Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
queue.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 1991, 1993
3  * The Regents of the University of California. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  * notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  * notice, this list of conditions and the following disclaimer in the
12  * documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * @(#)queue.h 8.5 (Berkeley) 8/20/94
27  * $FreeBSD: src/sys/sys/queue.h,v 1.38 2000/05/26 02:06:56 jake Exp $
28  */
29 
30 #ifndef _SYS_QUEUE_H_
31 #define _SYS_QUEUE_H_
32 
33 /*
34  * This file defines five types of data structures: singly-linked lists,
35  * singly-linked tail queues, lists, tail queues, and circular queues.
36  *
37  * A singly-linked list is headed by a single forward pointer. The elements
38  * are singly linked for minimum space and pointer manipulation overhead at
39  * the expense of O(n) removal for arbitrary elements. New elements can be
40  * added to the list after an existing element or at the head of the list.
41  * Elements being removed from the head of the list should use the explicit
42  * macro for this purpose for optimum efficiency. A singly-linked list may
43  * only be traversed in the forward direction. Singly-linked lists are ideal
44  * for applications with large datasets and few or no removals or for
45  * implementing a LIFO queue.
46  *
47  * A singly-linked tail queue is headed by a pair of pointers, one to the
48  * head of the list and the other to the tail of the list. The elements are
49  * singly linked for minimum space and pointer manipulation overhead at the
50  * expense of O(n) removal for arbitrary elements. New elements can be added
51  * to the list after an existing element, at the head of the list, or at the
52  * end of the list. Elements being removed from the head of the tail queue
53  * should use the explicit macro for this purpose for optimum efficiency.
54  * A singly-linked tail queue may only be traversed in the forward direction.
55  * Singly-linked tail queues are ideal for applications with large datasets
56  * and few or no removals or for implementing a FIFO queue.
57  *
58  * A list is headed by a single forward pointer (or an array of forward
59  * pointers for a hash table header). The elements are doubly linked
60  * so that an arbitrary element can be removed without a need to
61  * traverse the list. New elements can be added to the list before
62  * or after an existing element or at the head of the list. A list
63  * may only be traversed in the forward direction.
64  *
65  * A tail queue is headed by a pair of pointers, one to the head of the
66  * list and the other to the tail of the list. The elements are doubly
67  * linked so that an arbitrary element can be removed without a need to
68  * traverse the list. New elements can be added to the list before or
69  * after an existing element, at the head of the list, or at the end of
70  * the list. A tail queue may be traversed in either direction.
71  *
72  * A circle queue is headed by a pair of pointers, one to the head of the
73  * list and the other to the tail of the list. The elements are doubly
74  * linked so that an arbitrary element can be removed without a need to
75  * traverse the list. New elements can be added to the list before or after
76  * an existing element, at the head of the list, or at the end of the list.
77  * A circle queue may be traversed in either direction, but has a more
78  * complex end of list detection.
79  *
80  * For details on the use of these macros, see the queue(3) manual page.
81  *
82  *
83  * SLIST LIST STAILQ TAILQ CIRCLEQ
84  * _HEAD + + + + +
85  * _HEAD_INITIALIZER + + + + +
86  * _ENTRY + + + + +
87  * _INIT + + + + +
88  * _EMPTY + + + + +
89  * _FIRST + + + + +
90  * _NEXT + + + + +
91  * _PREV - - - + +
92  * _LAST - - + + +
93  * _FOREACH + + + + +
94  * _FOREACH_REVERSE - - - + +
95  * _INSERT_HEAD + + + + +
96  * _INSERT_BEFORE - + - + +
97  * _INSERT_AFTER + + + + +
98  * _INSERT_TAIL - - + + +
99  * _REMOVE_HEAD + - + - -
100  * _REMOVE + + + + +
101  *
102  */
103 
104 /*
105  * Singly-linked List declarations.
106  */
107 #define SLIST_HEAD(name, type) \
108 struct name { \
109  struct type *slh_first; /* first element */ \
110 }
111 
112 #define SLIST_HEAD_INITIALIZER(head) \
113  { NULL }
114 
115 #define SLIST_ENTRY(type) \
116 struct { \
117  struct type *sle_next; /* next element */ \
118 }
119 
120 /*
121  * Singly-linked List functions.
122  */
123 #define SLIST_EMPTY(head) ((head)->slh_first == NULL)
124 
125 #define SLIST_FIRST(head) ((head)->slh_first)
126 
127 #define SLIST_FOREACH(var, head, field) \
128  for ((var) = SLIST_FIRST((head)); \
129  (var); \
130  (var) = SLIST_NEXT((var), field))
131 
132 #define SLIST_INIT(head) do { \
133  SLIST_FIRST((head)) = NULL; \
134 } while (0)
135 
136 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
137  SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field); \
138  SLIST_NEXT((slistelm), field) = (elm); \
139 } while (0)
140 
141 #define SLIST_INSERT_HEAD(head, elm, field) do { \
142  SLIST_NEXT((elm), field) = SLIST_FIRST((head)); \
143  SLIST_FIRST((head)) = (elm); \
144 } while (0)
145 
146 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
147 
148 #define SLIST_REMOVE(head, elm, type, field) do { \
149  if (SLIST_FIRST((head)) == (elm)) { \
150  SLIST_REMOVE_HEAD((head), field); \
151  } \
152  else { \
153  struct type *curelm = SLIST_FIRST((head)); \
154  while (SLIST_NEXT(curelm, field) != (elm)) \
155  curelm = SLIST_NEXT(curelm, field); \
156  SLIST_NEXT(curelm, field) = \
157  SLIST_NEXT(SLIST_NEXT(curelm, field), field); \
158  } \
159 } while (0)
160 
161 #define SLIST_REMOVE_HEAD(head, field) do { \
162  SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field); \
163 } while (0)
164 
165 /*
166  * Singly-linked Tail queue declarations.
167  */
168 #define STAILQ_HEAD(name, type) \
169 struct name { \
170  struct type *stqh_first;/* first element */ \
171  struct type **stqh_last;/* addr of last next element */ \
172 }
173 
174 #define STAILQ_HEAD_INITIALIZER(head) \
175  { NULL, &(head).stqh_first }
176 
177 #define STAILQ_ENTRY(type) \
178 struct { \
179  struct type *stqe_next; /* next element */ \
180 }
181 
182 /*
183  * Singly-linked Tail queue functions.
184  */
185 #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
186 
187 #define STAILQ_FIRST(head) ((head)->stqh_first)
188 
189 #define STAILQ_FOREACH(var, head, field) \
190  for((var) = STAILQ_FIRST((head)); \
191  (var); \
192  (var) = STAILQ_NEXT((var), field))
193 
194 #define STAILQ_INIT(head) do { \
195  STAILQ_FIRST((head)) = NULL; \
196  (head)->stqh_last = &STAILQ_FIRST((head)); \
197 } while (0)
198 
199 #define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \
200  if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((tqelm), field)) == NULL)\
201  (head)->stqh_last = &STAILQ_NEXT((elm), field); \
202  STAILQ_NEXT((tqelm), field) = (elm); \
203 } while (0)
204 
205 #define STAILQ_INSERT_HEAD(head, elm, field) do { \
206  if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL) \
207  (head)->stqh_last = &STAILQ_NEXT((elm), field); \
208  STAILQ_FIRST((head)) = (elm); \
209 } while (0)
210 
211 #define STAILQ_INSERT_TAIL(head, elm, field) do { \
212  STAILQ_NEXT((elm), field) = NULL; \
213  STAILQ_LAST((head)) = (elm); \
214  (head)->stqh_last = &STAILQ_NEXT((elm), field); \
215 } while (0)
216 
217 #define STAILQ_LAST(head) (*(head)->stqh_last)
218 
219 #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
220 
221 #define STAILQ_REMOVE(head, elm, type, field) do { \
222  if (STAILQ_FIRST((head)) == (elm)) { \
223  STAILQ_REMOVE_HEAD(head, field); \
224  } \
225  else { \
226  struct type *curelm = STAILQ_FIRST((head)); \
227  while (STAILQ_NEXT(curelm, field) != (elm)) \
228  curelm = STAILQ_NEXT(curelm, field); \
229  if ((STAILQ_NEXT(curelm, field) = \
230  STAILQ_NEXT(STAILQ_NEXT(curelm, field), field)) == NULL)\
231  (head)->stqh_last = &STAILQ_NEXT((curelm), field);\
232  } \
233 } while (0)
234 
235 #define STAILQ_REMOVE_HEAD(head, field) do { \
236  if ((STAILQ_FIRST((head)) = \
237  STAILQ_NEXT(STAILQ_FIRST((head)), field)) == NULL) \
238  (head)->stqh_last = &STAILQ_FIRST((head)); \
239 } while (0)
240 
241 #define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \
242  if ((STAILQ_FIRST((head)) = STAILQ_NEXT((elm), field)) == NULL) \
243  (head)->stqh_last = &STAILQ_FIRST((head)); \
244 } while (0)
245 
246 /*
247  * List declarations.
248  */
249 #define LIST_HEAD(name, type) \
250 struct name { \
251  struct type *lh_first; /* first element */ \
252 }
253 
254 #define LIST_HEAD_INITIALIZER(head) \
255  { NULL }
256 
257 #define LIST_ENTRY(type) \
258 struct { \
259  struct type *le_next; /* next element */ \
260  struct type **le_prev; /* address of previous next element */ \
261 }
262 
263 /*
264  * List functions.
265  */
266 
267 #define LIST_EMPTY(head) ((head)->lh_first == NULL)
268 
269 #define LIST_FIRST(head) ((head)->lh_first)
270 
271 #define LIST_FOREACH(var, head, field) \
272  for ((var) = LIST_FIRST((head)); \
273  (var); \
274  (var) = LIST_NEXT((var), field))
275 
276 #define LIST_INIT(head) do { \
277  LIST_FIRST((head)) = NULL; \
278 } while (0)
279 
280 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
281  if ((LIST_NEXT((elm), field) = LIST_NEXT((listelm), field)) != NULL)\
282  LIST_NEXT((listelm), field)->field.le_prev = \
283  &LIST_NEXT((elm), field); \
284  LIST_NEXT((listelm), field) = (elm); \
285  (elm)->field.le_prev = &LIST_NEXT((listelm), field); \
286 } while (0)
287 
288 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
289  (elm)->field.le_prev = (listelm)->field.le_prev; \
290  LIST_NEXT((elm), field) = (listelm); \
291  *(listelm)->field.le_prev = (elm); \
292  (listelm)->field.le_prev = &LIST_NEXT((elm), field); \
293 } while (0)
294 
295 #define LIST_INSERT_HEAD(head, elm, field) do { \
296  if ((LIST_NEXT((elm), field) = LIST_FIRST((head))) != NULL) \
297  LIST_FIRST((head))->field.le_prev = &LIST_NEXT((elm), field);\
298  LIST_FIRST((head)) = (elm); \
299  (elm)->field.le_prev = &LIST_FIRST((head)); \
300 } while (0)
301 
302 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
303 
304 #define LIST_REMOVE(elm, field) do { \
305  if (LIST_NEXT((elm), field) != NULL) \
306  LIST_NEXT((elm), field)->field.le_prev = \
307  (elm)->field.le_prev; \
308  *(elm)->field.le_prev = LIST_NEXT((elm), field); \
309 } while (0)
310 
311 /*
312  * Tail queue declarations.
313  */
314 #define TAILQ_HEAD(name, type) \
315 struct name { \
316  struct type *tqh_first; /* first element */ \
317  struct type **tqh_last; /* addr of last next element */ \
318 }
319 
320 #define TAILQ_HEAD_INITIALIZER(head) \
321  { NULL, &(head).tqh_first }
322 
323 #define TAILQ_ENTRY(type) \
324 struct { \
325  struct type *tqe_next; /* next element */ \
326  struct type **tqe_prev; /* address of previous next element */ \
327 }
328 
329 /*
330  * Tail queue functions.
331  */
332 #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
333 
334 #define TAILQ_FIRST(head) ((head)->tqh_first)
335 
336 #define TAILQ_FOREACH(var, head, field) \
337  for ((var) = TAILQ_FIRST((head)); \
338  (var); \
339  (var) = TAILQ_NEXT((var), field))
340 
341 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
342  for ((var) = TAILQ_LAST((head), headname); \
343  (var); \
344  (var) = TAILQ_PREV((var), headname, field))
345 
346 #define TAILQ_INIT(head) do { \
347  TAILQ_FIRST((head)) = NULL; \
348  (head)->tqh_last = &TAILQ_FIRST((head)); \
349 } while (0)
350 
351 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
352  if ((TAILQ_NEXT((elm), field) = TAILQ_NEXT((listelm), field)) != NULL)\
353  TAILQ_NEXT((elm), field)->field.tqe_prev = \
354  &TAILQ_NEXT((elm), field); \
355  else \
356  (head)->tqh_last = &TAILQ_NEXT((elm), field); \
357  TAILQ_NEXT((listelm), field) = (elm); \
358  (elm)->field.tqe_prev = &TAILQ_NEXT((listelm), field); \
359 } while (0)
360 
361 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
362  (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
363  TAILQ_NEXT((elm), field) = (listelm); \
364  *(listelm)->field.tqe_prev = (elm); \
365  (listelm)->field.tqe_prev = &TAILQ_NEXT((elm), field); \
366 } while (0)
367 
368 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
369  if ((TAILQ_NEXT((elm), field) = TAILQ_FIRST((head))) != NULL) \
370  TAILQ_FIRST((head))->field.tqe_prev = \
371  &TAILQ_NEXT((elm), field); \
372  else \
373  (head)->tqh_last = &TAILQ_NEXT((elm), field); \
374  TAILQ_FIRST((head)) = (elm); \
375  (elm)->field.tqe_prev = &TAILQ_FIRST((head)); \
376 } while (0)
377 
378 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
379  TAILQ_NEXT((elm), field) = NULL; \
380  (elm)->field.tqe_prev = (head)->tqh_last; \
381  *(head)->tqh_last = (elm); \
382  (head)->tqh_last = &TAILQ_NEXT((elm), field); \
383 } while (0)
384 
385 #define TAILQ_LAST(head, headname) \
386  (*(((struct headname *)((head)->tqh_last))->tqh_last))
387 
388 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
389 
390 #define TAILQ_PREV(elm, headname, field) \
391  (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
392 
393 #define TAILQ_REMOVE(head, elm, field) do { \
394  if ((TAILQ_NEXT((elm), field)) != NULL) \
395  TAILQ_NEXT((elm), field)->field.tqe_prev = \
396  (elm)->field.tqe_prev; \
397  else \
398  (head)->tqh_last = (elm)->field.tqe_prev; \
399  *(elm)->field.tqe_prev = TAILQ_NEXT((elm), field); \
400 } while (0)
401 
402 /*
403  * Circular queue declarations.
404  */
405 #define CIRCLEQ_HEAD(name, type) \
406 struct name { \
407  struct type *cqh_first; /* first element */ \
408  struct type *cqh_last; /* last element */ \
409 }
410 
411 #define CIRCLEQ_HEAD_INITIALIZER(head) \
412  { (void *)&(head), (void *)&(head) }
413 
414 #define CIRCLEQ_ENTRY(type) \
415 struct { \
416  struct type *cqe_next; /* next element */ \
417  struct type *cqe_prev; /* previous element */ \
418 }
419 
420 /*
421  * Circular queue functions.
422  */
423 #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
424 
425 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
426 
427 #define CIRCLEQ_FOREACH(var, head, field) \
428  for ((var) = CIRCLEQ_FIRST((head)); \
429  (var) != (void *)(head); \
430  (var) = CIRCLEQ_NEXT((var), field))
431 
432 #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
433  for ((var) = CIRCLEQ_LAST((head)); \
434  (var) != (void *)(head); \
435  (var) = CIRCLEQ_PREV((var), field))
436 
437 #define CIRCLEQ_INIT(head) do { \
438  CIRCLEQ_FIRST((head)) = (void *)(head); \
439  CIRCLEQ_LAST((head)) = (void *)(head); \
440 } while (0)
441 
442 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
443  CIRCLEQ_NEXT((elm), field) = CIRCLEQ_NEXT((listelm), field); \
444  CIRCLEQ_PREV((elm), field) = (listelm); \
445  if (CIRCLEQ_NEXT((listelm), field) == (void *)(head)) \
446  CIRCLEQ_LAST((head)) = (elm); \
447  else \
448  CIRCLEQ_PREV(CIRCLEQ_NEXT((listelm), field), field) = (elm);\
449  CIRCLEQ_NEXT((listelm), field) = (elm); \
450 } while (0)
451 
452 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
453  CIRCLEQ_NEXT((elm), field) = (listelm); \
454  CIRCLEQ_PREV((elm), field) = CIRCLEQ_PREV((listelm), field); \
455  if (CIRCLEQ_PREV((listelm), field) == (void *)(head)) \
456  CIRCLEQ_FIRST((head)) = (elm); \
457  else \
458  CIRCLEQ_NEXT(CIRCLEQ_PREV((listelm), field), field) = (elm);\
459  CIRCLEQ_PREV((listelm), field) = (elm); \
460 } while (0)
461 
462 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
463  CIRCLEQ_NEXT((elm), field) = CIRCLEQ_FIRST((head)); \
464  CIRCLEQ_PREV((elm), field) = (void *)(head); \
465  if (CIRCLEQ_LAST((head)) == (void *)(head)) \
466  CIRCLEQ_LAST((head)) = (elm); \
467  else \
468  CIRCLEQ_PREV(CIRCLEQ_FIRST((head)), field) = (elm); \
469  CIRCLEQ_FIRST((head)) = (elm); \
470 } while (0)
471 
472 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
473  CIRCLEQ_NEXT((elm), field) = (void *)(head); \
474  CIRCLEQ_PREV((elm), field) = CIRCLEQ_LAST((head)); \
475  if (CIRCLEQ_FIRST((head)) == (void *)(head)) \
476  CIRCLEQ_FIRST((head)) = (elm); \
477  else \
478  CIRCLEQ_NEXT(CIRCLEQ_LAST((head)), field) = (elm); \
479  CIRCLEQ_LAST((head)) = (elm); \
480 } while (0)
481 
482 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
483 
484 #define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next)
485 
486 #define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev)
487 
488 #define CIRCLEQ_REMOVE(head, elm, field) do { \
489  if (CIRCLEQ_NEXT((elm), field) == (void *)(head)) \
490  CIRCLEQ_LAST((head)) = CIRCLEQ_PREV((elm), field); \
491  else \
492  CIRCLEQ_PREV(CIRCLEQ_NEXT((elm), field), field) = \
493  CIRCLEQ_PREV((elm), field); \
494  if (CIRCLEQ_PREV((elm), field) == (void *)(head)) \
495  CIRCLEQ_FIRST((head)) = CIRCLEQ_NEXT((elm), field); \
496  else \
497  CIRCLEQ_NEXT(CIRCLEQ_PREV((elm), field), field) = \
498  CIRCLEQ_NEXT((elm), field); \
499 } while (0)
500 
501 #endif /* !_SYS_QUEUE_H_ */