (rtas_log_size == 0) {
309  if (file->f_flags & O_NONBLOCK) {
310  spin_unlock_irqrestore(&rtasd_log_lock, s);
311  error = -EAGAIN;
312  goto out;
313  }
314 
315  if (!logging_enabled) {
316  spin_unlock_irqrestore(&rtasd_log_lock, s);
317  error = -ENODATA;
318  goto out;
319  }
320 #ifdef CONFIG_PPC64
322 #endif /* CONFIG_PPC64 */
323 
324  spin_unlock_irqrestore(&rtasd_log_lock, s);
325  error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
326  if (error)
327  goto out;
328  spin_lock_irqsave(&rtasd_log_lock, s);
329  }
330 
331  offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
332  memcpy(tmp, &rtas_log_buf[offset], count);
333 
334  rtas_log_start += 1;
335  rtas_log_size -= 1;
336  spin_unlock_irqrestore(&rtasd_log_lock, s);
337 
338  error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
339 out:
340  kfree(tmp);
341  return error;
342 }
343 
344 static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
345 {
346  poll_wait(file, &rtas_log_wait, wait);
347  if (rtas_log_size)
348  return POLLIN | POLLRDNORM;
349  return 0;
350 }
351 
352 static const struct file_operations proc_rtas_log_operations = {
353  .read = rtas_log_read,
354  .poll = rtas_log_poll,
355  .open = rtas_log_open,
356  .release = rtas_log_release,
357  .llseek = noop_llseek,
358 };
359 
360 static int enable_surveillance(int timeout)
361 {
362  int error;
363 
364  error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
365 
366  if (error == 0)
367  return 0;
368 
369  if (error == -EINVAL) {
370  printk(KERN_DEBUG "rtasd: surveillance not supported\n");
371  return 0;
372  }
373 
374  printk(KERN_ERR "rtasd: could not update surveillance\n");
375  return -1;
376 }
377 
378 static void do_event_scan(void)
379 {
380  int error;
381  do {
382  memset(logdata, 0, rtas_error_log_max);
383  error = rtas_call(event_scan, 4, 1, NULL,
384  RTAS_EVENT_SCAN_ALL_EVENTS, 0,
385  __pa(logdata), rtas_error_log_max);
386  if (error == -1) {
387  printk(KERN_ERR "event-scan failed\n");
388  break;
389  }
390 
391  if (error == 0)
392  pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
393 
394  } while(error == 0);
395 }
396 
397 static void rtas_event_scan(struct work_struct *w);
398 DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
399 
400 /*
401  * Delay should be at least one second since some machines have problems if
402  * we call event-scan too quickly.
403  */
404 static unsigned long event_scan_delay = 1*HZ;
405 static int first_pass = 1;
406 
407 static void rtas_event_scan(struct work_struct *w)
408 {
409  unsigned int cpu;
410 
411  do_event_scan();
412 
413  get_online_cpus();
414 
415  /* raw_ OK because just using CPU as starting point. */
416  cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
417  if (cpu >= nr_cpu_ids) {
418  cpu = cpumask_first(cpu_online_mask);
419 
420  if (first_pass) {
421  first_pass = 0;
422  event_scan_delay = 30*HZ/rtas_event_scan_rate;
423 
424  if (surveillance_timeout != -1) {
425  pr_debug("rtasd: enabling surveillance\n");
426  enable_surveillance(surveillance_timeout);
427  pr_debug("rtasd: surveillance enabled\n");
428  }
429  }
430  }
431 
432  schedule_delayed_work_on(cpu, &event_scan_work,
433  __round_jiffies_relative(event_scan_delay, cpu));
434 
435  put_online_cpus();
436 }
437 
438 #ifdef CONFIG_PPC64
439 static void retreive_nvram_error_log(void)
440 {
441  unsigned int err_type ;
442  int rc ;
443 
444  /* See if we have any error stored in NVRAM */
445  memset(logdata, 0, rtas_error_log_max);
446  rc = nvram_read_error_log(logdata, rtas_error_log_max,
447  &err_type, &error_log_cnt);
448  /* We can use rtas_log_buf now */
449  logging_enabled = 1;
450  if (!rc) {
451  if (err_type != ERR_FLAG_ALREADY_LOGGED) {
452  pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
453  }
454  }
455 }
456 #else /* CONFIG_PPC64 */
457 static void retreive_nvram_error_log(void)
458 {
459 }
460 #endif /* CONFIG_PPC64 */
461 
462 static void start_event_scan(void)
463 {
464  printk(KERN_DEBUG "RTAS daemon started\n");
465  pr_debug("rtasd: will sleep for %d milliseconds\n",
466  (30000 / rtas_event_scan_rate));
467 
468  /* Retrieve errors from nvram if any */
469  retreive_nvram_error_log();
470 
471  schedule_delayed_work_on(cpumask_first(cpu_online_mask),
472  &event_scan_work, event_scan_delay);
473 }
474 
475 /* Cancel the rtas event scan work */
477 {
478  cancel_delayed_work_sync(&event_scan_work);
479 }
481 
482 static int __init rtas_init(void)
483 {
484  struct proc_dir_entry *entry;
485 
486  if (!machine_is(pseries) && !machine_is(chrp))
487  return 0;
488 
489  /* No RTAS */
490  event_scan = rtas_token("event-scan");
491  if (event_scan == RTAS_UNKNOWN_SERVICE) {
492  printk(KERN_INFO "rtasd: No event-scan on system\n");
493  return -ENODEV;
494  }
495 
496  rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
497  if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
498  printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
499  return -ENODEV;
500  }
501 
502  if (!rtas_event_scan_rate) {
503  /* Broken firmware: take a rate of zero to mean don't scan */
504  printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
505  return 0;
506  }
507 
508  /* Make room for the sequence number */
509  rtas_error_log_max = rtas_get_error_log_max();
510  rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
511 
512  rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
513  if (!rtas_log_buf) {
514  printk(KERN_ERR "rtasd: no memory\n");
515  return -ENOMEM;
516  }
517 
518  entry = proc_create("powerpc/rtas/error_log", S_IRUSR, NULL,
519  &proc_rtas_log_operations);
520  if (!entry)
521  printk(KERN_ERR "Failed to create error_log proc entry\n");
522 
523  start_event_scan();
524 
525  return 0;
526 }
527 __initcall(rtas_init);
528 
529 static int __init surveillance_setup(char *str)
530 {
531  int i;
532 
533  /* We only do surveillance on pseries */
534  if (!machine_is(pseries))
535  return 0;
536 
537  if (get_option(&str,&i)) {
538  if (i >= 0 && i <= 255)
539  surveillance_timeout = i;
540  }
541 
542  return 1;
543 }
544 __setup("surveillance=", surveillance_setup);
545 
546 static int __init rtasmsgs_setup(char *str)
547 {
548  if (strcmp(str, "on") == 0)
549  full_rtas_msgs = 1;
550  else if (strcmp(str, "off") == 0)
551  full_rtas_msgs = 0;
552 
553  return 1;
554 }
555 __setup("rtasmsgs=", rtasmsgs_setup);