Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sch_sfb.c
Go to the documentation of this file.
1 /*
2  * net/sched/sch_sfb.c Stochastic Fair Blue
3  *
4  * Copyright (c) 2008-2011 Juliusz Chroboczek <[email protected]>
5  * Copyright (c) 2011 Eric Dumazet <[email protected]>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  *
11  * W. Feng, D. Kandlur, D. Saha, K. Shin. Blue:
12  * A New Class of Active Queue Management Algorithms.
13  * U. Michigan CSE-TR-387-99, April 1999.
14  *
15  * http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf
16  *
17  */
18 
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/skbuff.h>
24 #include <linux/random.h>
25 #include <linux/jhash.h>
26 #include <net/ip.h>
27 #include <net/pkt_sched.h>
28 #include <net/inet_ecn.h>
29 #include <net/flow_keys.h>
30 
31 /*
32  * SFB uses two B[l][n] : L x N arrays of bins (L levels, N bins per level)
33  * This implementation uses L = 8 and N = 16
34  * This permits us to split one 32bit hash (provided per packet by rxhash or
35  * external classifier) into 8 subhashes of 4 bits.
36  */
37 #define SFB_BUCKET_SHIFT 4
38 #define SFB_NUMBUCKETS (1 << SFB_BUCKET_SHIFT) /* N bins per Level */
39 #define SFB_BUCKET_MASK (SFB_NUMBUCKETS - 1)
40 #define SFB_LEVELS (32 / SFB_BUCKET_SHIFT) /* L */
41 
42 /* SFB algo uses a virtual queue, named "bin" */
43 struct sfb_bucket {
44  u16 qlen; /* length of virtual queue */
45  u16 p_mark; /* marking probability */
46 };
47 
48 /* We use a double buffering right before hash change
49  * (Section 4.4 of SFB reference : moving hash functions)
50  */
51 struct sfb_bins {
52  u32 perturbation; /* jhash perturbation */
54 };
55 
57  struct Qdisc *qdisc;
59  unsigned long rehash_interval;
60  unsigned long warmup_time; /* double buffering warmup time in jiffies */
62  u32 bin_size; /* maximum queue length per bin */
63  u32 increment; /* d1 */
64  u32 decrement; /* d2 */
65  u32 limit; /* HARD maximal queue length */
69  unsigned long rehash_time;
70  unsigned long token_time;
71 
72  u8 slot; /* current active bins (0 or 1) */
74  struct sfb_bins bins[2];
75 
76  struct {
81  u32 childdrop; /* drops in child qdisc */
82  u32 marked; /* ECN mark */
83  } stats;
84 };
85 
86 /*
87  * Each queued skb might be hashed on one or two bins
88  * We store in skb_cb the two hash values.
89  * (A zero value means double buffering was not used)
90  */
91 struct sfb_skb_cb {
92  u32 hashes[2];
93 };
94 
95 static inline struct sfb_skb_cb *sfb_skb_cb(const struct sk_buff *skb)
96 {
97  qdisc_cb_private_validate(skb, sizeof(struct sfb_skb_cb));
98  return (struct sfb_skb_cb *)qdisc_skb_cb(skb)->data;
99 }
100 
101 /*
102  * If using 'internal' SFB flow classifier, hash comes from skb rxhash
103  * If using external classifier, hash comes from the classid.
104  */
105 static u32 sfb_hash(const struct sk_buff *skb, u32 slot)
106 {
107  return sfb_skb_cb(skb)->hashes[slot];
108 }
109 
110 /* Probabilities are coded as Q0.16 fixed-point values,
111  * with 0xFFFF representing 65535/65536 (almost 1.0)
112  * Addition and subtraction are saturating in [0, 65535]
113  */
114 static u32 prob_plus(u32 p1, u32 p2)
115 {
116  u32 res = p1 + p2;
117 
118  return min_t(u32, res, SFB_MAX_PROB);
119 }
120 
121 static u32 prob_minus(u32 p1, u32 p2)
122 {
123  return p1 > p2 ? p1 - p2 : 0;
124 }
125 
126 static void increment_one_qlen(u32 sfbhash, u32 slot, struct sfb_sched_data *q)
127 {
128  int i;
129  struct sfb_bucket *b = &q->bins[slot].bins[0][0];
130 
131  for (i = 0; i < SFB_LEVELS; i++) {
132  u32 hash = sfbhash & SFB_BUCKET_MASK;
133 
134  sfbhash >>= SFB_BUCKET_SHIFT;
135  if (b[hash].qlen < 0xFFFF)
136  b[hash].qlen++;
137  b += SFB_NUMBUCKETS; /* next level */
138  }
139 }
140 
141 static void increment_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
142 {
143  u32 sfbhash;
144 
145  sfbhash = sfb_hash(skb, 0);
146  if (sfbhash)
147  increment_one_qlen(sfbhash, 0, q);
148 
149  sfbhash = sfb_hash(skb, 1);
150  if (sfbhash)
151  increment_one_qlen(sfbhash, 1, q);
152 }
153 
154 static void decrement_one_qlen(u32 sfbhash, u32 slot,
155  struct sfb_sched_data *q)
156 {
157  int i;
158  struct sfb_bucket *b = &q->bins[slot].bins[0][0];
159 
160  for (i = 0; i < SFB_LEVELS; i++) {
161  u32 hash = sfbhash & SFB_BUCKET_MASK;
162 
163  sfbhash >>= SFB_BUCKET_SHIFT;
164  if (b[hash].qlen > 0)
165  b[hash].qlen--;
166  b += SFB_NUMBUCKETS; /* next level */
167  }
168 }
169 
170 static void decrement_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
171 {
172  u32 sfbhash;
173 
174  sfbhash = sfb_hash(skb, 0);
175  if (sfbhash)
176  decrement_one_qlen(sfbhash, 0, q);
177 
178  sfbhash = sfb_hash(skb, 1);
179  if (sfbhash)
180  decrement_one_qlen(sfbhash, 1, q);
181 }
182 
183 static void decrement_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
184 {
185  b->p_mark = prob_minus(b->p_mark, q->decrement);
186 }
187 
188 static void increment_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
189 {
190  b->p_mark = prob_plus(b->p_mark, q->increment);
191 }
192 
193 static void sfb_zero_all_buckets(struct sfb_sched_data *q)
194 {
195  memset(&q->bins, 0, sizeof(q->bins));
196 }
197 
198 /*
199  * compute max qlen, max p_mark, and avg p_mark
200  */
201 static u32 sfb_compute_qlen(u32 *prob_r, u32 *avgpm_r, const struct sfb_sched_data *q)
202 {
203  int i;
204  u32 qlen = 0, prob = 0, totalpm = 0;
205  const struct sfb_bucket *b = &q->bins[q->slot].bins[0][0];
206 
207  for (i = 0; i < SFB_LEVELS * SFB_NUMBUCKETS; i++) {
208  if (qlen < b->qlen)
209  qlen = b->qlen;
210  totalpm += b->p_mark;
211  if (prob < b->p_mark)
212  prob = b->p_mark;
213  b++;
214  }
215  *prob_r = prob;
216  *avgpm_r = totalpm / (SFB_LEVELS * SFB_NUMBUCKETS);
217  return qlen;
218 }
219 
220 
221 static void sfb_init_perturbation(u32 slot, struct sfb_sched_data *q)
222 {
223  q->bins[slot].perturbation = net_random();
224 }
225 
226 static void sfb_swap_slot(struct sfb_sched_data *q)
227 {
228  sfb_init_perturbation(q->slot, q);
229  q->slot ^= 1;
230  q->double_buffering = false;
231 }
232 
233 /* Non elastic flows are allowed to use part of the bandwidth, expressed
234  * in "penalty_rate" packets per second, with "penalty_burst" burst
235  */
236 static bool sfb_rate_limit(struct sk_buff *skb, struct sfb_sched_data *q)
237 {
238  if (q->penalty_rate == 0 || q->penalty_burst == 0)
239  return true;
240 
241  if (q->tokens_avail < 1) {
242  unsigned long age = min(10UL * HZ, jiffies - q->token_time);
243 
244  q->tokens_avail = (age * q->penalty_rate) / HZ;
245  if (q->tokens_avail > q->penalty_burst)
246  q->tokens_avail = q->penalty_burst;
247  q->token_time = jiffies;
248  if (q->tokens_avail < 1)
249  return true;
250  }
251 
252  q->tokens_avail--;
253  return false;
254 }
255 
256 static bool sfb_classify(struct sk_buff *skb, struct sfb_sched_data *q,
257  int *qerr, u32 *salt)
258 {
259  struct tcf_result res;
260  int result;
261 
262  result = tc_classify(skb, q->filter_list, &res);
263  if (result >= 0) {
264 #ifdef CONFIG_NET_CLS_ACT
265  switch (result) {
266  case TC_ACT_STOLEN:
267  case TC_ACT_QUEUED:
269  case TC_ACT_SHOT:
270  return false;
271  }
272 #endif
273  *salt = TC_H_MIN(res.classid);
274  return true;
275  }
276  return false;
277 }
278 
279 static int sfb_enqueue(struct sk_buff *skb, struct Qdisc *sch)
280 {
281 
282  struct sfb_sched_data *q = qdisc_priv(sch);
283  struct Qdisc *child = q->qdisc;
284  int i;
285  u32 p_min = ~0;
286  u32 minqlen = ~0;
287  u32 r, slot, salt, sfbhash;
289  struct flow_keys keys;
290 
291  if (unlikely(sch->q.qlen >= q->limit)) {
292  sch->qstats.overlimits++;
293  q->stats.queuedrop++;
294  goto drop;
295  }
296 
297  if (q->rehash_interval > 0) {
298  unsigned long limit = q->rehash_time + q->rehash_interval;
299 
300  if (unlikely(time_after(jiffies, limit))) {
301  sfb_swap_slot(q);
302  q->rehash_time = jiffies;
303  } else if (unlikely(!q->double_buffering && q->warmup_time > 0 &&
304  time_after(jiffies, limit - q->warmup_time))) {
305  q->double_buffering = true;
306  }
307  }
308 
309  if (q->filter_list) {
310  /* If using external classifiers, get result and record it. */
311  if (!sfb_classify(skb, q, &ret, &salt))
312  goto other_drop;
313  keys.src = salt;
314  keys.dst = 0;
315  keys.ports = 0;
316  } else {
317  skb_flow_dissect(skb, &keys);
318  }
319 
320  slot = q->slot;
321 
322  sfbhash = jhash_3words((__force u32)keys.dst,
323  (__force u32)keys.src,
324  (__force u32)keys.ports,
325  q->bins[slot].perturbation);
326  if (!sfbhash)
327  sfbhash = 1;
328  sfb_skb_cb(skb)->hashes[slot] = sfbhash;
329 
330  for (i = 0; i < SFB_LEVELS; i++) {
331  u32 hash = sfbhash & SFB_BUCKET_MASK;
332  struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
333 
334  sfbhash >>= SFB_BUCKET_SHIFT;
335  if (b->qlen == 0)
336  decrement_prob(b, q);
337  else if (b->qlen >= q->bin_size)
338  increment_prob(b, q);
339  if (minqlen > b->qlen)
340  minqlen = b->qlen;
341  if (p_min > b->p_mark)
342  p_min = b->p_mark;
343  }
344 
345  slot ^= 1;
346  sfb_skb_cb(skb)->hashes[slot] = 0;
347 
348  if (unlikely(minqlen >= q->max)) {
349  sch->qstats.overlimits++;
350  q->stats.bucketdrop++;
351  goto drop;
352  }
353 
354  if (unlikely(p_min >= SFB_MAX_PROB)) {
355  /* Inelastic flow */
356  if (q->double_buffering) {
357  sfbhash = jhash_3words((__force u32)keys.dst,
358  (__force u32)keys.src,
359  (__force u32)keys.ports,
360  q->bins[slot].perturbation);
361  if (!sfbhash)
362  sfbhash = 1;
363  sfb_skb_cb(skb)->hashes[slot] = sfbhash;
364 
365  for (i = 0; i < SFB_LEVELS; i++) {
366  u32 hash = sfbhash & SFB_BUCKET_MASK;
367  struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
368 
369  sfbhash >>= SFB_BUCKET_SHIFT;
370  if (b->qlen == 0)
371  decrement_prob(b, q);
372  else if (b->qlen >= q->bin_size)
373  increment_prob(b, q);
374  }
375  }
376  if (sfb_rate_limit(skb, q)) {
377  sch->qstats.overlimits++;
378  q->stats.penaltydrop++;
379  goto drop;
380  }
381  goto enqueue;
382  }
383 
384  r = net_random() & SFB_MAX_PROB;
385 
386  if (unlikely(r < p_min)) {
387  if (unlikely(p_min > SFB_MAX_PROB / 2)) {
388  /* If we're marking that many packets, then either
389  * this flow is unresponsive, or we're badly congested.
390  * In either case, we want to start dropping packets.
391  */
392  if (r < (p_min - SFB_MAX_PROB / 2) * 2) {
393  q->stats.earlydrop++;
394  goto drop;
395  }
396  }
397  if (INET_ECN_set_ce(skb)) {
398  q->stats.marked++;
399  } else {
400  q->stats.earlydrop++;
401  goto drop;
402  }
403  }
404 
405 enqueue:
406  ret = qdisc_enqueue(skb, child);
407  if (likely(ret == NET_XMIT_SUCCESS)) {
408  sch->q.qlen++;
409  increment_qlen(skb, q);
410  } else if (net_xmit_drop_count(ret)) {
411  q->stats.childdrop++;
412  sch->qstats.drops++;
413  }
414  return ret;
415 
416 drop:
417  qdisc_drop(skb, sch);
418  return NET_XMIT_CN;
419 other_drop:
420  if (ret & __NET_XMIT_BYPASS)
421  sch->qstats.drops++;
422  kfree_skb(skb);
423  return ret;
424 }
425 
426 static struct sk_buff *sfb_dequeue(struct Qdisc *sch)
427 {
428  struct sfb_sched_data *q = qdisc_priv(sch);
429  struct Qdisc *child = q->qdisc;
430  struct sk_buff *skb;
431 
432  skb = child->dequeue(q->qdisc);
433 
434  if (skb) {
435  qdisc_bstats_update(sch, skb);
436  sch->q.qlen--;
437  decrement_qlen(skb, q);
438  }
439 
440  return skb;
441 }
442 
443 static struct sk_buff *sfb_peek(struct Qdisc *sch)
444 {
445  struct sfb_sched_data *q = qdisc_priv(sch);
446  struct Qdisc *child = q->qdisc;
447 
448  return child->ops->peek(child);
449 }
450 
451 /* No sfb_drop -- impossible since the child doesn't return the dropped skb. */
452 
453 static void sfb_reset(struct Qdisc *sch)
454 {
455  struct sfb_sched_data *q = qdisc_priv(sch);
456 
457  qdisc_reset(q->qdisc);
458  sch->q.qlen = 0;
459  q->slot = 0;
460  q->double_buffering = false;
461  sfb_zero_all_buckets(q);
462  sfb_init_perturbation(0, q);
463 }
464 
465 static void sfb_destroy(struct Qdisc *sch)
466 {
467  struct sfb_sched_data *q = qdisc_priv(sch);
468 
470  qdisc_destroy(q->qdisc);
471 }
472 
473 static const struct nla_policy sfb_policy[TCA_SFB_MAX + 1] = {
474  [TCA_SFB_PARMS] = { .len = sizeof(struct tc_sfb_qopt) },
475 };
476 
477 static const struct tc_sfb_qopt sfb_default_ops = {
478  .rehash_interval = 600 * MSEC_PER_SEC,
479  .warmup_time = 60 * MSEC_PER_SEC,
480  .limit = 0,
481  .max = 25,
482  .bin_size = 20,
483  .increment = (SFB_MAX_PROB + 500) / 1000, /* 0.1 % */
484  .decrement = (SFB_MAX_PROB + 3000) / 6000,
485  .penalty_rate = 10,
486  .penalty_burst = 20,
487 };
488 
489 static int sfb_change(struct Qdisc *sch, struct nlattr *opt)
490 {
491  struct sfb_sched_data *q = qdisc_priv(sch);
492  struct Qdisc *child;
493  struct nlattr *tb[TCA_SFB_MAX + 1];
494  const struct tc_sfb_qopt *ctl = &sfb_default_ops;
495  u32 limit;
496  int err;
497 
498  if (opt) {
499  err = nla_parse_nested(tb, TCA_SFB_MAX, opt, sfb_policy);
500  if (err < 0)
501  return -EINVAL;
502 
503  if (tb[TCA_SFB_PARMS] == NULL)
504  return -EINVAL;
505 
506  ctl = nla_data(tb[TCA_SFB_PARMS]);
507  }
508 
509  limit = ctl->limit;
510  if (limit == 0)
511  limit = max_t(u32, qdisc_dev(sch)->tx_queue_len, 1);
512 
513  child = fifo_create_dflt(sch, &pfifo_qdisc_ops, limit);
514  if (IS_ERR(child))
515  return PTR_ERR(child);
516 
517  sch_tree_lock(sch);
518 
519  qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
520  qdisc_destroy(q->qdisc);
521  q->qdisc = child;
522 
525  q->rehash_time = jiffies;
526  q->limit = limit;
527  q->increment = ctl->increment;
528  q->decrement = ctl->decrement;
529  q->max = ctl->max;
530  q->bin_size = ctl->bin_size;
531  q->penalty_rate = ctl->penalty_rate;
532  q->penalty_burst = ctl->penalty_burst;
533  q->tokens_avail = ctl->penalty_burst;
534  q->token_time = jiffies;
535 
536  q->slot = 0;
537  q->double_buffering = false;
538  sfb_zero_all_buckets(q);
539  sfb_init_perturbation(0, q);
540  sfb_init_perturbation(1, q);
541 
542  sch_tree_unlock(sch);
543 
544  return 0;
545 }
546 
547 static int sfb_init(struct Qdisc *sch, struct nlattr *opt)
548 {
549  struct sfb_sched_data *q = qdisc_priv(sch);
550 
551  q->qdisc = &noop_qdisc;
552  return sfb_change(sch, opt);
553 }
554 
555 static int sfb_dump(struct Qdisc *sch, struct sk_buff *skb)
556 {
557  struct sfb_sched_data *q = qdisc_priv(sch);
558  struct nlattr *opts;
559  struct tc_sfb_qopt opt = {
560  .rehash_interval = jiffies_to_msecs(q->rehash_interval),
561  .warmup_time = jiffies_to_msecs(q->warmup_time),
562  .limit = q->limit,
563  .max = q->max,
564  .bin_size = q->bin_size,
565  .increment = q->increment,
566  .decrement = q->decrement,
567  .penalty_rate = q->penalty_rate,
568  .penalty_burst = q->penalty_burst,
569  };
570 
571  sch->qstats.backlog = q->qdisc->qstats.backlog;
572  opts = nla_nest_start(skb, TCA_OPTIONS);
573  if (opts == NULL)
574  goto nla_put_failure;
575  if (nla_put(skb, TCA_SFB_PARMS, sizeof(opt), &opt))
576  goto nla_put_failure;
577  return nla_nest_end(skb, opts);
578 
579 nla_put_failure:
580  nla_nest_cancel(skb, opts);
581  return -EMSGSIZE;
582 }
583 
584 static int sfb_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
585 {
586  struct sfb_sched_data *q = qdisc_priv(sch);
587  struct tc_sfb_xstats st = {
588  .earlydrop = q->stats.earlydrop,
589  .penaltydrop = q->stats.penaltydrop,
590  .bucketdrop = q->stats.bucketdrop,
591  .queuedrop = q->stats.queuedrop,
592  .childdrop = q->stats.childdrop,
593  .marked = q->stats.marked,
594  };
595 
596  st.maxqlen = sfb_compute_qlen(&st.maxprob, &st.avgprob, q);
597 
598  return gnet_stats_copy_app(d, &st, sizeof(st));
599 }
600 
601 static int sfb_dump_class(struct Qdisc *sch, unsigned long cl,
602  struct sk_buff *skb, struct tcmsg *tcm)
603 {
604  return -ENOSYS;
605 }
606 
607 static int sfb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
608  struct Qdisc **old)
609 {
610  struct sfb_sched_data *q = qdisc_priv(sch);
611 
612  if (new == NULL)
613  new = &noop_qdisc;
614 
615  sch_tree_lock(sch);
616  *old = q->qdisc;
617  q->qdisc = new;
618  qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
619  qdisc_reset(*old);
620  sch_tree_unlock(sch);
621  return 0;
622 }
623 
624 static struct Qdisc *sfb_leaf(struct Qdisc *sch, unsigned long arg)
625 {
626  struct sfb_sched_data *q = qdisc_priv(sch);
627 
628  return q->qdisc;
629 }
630 
631 static unsigned long sfb_get(struct Qdisc *sch, u32 classid)
632 {
633  return 1;
634 }
635 
636 static void sfb_put(struct Qdisc *sch, unsigned long arg)
637 {
638 }
639 
640 static int sfb_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
641  struct nlattr **tca, unsigned long *arg)
642 {
643  return -ENOSYS;
644 }
645 
646 static int sfb_delete(struct Qdisc *sch, unsigned long cl)
647 {
648  return -ENOSYS;
649 }
650 
651 static void sfb_walk(struct Qdisc *sch, struct qdisc_walker *walker)
652 {
653  if (!walker->stop) {
654  if (walker->count >= walker->skip)
655  if (walker->fn(sch, 1, walker) < 0) {
656  walker->stop = 1;
657  return;
658  }
659  walker->count++;
660  }
661 }
662 
663 static struct tcf_proto **sfb_find_tcf(struct Qdisc *sch, unsigned long cl)
664 {
665  struct sfb_sched_data *q = qdisc_priv(sch);
666 
667  if (cl)
668  return NULL;
669  return &q->filter_list;
670 }
671 
672 static unsigned long sfb_bind(struct Qdisc *sch, unsigned long parent,
673  u32 classid)
674 {
675  return 0;
676 }
677 
678 
679 static const struct Qdisc_class_ops sfb_class_ops = {
680  .graft = sfb_graft,
681  .leaf = sfb_leaf,
682  .get = sfb_get,
683  .put = sfb_put,
684  .change = sfb_change_class,
685  .delete = sfb_delete,
686  .walk = sfb_walk,
687  .tcf_chain = sfb_find_tcf,
688  .bind_tcf = sfb_bind,
689  .unbind_tcf = sfb_put,
690  .dump = sfb_dump_class,
691 };
692 
693 static struct Qdisc_ops sfb_qdisc_ops __read_mostly = {
694  .id = "sfb",
695  .priv_size = sizeof(struct sfb_sched_data),
696  .cl_ops = &sfb_class_ops,
697  .enqueue = sfb_enqueue,
698  .dequeue = sfb_dequeue,
699  .peek = sfb_peek,
700  .init = sfb_init,
701  .reset = sfb_reset,
702  .destroy = sfb_destroy,
703  .change = sfb_change,
704  .dump = sfb_dump,
705  .dump_stats = sfb_dump_stats,
706  .owner = THIS_MODULE,
707 };
708 
709 static int __init sfb_module_init(void)
710 {
711  return register_qdisc(&sfb_qdisc_ops);
712 }
713 
714 static void __exit sfb_module_exit(void)
715 {
716  unregister_qdisc(&sfb_qdisc_ops);
717 }
718 
719 module_init(sfb_module_init)
720 module_exit(sfb_module_exit)
721 
722 MODULE_DESCRIPTION("Stochastic Fair Blue queue discipline");
723 MODULE_AUTHOR("Juliusz Chroboczek");
724 MODULE_AUTHOR("Eric Dumazet");
725 MODULE_LICENSE("GPL");