Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
shubio.h
Go to the documentation of this file.
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License. See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
7  */
8 
9 #ifndef _ASM_IA64_SN_SHUBIO_H
10 #define _ASM_IA64_SN_SHUBIO_H
11 
12 #define HUB_WIDGET_ID_MAX 0xf
13 #define IIO_NUM_ITTES 7
14 #define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
15 
16 #define IIO_WID 0x00400000 /* Crosstalk Widget Identification */
17  /* This register is also accessible from
18  * Crosstalk at address 0x0. */
19 #define IIO_WSTAT 0x00400008 /* Crosstalk Widget Status */
20 #define IIO_WCR 0x00400020 /* Crosstalk Widget Control Register */
21 #define IIO_ILAPR 0x00400100 /* IO Local Access Protection Register */
22 #define IIO_ILAPO 0x00400108 /* IO Local Access Protection Override */
23 #define IIO_IOWA 0x00400110 /* IO Outbound Widget Access */
24 #define IIO_IIWA 0x00400118 /* IO Inbound Widget Access */
25 #define IIO_IIDEM 0x00400120 /* IO Inbound Device Error Mask */
26 #define IIO_ILCSR 0x00400128 /* IO LLP Control and Status Register */
27 #define IIO_ILLR 0x00400130 /* IO LLP Log Register */
28 #define IIO_IIDSR 0x00400138 /* IO Interrupt Destination */
29 
30 #define IIO_IGFX0 0x00400140 /* IO Graphics Node-Widget Map 0 */
31 #define IIO_IGFX1 0x00400148 /* IO Graphics Node-Widget Map 1 */
32 
33 #define IIO_ISCR0 0x00400150 /* IO Scratch Register 0 */
34 #define IIO_ISCR1 0x00400158 /* IO Scratch Register 1 */
35 
36 #define IIO_ITTE1 0x00400160 /* IO Translation Table Entry 1 */
37 #define IIO_ITTE2 0x00400168 /* IO Translation Table Entry 2 */
38 #define IIO_ITTE3 0x00400170 /* IO Translation Table Entry 3 */
39 #define IIO_ITTE4 0x00400178 /* IO Translation Table Entry 4 */
40 #define IIO_ITTE5 0x00400180 /* IO Translation Table Entry 5 */
41 #define IIO_ITTE6 0x00400188 /* IO Translation Table Entry 6 */
42 #define IIO_ITTE7 0x00400190 /* IO Translation Table Entry 7 */
43 
44 #define IIO_IPRB0 0x00400198 /* IO PRB Entry 0 */
45 #define IIO_IPRB8 0x004001A0 /* IO PRB Entry 8 */
46 #define IIO_IPRB9 0x004001A8 /* IO PRB Entry 9 */
47 #define IIO_IPRBA 0x004001B0 /* IO PRB Entry A */
48 #define IIO_IPRBB 0x004001B8 /* IO PRB Entry B */
49 #define IIO_IPRBC 0x004001C0 /* IO PRB Entry C */
50 #define IIO_IPRBD 0x004001C8 /* IO PRB Entry D */
51 #define IIO_IPRBE 0x004001D0 /* IO PRB Entry E */
52 #define IIO_IPRBF 0x004001D8 /* IO PRB Entry F */
53 
54 #define IIO_IXCC 0x004001E0 /* IO Crosstalk Credit Count Timeout */
55 #define IIO_IMEM 0x004001E8 /* IO Miscellaneous Error Mask */
56 #define IIO_IXTT 0x004001F0 /* IO Crosstalk Timeout Threshold */
57 #define IIO_IECLR 0x004001F8 /* IO Error Clear Register */
58 #define IIO_IBCR 0x00400200 /* IO BTE Control Register */
59 
60 #define IIO_IXSM 0x00400208 /* IO Crosstalk Spurious Message */
61 #define IIO_IXSS 0x00400210 /* IO Crosstalk Spurious Sideband */
62 
63 #define IIO_ILCT 0x00400218 /* IO LLP Channel Test */
64 
65 #define IIO_IIEPH1 0x00400220 /* IO Incoming Error Packet Header, Part 1 */
66 #define IIO_IIEPH2 0x00400228 /* IO Incoming Error Packet Header, Part 2 */
67 
68 #define IIO_ISLAPR 0x00400230 /* IO SXB Local Access Protection Regster */
69 #define IIO_ISLAPO 0x00400238 /* IO SXB Local Access Protection Override */
70 
71 #define IIO_IWI 0x00400240 /* IO Wrapper Interrupt Register */
72 #define IIO_IWEL 0x00400248 /* IO Wrapper Error Log Register */
73 #define IIO_IWC 0x00400250 /* IO Wrapper Control Register */
74 #define IIO_IWS 0x00400258 /* IO Wrapper Status Register */
75 #define IIO_IWEIM 0x00400260 /* IO Wrapper Error Interrupt Masking Register */
76 
77 #define IIO_IPCA 0x00400300 /* IO PRB Counter Adjust */
78 
79 #define IIO_IPRTE0_A 0x00400308 /* IO PIO Read Address Table Entry 0, Part A */
80 #define IIO_IPRTE1_A 0x00400310 /* IO PIO Read Address Table Entry 1, Part A */
81 #define IIO_IPRTE2_A 0x00400318 /* IO PIO Read Address Table Entry 2, Part A */
82 #define IIO_IPRTE3_A 0x00400320 /* IO PIO Read Address Table Entry 3, Part A */
83 #define IIO_IPRTE4_A 0x00400328 /* IO PIO Read Address Table Entry 4, Part A */
84 #define IIO_IPRTE5_A 0x00400330 /* IO PIO Read Address Table Entry 5, Part A */
85 #define IIO_IPRTE6_A 0x00400338 /* IO PIO Read Address Table Entry 6, Part A */
86 #define IIO_IPRTE7_A 0x00400340 /* IO PIO Read Address Table Entry 7, Part A */
87 
88 #define IIO_IPRTE0_B 0x00400348 /* IO PIO Read Address Table Entry 0, Part B */
89 #define IIO_IPRTE1_B 0x00400350 /* IO PIO Read Address Table Entry 1, Part B */
90 #define IIO_IPRTE2_B 0x00400358 /* IO PIO Read Address Table Entry 2, Part B */
91 #define IIO_IPRTE3_B 0x00400360 /* IO PIO Read Address Table Entry 3, Part B */
92 #define IIO_IPRTE4_B 0x00400368 /* IO PIO Read Address Table Entry 4, Part B */
93 #define IIO_IPRTE5_B 0x00400370 /* IO PIO Read Address Table Entry 5, Part B */
94 #define IIO_IPRTE6_B 0x00400378 /* IO PIO Read Address Table Entry 6, Part B */
95 #define IIO_IPRTE7_B 0x00400380 /* IO PIO Read Address Table Entry 7, Part B */
96 
97 #define IIO_IPDR 0x00400388 /* IO PIO Deallocation Register */
98 #define IIO_ICDR 0x00400390 /* IO CRB Entry Deallocation Register */
99 #define IIO_IFDR 0x00400398 /* IO IOQ FIFO Depth Register */
100 #define IIO_IIAP 0x004003A0 /* IO IIQ Arbitration Parameters */
101 #define IIO_ICMR 0x004003A8 /* IO CRB Management Register */
102 #define IIO_ICCR 0x004003B0 /* IO CRB Control Register */
103 #define IIO_ICTO 0x004003B8 /* IO CRB Timeout */
104 #define IIO_ICTP 0x004003C0 /* IO CRB Timeout Prescalar */
105 
106 #define IIO_ICRB0_A 0x00400400 /* IO CRB Entry 0_A */
107 #define IIO_ICRB0_B 0x00400408 /* IO CRB Entry 0_B */
108 #define IIO_ICRB0_C 0x00400410 /* IO CRB Entry 0_C */
109 #define IIO_ICRB0_D 0x00400418 /* IO CRB Entry 0_D */
110 #define IIO_ICRB0_E 0x00400420 /* IO CRB Entry 0_E */
111 
112 #define IIO_ICRB1_A 0x00400430 /* IO CRB Entry 1_A */
113 #define IIO_ICRB1_B 0x00400438 /* IO CRB Entry 1_B */
114 #define IIO_ICRB1_C 0x00400440 /* IO CRB Entry 1_C */
115 #define IIO_ICRB1_D 0x00400448 /* IO CRB Entry 1_D */
116 #define IIO_ICRB1_E 0x00400450 /* IO CRB Entry 1_E */
117 
118 #define IIO_ICRB2_A 0x00400460 /* IO CRB Entry 2_A */
119 #define IIO_ICRB2_B 0x00400468 /* IO CRB Entry 2_B */
120 #define IIO_ICRB2_C 0x00400470 /* IO CRB Entry 2_C */
121 #define IIO_ICRB2_D 0x00400478 /* IO CRB Entry 2_D */
122 #define IIO_ICRB2_E 0x00400480 /* IO CRB Entry 2_E */
123 
124 #define IIO_ICRB3_A 0x00400490 /* IO CRB Entry 3_A */
125 #define IIO_ICRB3_B 0x00400498 /* IO CRB Entry 3_B */
126 #define IIO_ICRB3_C 0x004004a0 /* IO CRB Entry 3_C */
127 #define IIO_ICRB3_D 0x004004a8 /* IO CRB Entry 3_D */
128 #define IIO_ICRB3_E 0x004004b0 /* IO CRB Entry 3_E */
129 
130 #define IIO_ICRB4_A 0x004004c0 /* IO CRB Entry 4_A */
131 #define IIO_ICRB4_B 0x004004c8 /* IO CRB Entry 4_B */
132 #define IIO_ICRB4_C 0x004004d0 /* IO CRB Entry 4_C */
133 #define IIO_ICRB4_D 0x004004d8 /* IO CRB Entry 4_D */
134 #define IIO_ICRB4_E 0x004004e0 /* IO CRB Entry 4_E */
135 
136 #define IIO_ICRB5_A 0x004004f0 /* IO CRB Entry 5_A */
137 #define IIO_ICRB5_B 0x004004f8 /* IO CRB Entry 5_B */
138 #define IIO_ICRB5_C 0x00400500 /* IO CRB Entry 5_C */
139 #define IIO_ICRB5_D 0x00400508 /* IO CRB Entry 5_D */
140 #define IIO_ICRB5_E 0x00400510 /* IO CRB Entry 5_E */
141 
142 #define IIO_ICRB6_A 0x00400520 /* IO CRB Entry 6_A */
143 #define IIO_ICRB6_B 0x00400528 /* IO CRB Entry 6_B */
144 #define IIO_ICRB6_C 0x00400530 /* IO CRB Entry 6_C */
145 #define IIO_ICRB6_D 0x00400538 /* IO CRB Entry 6_D */
146 #define IIO_ICRB6_E 0x00400540 /* IO CRB Entry 6_E */
147 
148 #define IIO_ICRB7_A 0x00400550 /* IO CRB Entry 7_A */
149 #define IIO_ICRB7_B 0x00400558 /* IO CRB Entry 7_B */
150 #define IIO_ICRB7_C 0x00400560 /* IO CRB Entry 7_C */
151 #define IIO_ICRB7_D 0x00400568 /* IO CRB Entry 7_D */
152 #define IIO_ICRB7_E 0x00400570 /* IO CRB Entry 7_E */
153 
154 #define IIO_ICRB8_A 0x00400580 /* IO CRB Entry 8_A */
155 #define IIO_ICRB8_B 0x00400588 /* IO CRB Entry 8_B */
156 #define IIO_ICRB8_C 0x00400590 /* IO CRB Entry 8_C */
157 #define IIO_ICRB8_D 0x00400598 /* IO CRB Entry 8_D */
158 #define IIO_ICRB8_E 0x004005a0 /* IO CRB Entry 8_E */
159 
160 #define IIO_ICRB9_A 0x004005b0 /* IO CRB Entry 9_A */
161 #define IIO_ICRB9_B 0x004005b8 /* IO CRB Entry 9_B */
162 #define IIO_ICRB9_C 0x004005c0 /* IO CRB Entry 9_C */
163 #define IIO_ICRB9_D 0x004005c8 /* IO CRB Entry 9_D */
164 #define IIO_ICRB9_E 0x004005d0 /* IO CRB Entry 9_E */
165 
166 #define IIO_ICRBA_A 0x004005e0 /* IO CRB Entry A_A */
167 #define IIO_ICRBA_B 0x004005e8 /* IO CRB Entry A_B */
168 #define IIO_ICRBA_C 0x004005f0 /* IO CRB Entry A_C */
169 #define IIO_ICRBA_D 0x004005f8 /* IO CRB Entry A_D */
170 #define IIO_ICRBA_E 0x00400600 /* IO CRB Entry A_E */
171 
172 #define IIO_ICRBB_A 0x00400610 /* IO CRB Entry B_A */
173 #define IIO_ICRBB_B 0x00400618 /* IO CRB Entry B_B */
174 #define IIO_ICRBB_C 0x00400620 /* IO CRB Entry B_C */
175 #define IIO_ICRBB_D 0x00400628 /* IO CRB Entry B_D */
176 #define IIO_ICRBB_E 0x00400630 /* IO CRB Entry B_E */
177 
178 #define IIO_ICRBC_A 0x00400640 /* IO CRB Entry C_A */
179 #define IIO_ICRBC_B 0x00400648 /* IO CRB Entry C_B */
180 #define IIO_ICRBC_C 0x00400650 /* IO CRB Entry C_C */
181 #define IIO_ICRBC_D 0x00400658 /* IO CRB Entry C_D */
182 #define IIO_ICRBC_E 0x00400660 /* IO CRB Entry C_E */
183 
184 #define IIO_ICRBD_A 0x00400670 /* IO CRB Entry D_A */
185 #define IIO_ICRBD_B 0x00400678 /* IO CRB Entry D_B */
186 #define IIO_ICRBD_C 0x00400680 /* IO CRB Entry D_C */
187 #define IIO_ICRBD_D 0x00400688 /* IO CRB Entry D_D */
188 #define IIO_ICRBD_E 0x00400690 /* IO CRB Entry D_E */
189 
190 #define IIO_ICRBE_A 0x004006a0 /* IO CRB Entry E_A */
191 #define IIO_ICRBE_B 0x004006a8 /* IO CRB Entry E_B */
192 #define IIO_ICRBE_C 0x004006b0 /* IO CRB Entry E_C */
193 #define IIO_ICRBE_D 0x004006b8 /* IO CRB Entry E_D */
194 #define IIO_ICRBE_E 0x004006c0 /* IO CRB Entry E_E */
195 
196 #define IIO_ICSML 0x00400700 /* IO CRB Spurious Message Low */
197 #define IIO_ICSMM 0x00400708 /* IO CRB Spurious Message Middle */
198 #define IIO_ICSMH 0x00400710 /* IO CRB Spurious Message High */
199 
200 #define IIO_IDBSS 0x00400718 /* IO Debug Submenu Select */
201 
202 #define IIO_IBLS0 0x00410000 /* IO BTE Length Status 0 */
203 #define IIO_IBSA0 0x00410008 /* IO BTE Source Address 0 */
204 #define IIO_IBDA0 0x00410010 /* IO BTE Destination Address 0 */
205 #define IIO_IBCT0 0x00410018 /* IO BTE Control Terminate 0 */
206 #define IIO_IBNA0 0x00410020 /* IO BTE Notification Address 0 */
207 #define IIO_IBIA0 0x00410028 /* IO BTE Interrupt Address 0 */
208 #define IIO_IBLS1 0x00420000 /* IO BTE Length Status 1 */
209 #define IIO_IBSA1 0x00420008 /* IO BTE Source Address 1 */
210 #define IIO_IBDA1 0x00420010 /* IO BTE Destination Address 1 */
211 #define IIO_IBCT1 0x00420018 /* IO BTE Control Terminate 1 */
212 #define IIO_IBNA1 0x00420020 /* IO BTE Notification Address 1 */
213 #define IIO_IBIA1 0x00420028 /* IO BTE Interrupt Address 1 */
214 
215 #define IIO_IPCR 0x00430000 /* IO Performance Control */
216 #define IIO_IPPR 0x00430008 /* IO Performance Profiling */
217 
218 /************************************************************************
219  * *
220  * Description: This register echoes some information from the *
221  * LB_REV_ID register. It is available through Crosstalk as described *
222  * above. The REV_NUM and MFG_NUM fields receive their values from *
223  * the REVISION and MANUFACTURER fields in the LB_REV_ID register. *
224  * The PART_NUM field's value is the Crosstalk device ID number that *
225  * Steve Miller assigned to the SHub chip. *
226  * *
227  ************************************************************************/
228 
229 typedef union ii_wid_u {
231  struct {
237  } ii_wid_fld_s;
238 } ii_wid_u_t;
239 
240 /************************************************************************
241  * *
242  * The fields in this register are set upon detection of an error *
243  * and cleared by various mechanisms, as explained in the *
244  * description. *
245  * *
246  ************************************************************************/
247 
248 typedef union ii_wstat_u {
250  struct {
261  } ii_wstat_fld_s;
262 } ii_wstat_u_t;
263 
264 /************************************************************************
265  * *
266  * Description: This is a read-write enabled register. It controls *
267  * various aspects of the Crosstalk flow control. *
268  * *
269  ************************************************************************/
270 
271 typedef union ii_wcr_u {
273  struct {
282  } ii_wcr_fld_s;
283 } ii_wcr_u_t;
284 
285 /************************************************************************
286  * *
287  * Description: This register's value is a bit vector that guards *
288  * access to local registers within the II as well as to external *
289  * Crosstalk widgets. Each bit in the register corresponds to a *
290  * particular region in the system; a region consists of one, two or *
291  * four nodes (depending on the value of the REGION_SIZE field in the *
292  * LB_REV_ID register, which is documented in Section 8.3.1.1). The *
293  * protection provided by this register applies to PIO read *
294  * operations as well as PIO write operations. The II will perform a *
295  * PIO read or write request only if the bit for the requestor's *
296  * region is set; otherwise, the II will not perform the requested *
297  * operation and will return an error response. When a PIO read or *
298  * write request targets an external Crosstalk widget, then not only *
299  * must the bit for the requestor's region be set in the ILAPR, but *
300  * also the target widget's bit in the IOWA register must be set in *
301  * order for the II to perform the requested operation; otherwise, *
302  * the II will return an error response. Hence, the protection *
303  * provided by the IOWA register supplements the protection provided *
304  * by the ILAPR for requests that target external Crosstalk widgets. *
305  * This register itself can be accessed only by the nodes whose *
306  * region ID bits are enabled in this same register. It can also be *
307  * accessed through the IAlias space by the local processors. *
308  * The reset value of this register allows access by all nodes. *
309  * *
310  ************************************************************************/
311 
312 typedef union ii_ilapr_u {
314  struct {
316  } ii_ilapr_fld_s;
317 } ii_ilapr_u_t;
318 
319 /************************************************************************
320  * *
321  * Description: A write to this register of the 64-bit value *
322  * "SGIrules" in ASCII, will cause the bit in the ILAPR register *
323  * corresponding to the region of the requestor to be set (allow *
324  * access). A write of any other value will be ignored. Access *
325  * protection for this register is "SGIrules". *
326  * This register can also be accessed through the IAlias space. *
327  * However, this access will not change the access permissions in the *
328  * ILAPR. *
329  * *
330  ************************************************************************/
331 
332 typedef union ii_ilapo_u {
334  struct {
336  } ii_ilapo_fld_s;
337 } ii_ilapo_u_t;
338 
339 /************************************************************************
340  * *
341  * This register qualifies all the PIO and Graphics writes launched *
342  * from the SHUB towards a widget. *
343  * *
344  ************************************************************************/
345 
346 typedef union ii_iowa_u {
348  struct {
353  } ii_iowa_fld_s;
354 } ii_iowa_u_t;
355 
356 /************************************************************************
357  * *
358  * Description: This register qualifies all the requests launched *
359  * from a widget towards the Shub. This register is intended to be *
360  * used by software in case of misbehaving widgets. *
361  * *
362  * *
363  ************************************************************************/
364 
365 typedef union ii_iiwa_u {
367  struct {
372  } ii_iiwa_fld_s;
373 } ii_iiwa_u_t;
374 
375 /************************************************************************
376  * *
377  * Description: This register qualifies all the operations launched *
378  * from a widget towards the SHub. It allows individual access *
379  * control for up to 8 devices per widget. A device refers to *
380  * individual DMA master hosted by a widget. *
381  * The bits in each field of this register are cleared by the Shub *
382  * upon detection of an error which requires the device to be *
383  * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric *
384  * Crosstalk). Whether or not a device has access rights to this *
385  * Shub is determined by an AND of the device enable bit in the *
386  * appropriate field of this register and the corresponding bit in *
387  * the Wx_IAC field (for the widget which this device belongs to). *
388  * The bits in this field are set by writing a 1 to them. Incoming *
389  * replies from Crosstalk are not subject to this access control *
390  * mechanism. *
391  * *
392  ************************************************************************/
393 
394 typedef union ii_iidem_u {
396  struct {
405  } ii_iidem_fld_s;
406 } ii_iidem_u_t;
407 
408 /************************************************************************
409  * *
410  * This register contains the various programmable fields necessary *
411  * for controlling and observing the LLP signals. *
412  * *
413  ************************************************************************/
414 
415 typedef union ii_ilcsr_u {
417  struct {
432 
433  } ii_ilcsr_fld_s;
434 } ii_ilcsr_u_t;
435 
436 /************************************************************************
437  * *
438  * This is simply a status registers that monitors the LLP error *
439  * rate. *
440  * *
441  ************************************************************************/
442 
443 typedef union ii_illr_u {
445  struct {
449  } ii_illr_fld_s;
450 } ii_illr_u_t;
451 
452 /************************************************************************
453  * *
454  * Description: All II-detected non-BTE error interrupts are *
455  * specified via this register. *
456  * NOTE: The PI interrupt register address is hardcoded in the II. If *
457  * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI *
458  * packet) to address offset 0x0180_0090 within the local register *
459  * address space of PI0 on the node specified by the NODE field. If *
460  * PI_ID==1, then the II sends the interrupt request to address *
461  * offset 0x01A0_0090 within the local register address space of PI1 *
462  * on the node specified by the NODE field. *
463  * *
464  ************************************************************************/
465 
466 typedef union ii_iidsr_u {
468  struct {
480  } ii_iidsr_fld_s;
481 } ii_iidsr_u_t;
482 
483 /************************************************************************
484  * *
485  * There are two instances of this register. This register is used *
486  * for matching up the incoming responses from the graphics widget to *
487  * the processor that initiated the graphics operation. The *
488  * write-responses are converted to graphics credits and returned to *
489  * the processor so that the processor interface can manage the flow *
490  * control. *
491  * *
492  ************************************************************************/
493 
494 typedef union ii_igfx0_u {
496  struct {
502  } ii_igfx0_fld_s;
503 } ii_igfx0_u_t;
504 
505 /************************************************************************
506  * *
507  * There are two instances of this register. This register is used *
508  * for matching up the incoming responses from the graphics widget to *
509  * the processor that initiated the graphics operation. The *
510  * write-responses are converted to graphics credits and returned to *
511  * the processor so that the processor interface can manage the flow *
512  * control. *
513  * *
514  ************************************************************************/
515 
516 typedef union ii_igfx1_u {
518  struct {
524  } ii_igfx1_fld_s;
525 } ii_igfx1_u_t;
526 
527 /************************************************************************
528  * *
529  * There are two instances of this registers. These registers are *
530  * used as scratch registers for software use. *
531  * *
532  ************************************************************************/
533 
534 typedef union ii_iscr0_u {
536  struct {
538  } ii_iscr0_fld_s;
539 } ii_iscr0_u_t;
540 
541 /************************************************************************
542  * *
543  * There are two instances of this registers. These registers are *
544  * used as scratch registers for software use. *
545  * *
546  ************************************************************************/
547 
548 typedef union ii_iscr1_u {
550  struct {
552  } ii_iscr1_fld_s;
553 } ii_iscr1_u_t;
554 
555 /************************************************************************
556  * *
557  * Description: There are seven instances of translation table entry *
558  * registers. Each register maps a Shub Big Window to a 48-bit *
559  * address on Crosstalk. *
560  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
561  * number) are used to select one of these 7 registers. The Widget *
562  * number field is then derived from the W_NUM field for synthesizing *
563  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
564  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
565  * are padded with zeros. Although the maximum Crosstalk space *
566  * addressable by the SHub is thus the lower 16 GBytes per widget *
567  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
568  * space can be accessed. *
569  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
570  * Window number) are used to select one of these 7 registers. The *
571  * Widget number field is then derived from the W_NUM field for *
572  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
573  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
574  * field is used as Crosstalk[47], and remainder of the Crosstalk *
575  * address bits (Crosstalk[46:34]) are always zero. While the maximum *
576  * Crosstalk space addressable by the Shub is thus the lower *
577  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
578  * of this space can be accessed. *
579  * *
580  ************************************************************************/
581 
582 typedef union ii_itte1_u {
584  struct {
590  } ii_itte1_fld_s;
591 } ii_itte1_u_t;
592 
593 /************************************************************************
594  * *
595  * Description: There are seven instances of translation table entry *
596  * registers. Each register maps a Shub Big Window to a 48-bit *
597  * address on Crosstalk. *
598  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
599  * number) are used to select one of these 7 registers. The Widget *
600  * number field is then derived from the W_NUM field for synthesizing *
601  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
602  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
603  * are padded with zeros. Although the maximum Crosstalk space *
604  * addressable by the Shub is thus the lower 16 GBytes per widget *
605  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
606  * space can be accessed. *
607  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
608  * Window number) are used to select one of these 7 registers. The *
609  * Widget number field is then derived from the W_NUM field for *
610  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
611  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
612  * field is used as Crosstalk[47], and remainder of the Crosstalk *
613  * address bits (Crosstalk[46:34]) are always zero. While the maximum *
614  * Crosstalk space addressable by the Shub is thus the lower *
615  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
616  * of this space can be accessed. *
617  * *
618  ************************************************************************/
619 
620 typedef union ii_itte2_u {
622  struct {
628  } ii_itte2_fld_s;
629 } ii_itte2_u_t;
630 
631 /************************************************************************
632  * *
633  * Description: There are seven instances of translation table entry *
634  * registers. Each register maps a Shub Big Window to a 48-bit *
635  * address on Crosstalk. *
636  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
637  * number) are used to select one of these 7 registers. The Widget *
638  * number field is then derived from the W_NUM field for synthesizing *
639  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
640  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
641  * are padded with zeros. Although the maximum Crosstalk space *
642  * addressable by the Shub is thus the lower 16 GBytes per widget *
643  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
644  * space can be accessed. *
645  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
646  * Window number) are used to select one of these 7 registers. The *
647  * Widget number field is then derived from the W_NUM field for *
648  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
649  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
650  * field is used as Crosstalk[47], and remainder of the Crosstalk *
651  * address bits (Crosstalk[46:34]) are always zero. While the maximum *
652  * Crosstalk space addressable by the SHub is thus the lower *
653  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
654  * of this space can be accessed. *
655  * *
656  ************************************************************************/
657 
658 typedef union ii_itte3_u {
660  struct {
666  } ii_itte3_fld_s;
667 } ii_itte3_u_t;
668 
669 /************************************************************************
670  * *
671  * Description: There are seven instances of translation table entry *
672  * registers. Each register maps a SHub Big Window to a 48-bit *
673  * address on Crosstalk. *
674  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
675  * number) are used to select one of these 7 registers. The Widget *
676  * number field is then derived from the W_NUM field for synthesizing *
677  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
678  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
679  * are padded with zeros. Although the maximum Crosstalk space *
680  * addressable by the SHub is thus the lower 16 GBytes per widget *
681  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
682  * space can be accessed. *
683  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
684  * Window number) are used to select one of these 7 registers. The *
685  * Widget number field is then derived from the W_NUM field for *
686  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
687  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
688  * field is used as Crosstalk[47], and remainder of the Crosstalk *
689  * address bits (Crosstalk[46:34]) are always zero. While the maximum *
690  * Crosstalk space addressable by the SHub is thus the lower *
691  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
692  * of this space can be accessed. *
693  * *
694  ************************************************************************/
695 
696 typedef union ii_itte4_u {
698  struct {
704  } ii_itte4_fld_s;
705 } ii_itte4_u_t;
706 
707 /************************************************************************
708  * *
709  * Description: There are seven instances of translation table entry *
710  * registers. Each register maps a SHub Big Window to a 48-bit *
711  * address on Crosstalk. *
712  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
713  * number) are used to select one of these 7 registers. The Widget *
714  * number field is then derived from the W_NUM field for synthesizing *
715  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
716  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
717  * are padded with zeros. Although the maximum Crosstalk space *
718  * addressable by the Shub is thus the lower 16 GBytes per widget *
719  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
720  * space can be accessed. *
721  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
722  * Window number) are used to select one of these 7 registers. The *
723  * Widget number field is then derived from the W_NUM field for *
724  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
725  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
726  * field is used as Crosstalk[47], and remainder of the Crosstalk *
727  * address bits (Crosstalk[46:34]) are always zero. While the maximum *
728  * Crosstalk space addressable by the Shub is thus the lower *
729  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
730  * of this space can be accessed. *
731  * *
732  ************************************************************************/
733 
734 typedef union ii_itte5_u {
736  struct {
742  } ii_itte5_fld_s;
743 } ii_itte5_u_t;
744 
745 /************************************************************************
746  * *
747  * Description: There are seven instances of translation table entry *
748  * registers. Each register maps a Shub Big Window to a 48-bit *
749  * address on Crosstalk. *
750  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
751  * number) are used to select one of these 7 registers. The Widget *
752  * number field is then derived from the W_NUM field for synthesizing *
753  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
754  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
755  * are padded with zeros. Although the maximum Crosstalk space *
756  * addressable by the Shub is thus the lower 16 GBytes per widget *
757  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
758  * space can be accessed. *
759  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
760  * Window number) are used to select one of these 7 registers. The *
761  * Widget number field is then derived from the W_NUM field for *
762  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
763  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
764  * field is used as Crosstalk[47], and remainder of the Crosstalk *
765  * address bits (Crosstalk[46:34]) are always zero. While the maximum *
766  * Crosstalk space addressable by the Shub is thus the lower *
767  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
768  * of this space can be accessed. *
769  * *
770  ************************************************************************/
771 
772 typedef union ii_itte6_u {
774  struct {
780  } ii_itte6_fld_s;
781 } ii_itte6_u_t;
782 
783 /************************************************************************
784  * *
785  * Description: There are seven instances of translation table entry *
786  * registers. Each register maps a Shub Big Window to a 48-bit *
787  * address on Crosstalk. *
788  * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window *
789  * number) are used to select one of these 7 registers. The Widget *
790  * number field is then derived from the W_NUM field for synthesizing *
791  * a Crosstalk packet. The 5 bits of OFFSET are concatenated with *
792  * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34] *
793  * are padded with zeros. Although the maximum Crosstalk space *
794  * addressable by the Shub is thus the lower 16 GBytes per widget *
795  * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this *
796  * space can be accessed. *
797  * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big *
798  * Window number) are used to select one of these 7 registers. The *
799  * Widget number field is then derived from the W_NUM field for *
800  * synthesizing a Crosstalk packet. The 5 bits of OFFSET are *
801  * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP *
802  * field is used as Crosstalk[47], and remainder of the Crosstalk *
803  * address bits (Crosstalk[46:34]) are always zero. While the maximum *
804  * Crosstalk space addressable by the SHub is thus the lower *
805  * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB> *
806  * of this space can be accessed. *
807  * *
808  ************************************************************************/
809 
810 typedef union ii_itte7_u {
812  struct {
818  } ii_itte7_fld_s;
819 } ii_itte7_u_t;
820 
821 /************************************************************************
822  * *
823  * Description: There are 9 instances of this register, one per *
824  * actual widget in this implementation of SHub and Crossbow. *
825  * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
826  * refers to Crossbow's internal space. *
827  * This register contains the state elements per widget that are *
828  * necessary to manage the PIO flow control on Crosstalk and on the *
829  * Router Network. See the PIO Flow Control chapter for a complete *
830  * description of this register *
831  * The SPUR_WR bit requires some explanation. When this register is *
832  * written, the new value of the C field is captured in an internal *
833  * register so the hardware can remember what the programmer wrote *
834  * into the credit counter. The SPUR_WR bit sets whenever the C field *
835  * increments above this stored value, which indicates that there *
836  * have been more responses received than requests sent. The SPUR_WR *
837  * bit cannot be cleared until a value is written to the IPRBx *
838  * register; the write will correct the C field and capture its new *
839  * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
840  * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
841  * . *
842  * *
843  ************************************************************************/
844 
845 typedef union ii_iprb0_u {
847  struct {
848  u64 i_c:8;
849  u64 i_na:14;
851  u64 i_nb:14;
853  u64 i_m:2;
854  u64 i_f:1;
862  } ii_iprb0_fld_s;
863 } ii_iprb0_u_t;
864 
865 /************************************************************************
866  * *
867  * Description: There are 9 instances of this register, one per *
868  * actual widget in this implementation of SHub and Crossbow. *
869  * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
870  * refers to Crossbow's internal space. *
871  * This register contains the state elements per widget that are *
872  * necessary to manage the PIO flow control on Crosstalk and on the *
873  * Router Network. See the PIO Flow Control chapter for a complete *
874  * description of this register *
875  * The SPUR_WR bit requires some explanation. When this register is *
876  * written, the new value of the C field is captured in an internal *
877  * register so the hardware can remember what the programmer wrote *
878  * into the credit counter. The SPUR_WR bit sets whenever the C field *
879  * increments above this stored value, which indicates that there *
880  * have been more responses received than requests sent. The SPUR_WR *
881  * bit cannot be cleared until a value is written to the IPRBx *
882  * register; the write will correct the C field and capture its new *
883  * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
884  * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
885  * . *
886  * *
887  ************************************************************************/
888 
889 typedef union ii_iprb8_u {
891  struct {
892  u64 i_c:8;
893  u64 i_na:14;
895  u64 i_nb:14;
897  u64 i_m:2;
898  u64 i_f:1;
906  } ii_iprb8_fld_s;
907 } ii_iprb8_u_t;
908 
909 /************************************************************************
910  * *
911  * Description: There are 9 instances of this register, one per *
912  * actual widget in this implementation of SHub and Crossbow. *
913  * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
914  * refers to Crossbow's internal space. *
915  * This register contains the state elements per widget that are *
916  * necessary to manage the PIO flow control on Crosstalk and on the *
917  * Router Network. See the PIO Flow Control chapter for a complete *
918  * description of this register *
919  * The SPUR_WR bit requires some explanation. When this register is *
920  * written, the new value of the C field is captured in an internal *
921  * register so the hardware can remember what the programmer wrote *
922  * into the credit counter. The SPUR_WR bit sets whenever the C field *
923  * increments above this stored value, which indicates that there *
924  * have been more responses received than requests sent. The SPUR_WR *
925  * bit cannot be cleared until a value is written to the IPRBx *
926  * register; the write will correct the C field and capture its new *
927  * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
928  * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
929  * . *
930  * *
931  ************************************************************************/
932 
933 typedef union ii_iprb9_u {
935  struct {
936  u64 i_c:8;
937  u64 i_na:14;
939  u64 i_nb:14;
941  u64 i_m:2;
942  u64 i_f:1;
950  } ii_iprb9_fld_s;
951 } ii_iprb9_u_t;
952 
953 /************************************************************************
954  * *
955  * Description: There are 9 instances of this register, one per *
956  * actual widget in this implementation of SHub and Crossbow. *
957  * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
958  * refers to Crossbow's internal space. *
959  * This register contains the state elements per widget that are *
960  * necessary to manage the PIO flow control on Crosstalk and on the *
961  * Router Network. See the PIO Flow Control chapter for a complete *
962  * description of this register *
963  * The SPUR_WR bit requires some explanation. When this register is *
964  * written, the new value of the C field is captured in an internal *
965  * register so the hardware can remember what the programmer wrote *
966  * into the credit counter. The SPUR_WR bit sets whenever the C field *
967  * increments above this stored value, which indicates that there *
968  * have been more responses received than requests sent. The SPUR_WR *
969  * bit cannot be cleared until a value is written to the IPRBx *
970  * register; the write will correct the C field and capture its new *
971  * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
972  * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
973  * *
974  * *
975  ************************************************************************/
976 
977 typedef union ii_iprba_u {
979  struct {
980  u64 i_c:8;
981  u64 i_na:14;
983  u64 i_nb:14;
985  u64 i_m:2;
986  u64 i_f:1;
994  } ii_iprba_fld_s;
995 } ii_iprba_u_t;
996 
997 /************************************************************************
998  * *
999  * Description: There are 9 instances of this register, one per *
1000  * actual widget in this implementation of SHub and Crossbow. *
1001  * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
1002  * refers to Crossbow's internal space. *
1003  * This register contains the state elements per widget that are *
1004  * necessary to manage the PIO flow control on Crosstalk and on the *
1005  * Router Network. See the PIO Flow Control chapter for a complete *
1006  * description of this register *
1007  * The SPUR_WR bit requires some explanation. When this register is *
1008  * written, the new value of the C field is captured in an internal *
1009  * register so the hardware can remember what the programmer wrote *
1010  * into the credit counter. The SPUR_WR bit sets whenever the C field *
1011  * increments above this stored value, which indicates that there *
1012  * have been more responses received than requests sent. The SPUR_WR *
1013  * bit cannot be cleared until a value is written to the IPRBx *
1014  * register; the write will correct the C field and capture its new *
1015  * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
1016  * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
1017  * . *
1018  * *
1019  ************************************************************************/
1020 
1021 typedef union ii_iprbb_u {
1023  struct {
1025  u64 i_na:14;
1027  u64 i_nb:14;
1038  } ii_iprbb_fld_s;
1039 } ii_iprbb_u_t;
1040 
1041 /************************************************************************
1042  * *
1043  * Description: There are 9 instances of this register, one per *
1044  * actual widget in this implementation of SHub and Crossbow. *
1045  * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
1046  * refers to Crossbow's internal space. *
1047  * This register contains the state elements per widget that are *
1048  * necessary to manage the PIO flow control on Crosstalk and on the *
1049  * Router Network. See the PIO Flow Control chapter for a complete *
1050  * description of this register *
1051  * The SPUR_WR bit requires some explanation. When this register is *
1052  * written, the new value of the C field is captured in an internal *
1053  * register so the hardware can remember what the programmer wrote *
1054  * into the credit counter. The SPUR_WR bit sets whenever the C field *
1055  * increments above this stored value, which indicates that there *
1056  * have been more responses received than requests sent. The SPUR_WR *
1057  * bit cannot be cleared until a value is written to the IPRBx *
1058  * register; the write will correct the C field and capture its new *
1059  * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
1060  * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
1061  * . *
1062  * *
1063  ************************************************************************/
1064 
1065 typedef union ii_iprbc_u {
1067  struct {
1069  u64 i_na:14;
1071  u64 i_nb:14;
1082  } ii_iprbc_fld_s;
1083 } ii_iprbc_u_t;
1084 
1085 /************************************************************************
1086  * *
1087  * Description: There are 9 instances of this register, one per *
1088  * actual widget in this implementation of SHub and Crossbow. *
1089  * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
1090  * refers to Crossbow's internal space. *
1091  * This register contains the state elements per widget that are *
1092  * necessary to manage the PIO flow control on Crosstalk and on the *
1093  * Router Network. See the PIO Flow Control chapter for a complete *
1094  * description of this register *
1095  * The SPUR_WR bit requires some explanation. When this register is *
1096  * written, the new value of the C field is captured in an internal *
1097  * register so the hardware can remember what the programmer wrote *
1098  * into the credit counter. The SPUR_WR bit sets whenever the C field *
1099  * increments above this stored value, which indicates that there *
1100  * have been more responses received than requests sent. The SPUR_WR *
1101  * bit cannot be cleared until a value is written to the IPRBx *
1102  * register; the write will correct the C field and capture its new *
1103  * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
1104  * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
1105  * . *
1106  * *
1107  ************************************************************************/
1108 
1109 typedef union ii_iprbd_u {
1111  struct {
1113  u64 i_na:14;
1115  u64 i_nb:14;
1126  } ii_iprbd_fld_s;
1127 } ii_iprbd_u_t;
1128 
1129 /************************************************************************
1130  * *
1131  * Description: There are 9 instances of this register, one per *
1132  * actual widget in this implementation of SHub and Crossbow. *
1133  * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
1134  * refers to Crossbow's internal space. *
1135  * This register contains the state elements per widget that are *
1136  * necessary to manage the PIO flow control on Crosstalk and on the *
1137  * Router Network. See the PIO Flow Control chapter for a complete *
1138  * description of this register *
1139  * The SPUR_WR bit requires some explanation. When this register is *
1140  * written, the new value of the C field is captured in an internal *
1141  * register so the hardware can remember what the programmer wrote *
1142  * into the credit counter. The SPUR_WR bit sets whenever the C field *
1143  * increments above this stored value, which indicates that there *
1144  * have been more responses received than requests sent. The SPUR_WR *
1145  * bit cannot be cleared until a value is written to the IPRBx *
1146  * register; the write will correct the C field and capture its new *
1147  * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
1148  * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
1149  * . *
1150  * *
1151  ************************************************************************/
1152 
1153 typedef union ii_iprbe_u {
1155  struct {
1157  u64 i_na:14;
1159  u64 i_nb:14;
1170  } ii_iprbe_fld_s;
1171 } ii_iprbe_u_t;
1172 
1173 /************************************************************************
1174  * *
1175  * Description: There are 9 instances of this register, one per *
1176  * actual widget in this implementation of Shub and Crossbow. *
1177  * Note: Crossbow only has ports for Widgets 8 through F, widget 0 *
1178  * refers to Crossbow's internal space. *
1179  * This register contains the state elements per widget that are *
1180  * necessary to manage the PIO flow control on Crosstalk and on the *
1181  * Router Network. See the PIO Flow Control chapter for a complete *
1182  * description of this register *
1183  * The SPUR_WR bit requires some explanation. When this register is *
1184  * written, the new value of the C field is captured in an internal *
1185  * register so the hardware can remember what the programmer wrote *
1186  * into the credit counter. The SPUR_WR bit sets whenever the C field *
1187  * increments above this stored value, which indicates that there *
1188  * have been more responses received than requests sent. The SPUR_WR *
1189  * bit cannot be cleared until a value is written to the IPRBx *
1190  * register; the write will correct the C field and capture its new *
1191  * value in the internal register. Even if IECLR[E_PRB_x] is set, the *
1192  * SPUR_WR bit will persist if IPRBx hasn't yet been written. *
1193  * . *
1194  * *
1195  ************************************************************************/
1196 
1197 typedef union ii_iprbf_u {
1199  struct {
1201  u64 i_na:14;
1203  u64 i_nb:14;
1214  } ii_iprbe_fld_s;
1215 } ii_iprbf_u_t;
1216 
1217 /************************************************************************
1218  * *
1219  * This register specifies the timeout value to use for monitoring *
1220  * Crosstalk credits which are used outbound to Crosstalk. An *
1221  * internal counter called the Crosstalk Credit Timeout Counter *
1222  * increments every 128 II clocks. The counter starts counting *
1223  * anytime the credit count drops below a threshold, and resets to *
1224  * zero (stops counting) anytime the credit count is at or above the *
1225  * threshold. The threshold is 1 credit in direct connect mode and 2 *
1226  * in Crossbow connect mode. When the internal Crosstalk Credit *
1227  * Timeout Counter reaches the value programmed in this register, a *
1228  * Crosstalk Credit Timeout has occurred. The internal counter is not *
1229  * readable from software, and stops counting at its maximum value, *
1230  * so it cannot cause more than one interrupt. *
1231  * *
1232  ************************************************************************/
1233 
1234 typedef union ii_ixcc_u {
1236  struct {
1239  } ii_ixcc_fld_s;
1240 } ii_ixcc_u_t;
1241 
1242 /************************************************************************
1243  * *
1244  * Description: This register qualifies all the PIO and DMA *
1245  * operations launched from widget 0 towards the SHub. In *
1246  * addition, it also qualifies accesses by the BTE streams. *
1247  * The bits in each field of this register are cleared by the SHub *
1248  * upon detection of an error which requires widget 0 or the BTE *
1249  * streams to be terminated. Whether or not widget x has access *
1250  * rights to this SHub is determined by an AND of the device *
1251  * enable bit in the appropriate field of this register and bit 0 in *
1252  * the Wx_IAC field. The bits in this field are set by writing a 1 to *
1253  * them. Incoming replies from Crosstalk are not subject to this *
1254  * access control mechanism. *
1255  * *
1256  ************************************************************************/
1257 
1258 typedef union ii_imem_u {
1260  struct {
1269  } ii_imem_fld_s;
1270 } ii_imem_u_t;
1271 
1272 /************************************************************************
1273  * *
1274  * Description: This register specifies the timeout value to use for *
1275  * monitoring Crosstalk tail flits coming into the Shub in the *
1276  * TAIL_TO field. An internal counter associated with this register *
1277  * is incremented every 128 II internal clocks (7 bits). The counter *
1278  * starts counting anytime a header micropacket is received and stops *
1279  * counting (and resets to zero) any time a micropacket with a Tail *
1280  * bit is received. Once the counter reaches the threshold value *
1281  * programmed in this register, it generates an interrupt to the *
1282  * processor that is programmed into the IIDSR. The counter saturates *
1283  * (does not roll over) at its maximum value, so it cannot cause *
1284  * another interrupt until after it is cleared. *
1285  * The register also contains the Read Response Timeout values. The *
1286  * Prescalar is 23 bits, and counts II clocks. An internal counter *
1287  * increments on every II clock and when it reaches the value in the *
1288  * Prescalar field, all IPRTE registers with their valid bits set *
1289  * have their Read Response timers bumped. Whenever any of them match *
1290  * the value in the RRSP_TO field, a Read Response Timeout has *
1291  * occurred, and error handling occurs as described in the Error *
1292  * Handling section of this document. *
1293  * *
1294  ************************************************************************/
1295 
1296 typedef union ii_ixtt_u {
1298  struct {
1304  } ii_ixtt_fld_s;
1305 } ii_ixtt_u_t;
1306 
1307 /************************************************************************
1308  * *
1309  * Writing a 1 to the fields of this register clears the appropriate *
1310  * error bits in other areas of SHub. Note that when the *
1311  * E_PRB_x bits are used to clear error bits in PRB registers, *
1312  * SPUR_RD and SPUR_WR may persist, because they require additional *
1313  * action to clear them. See the IPRBx and IXSS Register *
1314  * specifications. *
1315  * *
1316  ************************************************************************/
1317 
1318 typedef union ii_ieclr_u {
1320  struct {
1350  } ii_ieclr_fld_s;
1351 } ii_ieclr_u_t;
1352 
1353 /************************************************************************
1354  * *
1355  * This register controls both BTEs. SOFT_RESET is intended for *
1356  * recovery after an error. COUNT controls the total number of CRBs *
1357  * that both BTEs (combined) can use, which affects total BTE *
1358  * bandwidth. *
1359  * *
1360  ************************************************************************/
1361 
1362 typedef union ii_ibcr_u {
1364  struct {
1369  } ii_ibcr_fld_s;
1370 } ii_ibcr_u_t;
1371 
1372 /************************************************************************
1373  * *
1374  * This register contains the header of a spurious read response *
1375  * received from Crosstalk. A spurious read response is defined as a *
1376  * read response received by II from a widget for which (1) the SIDN *
1377  * has a value between 1 and 7, inclusive (II never sends requests to *
1378  * these widgets (2) there is no valid IPRTE register which *
1379  * corresponds to the TNUM, or (3) the widget indicated in SIDN is *
1380  * not the same as the widget recorded in the IPRTE register *
1381  * referenced by the TNUM. If this condition is true, and if the *
1382  * IXSS[VALID] bit is clear, then the header of the spurious read *
1383  * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The *
1384  * errant header is thereby captured, and no further spurious read *
1385  * respones are captured until IXSS[VALID] is cleared by setting the *
1386  * appropriate bit in IECLR. Every time a spurious read response is *
1387  * detected, the SPUR_RD bit of the PRB corresponding to the incoming *
1388  * message's SIDN field is set. This always happens, regarless of *
1389  * whether a header is captured. The programmer should check *
1390  * IXSM[SIDN] to determine which widget sent the spurious response, *
1391  * because there may be more than one SPUR_RD bit set in the PRB *
1392  * registers. The widget indicated by IXSM[SIDN] was the first *
1393  * spurious read response to be received since the last time *
1394  * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB *
1395  * will be set. Any SPUR_RD bits in any other PRB registers indicate *
1396  * spurious messages from other widets which were detected after the *
1397  * header was captured.. *
1398  * *
1399  ************************************************************************/
1400 
1401 typedef union ii_ixsm_u {
1403  struct {
1418  } ii_ixsm_fld_s;
1419 } ii_ixsm_u_t;
1420 
1421 /************************************************************************
1422  * *
1423  * This register contains the sideband bits of a spurious read *
1424  * response received from Crosstalk. *
1425  * *
1426  ************************************************************************/
1427 
1428 typedef union ii_ixss_u {
1430  struct {
1434  } ii_ixss_fld_s;
1435 } ii_ixss_u_t;
1436 
1437 /************************************************************************
1438  * *
1439  * This register enables software to access the II LLP's test port. *
1440  * Refer to the LLP 2.5 documentation for an explanation of the test *
1441  * port. Software can write to this register to program the values *
1442  * for the control fields (TestErrCapture, TestClear, TestFlit, *
1443  * TestMask and TestSeed). Similarly, software can read from this *
1444  * register to obtain the values of the test port's status outputs *
1445  * (TestCBerr, TestValid and TestData). *
1446  * *
1447  ************************************************************************/
1448 
1449 typedef union ii_ilct_u {
1451  struct {
1461  } ii_ilct_fld_s;
1462 } ii_ilct_u_t;
1463 
1464 /************************************************************************
1465  * *
1466  * If the II detects an illegal incoming Duplonet packet (request or *
1467  * reply) when VALID==0 in the IIEPH1 register, then it saves the *
1468  * contents of the packet's header flit in the IIEPH1 and IIEPH2 *
1469  * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit, *
1470  * and assigns a value to the ERR_TYPE field which indicates the *
1471  * specific nature of the error. The II recognizes four different *
1472  * types of errors: short request packets (ERR_TYPE==2), short reply *
1473  * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long *
1474  * reply packets (ERR_TYPE==5). The encodings for these types of *
1475  * errors were chosen to be consistent with the same types of errors *
1476  * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in *
1477  * the LB unit). If the II detects an illegal incoming Duplonet *
1478  * packet when VALID==1 in the IIEPH1 register, then it merely sets *
1479  * the OVERRUN bit to indicate that a subsequent error has happened, *
1480  * and does nothing further. *
1481  * *
1482  ************************************************************************/
1483 
1484 typedef union ii_iieph1_u {
1486  struct {
1499  } ii_iieph1_fld_s;
1500 } ii_iieph1_u_t;
1501 
1502 /************************************************************************
1503  * *
1504  * This register holds the Address field from the header flit of an *
1505  * incoming erroneous Duplonet packet, along with the tail bit which *
1506  * accompanied this header flit. This register is essentially an *
1507  * extension of IIEPH1. Two registers were necessary because the 64 *
1508  * bits available in only a single register were insufficient to *
1509  * capture the entire header flit of an erroneous packet. *
1510  * *
1511  ************************************************************************/
1512 
1513 typedef union ii_iieph2_u {
1515  struct {
1521  } ii_iieph2_fld_s;
1522 } ii_iieph2_u_t;
1523 
1524 /******************************/
1525 
1526 /************************************************************************
1527  * *
1528  * This register's value is a bit vector that guards access from SXBs *
1529  * to local registers within the II as well as to external Crosstalk *
1530  * widgets *
1531  * *
1532  ************************************************************************/
1533 
1534 typedef union ii_islapr_u {
1536  struct {
1538  } ii_islapr_fld_s;
1539 } ii_islapr_u_t;
1540 
1541 /************************************************************************
1542  * *
1543  * A write to this register of the 56-bit value "Pup+Bun" will cause *
1544  * the bit in the ISLAPR register corresponding to the region of the *
1545  * requestor to be set (access allowed). (
1546  * *
1547  ************************************************************************/
1548 
1549 typedef union ii_islapo_u {
1551  struct {
1554  } ii_islapo_fld_s;
1555 } ii_islapo_u_t;
1556 
1557 /************************************************************************
1558  * *
1559  * Determines how long the wrapper will wait aftr an interrupt is *
1560  * initially issued from the II before it times out the outstanding *
1561  * interrupt and drops it from the interrupt queue. *
1562  * *
1563  ************************************************************************/
1564 
1565 typedef union ii_iwi_u {
1567  struct {
1574  } ii_iwi_fld_s;
1575 } ii_iwi_u_t;
1576 
1577 /************************************************************************
1578  * *
1579  * Log errors which have occurred in the II wrapper. The errors are *
1580  * cleared by writing to the IECLR register. *
1581  * *
1582  ************************************************************************/
1583 
1584 typedef union ii_iwel_u {
1586  struct {
1605  } ii_iwel_fld_s;
1606 } ii_iwel_u_t;
1607 
1608 /************************************************************************
1609  * *
1610  * Controls the II wrapper. *
1611  * *
1612  ************************************************************************/
1613 
1614 typedef union ii_iwc_u {
1616  struct {
1631  } ii_iwc_fld_s;
1632 } ii_iwc_u_t;
1633 
1634 /************************************************************************
1635  * *
1636  * Status in the II wrapper. *
1637  * *
1638  ************************************************************************/
1639 
1640 typedef union ii_iws_u {
1642  struct {
1647  } ii_iws_fld_s;
1648 } ii_iws_u_t;
1649 
1650 /************************************************************************
1651  * *
1652  * Masks errors in the IWEL register. *
1653  * *
1654  ************************************************************************/
1655 
1656 typedef union ii_iweim_u {
1658  struct {
1677  } ii_iweim_fld_s;
1678 } ii_iweim_u_t;
1679 
1680 /************************************************************************
1681  * *
1682  * A write to this register causes a particular field in the *
1683  * corresponding widget's PRB entry to be adjusted up or down by 1. *
1684  * This counter should be used when recovering from error and reset *
1685  * conditions. Note that software would be capable of causing *
1686  * inadvertent overflow or underflow of these counters. *
1687  * *
1688  ************************************************************************/
1689 
1690 typedef union ii_ipca_u {
1692  struct {
1698  } ii_ipca_fld_s;
1699 } ii_ipca_u_t;
1700 
1701 /************************************************************************
1702  * *
1703  * There are 8 instances of this register. This register contains *
1704  * the information that the II has to remember once it has launched a *
1705  * PIO Read operation. The contents are used to form the correct *
1706  * Router Network packet and direct the Crosstalk reply to the *
1707  * appropriate processor. *
1708  * *
1709  ************************************************************************/
1710 
1711 typedef union ii_iprte0a_u {
1713  struct {
1718  } ii_iprte0a_fld_s;
1719 } ii_iprte0a_u_t;
1720 
1721 /************************************************************************
1722  * *
1723  * There are 8 instances of this register. This register contains *
1724  * the information that the II has to remember once it has launched a *
1725  * PIO Read operation. The contents are used to form the correct *
1726  * Router Network packet and direct the Crosstalk reply to the *
1727  * appropriate processor. *
1728  * *
1729  ************************************************************************/
1730 
1731 typedef union ii_iprte1a_u {
1733  struct {
1738  } ii_iprte1a_fld_s;
1739 } ii_iprte1a_u_t;
1740 
1741 /************************************************************************
1742  * *
1743  * There are 8 instances of this register. This register contains *
1744  * the information that the II has to remember once it has launched a *
1745  * PIO Read operation. The contents are used to form the correct *
1746  * Router Network packet and direct the Crosstalk reply to the *
1747  * appropriate processor. *
1748  * *
1749  ************************************************************************/
1750 
1751 typedef union ii_iprte2a_u {
1753  struct {
1758  } ii_iprte2a_fld_s;
1759 } ii_iprte2a_u_t;
1760 
1761 /************************************************************************
1762  * *
1763  * There are 8 instances of this register. This register contains *
1764  * the information that the II has to remember once it has launched a *
1765  * PIO Read operation. The contents are used to form the correct *
1766  * Router Network packet and direct the Crosstalk reply to the *
1767  * appropriate processor. *
1768  * *
1769  ************************************************************************/
1770 
1771 typedef union ii_iprte3a_u {
1773  struct {
1778  } ii_iprte3a_fld_s;
1779 } ii_iprte3a_u_t;
1780 
1781 /************************************************************************
1782  * *
1783  * There are 8 instances of this register. This register contains *
1784  * the information that the II has to remember once it has launched a *
1785  * PIO Read operation. The contents are used to form the correct *
1786  * Router Network packet and direct the Crosstalk reply to the *
1787  * appropriate processor. *
1788  * *
1789  ************************************************************************/
1790 
1791 typedef union ii_iprte4a_u {
1793  struct {
1798  } ii_iprte4a_fld_s;
1799 } ii_iprte4a_u_t;
1800 
1801 /************************************************************************
1802  * *
1803  * There are 8 instances of this register. This register contains *
1804  * the information that the II has to remember once it has launched a *
1805  * PIO Read operation. The contents are used to form the correct *
1806  * Router Network packet and direct the Crosstalk reply to the *
1807  * appropriate processor. *
1808  * *
1809  ************************************************************************/
1810 
1811 typedef union ii_iprte5a_u {
1813  struct {
1818  } ii_iprte5a_fld_s;
1819 } ii_iprte5a_u_t;
1820 
1821 /************************************************************************
1822  * *
1823  * There are 8 instances of this register. This register contains *
1824  * the information that the II has to remember once it has launched a *
1825  * PIO Read operation. The contents are used to form the correct *
1826  * Router Network packet and direct the Crosstalk reply to the *
1827  * appropriate processor. *
1828  * *
1829  ************************************************************************/
1830 
1831 typedef union ii_iprte6a_u {
1833  struct {
1838  } ii_iprte6a_fld_s;
1839 } ii_iprte6a_u_t;
1840 
1841 /************************************************************************
1842  * *
1843  * There are 8 instances of this register. This register contains *
1844  * the information that the II has to remember once it has launched a *
1845  * PIO Read operation. The contents are used to form the correct *
1846  * Router Network packet and direct the Crosstalk reply to the *
1847  * appropriate processor. *
1848  * *
1849  ************************************************************************/
1850 
1851 typedef union ii_iprte7a_u {
1853  struct {
1858  } ii_iprtea7_fld_s;
1859 } ii_iprte7a_u_t;
1860 
1861 /************************************************************************
1862  * *
1863  * There are 8 instances of this register. This register contains *
1864  * the information that the II has to remember once it has launched a *
1865  * PIO Read operation. The contents are used to form the correct *
1866  * Router Network packet and direct the Crosstalk reply to the *
1867  * appropriate processor. *
1868  * *
1869  ************************************************************************/
1870 
1871 typedef union ii_iprte0b_u {
1873  struct {
1878  } ii_iprte0b_fld_s;
1879 } ii_iprte0b_u_t;
1880 
1881 /************************************************************************
1882  * *
1883  * There are 8 instances of this register. This register contains *
1884  * the information that the II has to remember once it has launched a *
1885  * PIO Read operation. The contents are used to form the correct *
1886  * Router Network packet and direct the Crosstalk reply to the *
1887  * appropriate processor. *
1888  * *
1889  ************************************************************************/
1890 
1891 typedef union ii_iprte1b_u {
1893  struct {
1898  } ii_iprte1b_fld_s;
1899 } ii_iprte1b_u_t;
1900 
1901 /************************************************************************
1902  * *
1903  * There are 8 instances of this register. This register contains *
1904  * the information that the II has to remember once it has launched a *
1905  * PIO Read operation. The contents are used to form the correct *
1906  * Router Network packet and direct the Crosstalk reply to the *
1907  * appropriate processor. *
1908  * *
1909  ************************************************************************/
1910 
1911 typedef union ii_iprte2b_u {
1913  struct {
1918  } ii_iprte2b_fld_s;
1919 } ii_iprte2b_u_t;
1920 
1921 /************************************************************************
1922  * *
1923  * There are 8 instances of this register. This register contains *
1924  * the information that the II has to remember once it has launched a *
1925  * PIO Read operation. The contents are used to form the correct *
1926  * Router Network packet and direct the Crosstalk reply to the *
1927  * appropriate processor. *
1928  * *
1929  ************************************************************************/
1930 
1931 typedef union ii_iprte3b_u {
1933  struct {
1938  } ii_iprte3b_fld_s;
1939 } ii_iprte3b_u_t;
1940 
1941 /************************************************************************
1942  * *
1943  * There are 8 instances of this register. This register contains *
1944  * the information that the II has to remember once it has launched a *
1945  * PIO Read operation. The contents are used to form the correct *
1946  * Router Network packet and direct the Crosstalk reply to the *
1947  * appropriate processor. *
1948  * *
1949  ************************************************************************/
1950 
1951 typedef union ii_iprte4b_u {
1953  struct {
1958  } ii_iprte4b_fld_s;
1959 } ii_iprte4b_u_t;
1960 
1961 /************************************************************************
1962  * *
1963  * There are 8 instances of this register. This register contains *
1964  * the information that the II has to remember once it has launched a *
1965  * PIO Read operation. The contents are used to form the correct *
1966  * Router Network packet and direct the Crosstalk reply to the *
1967  * appropriate processor. *
1968  * *
1969  ************************************************************************/
1970 
1971 typedef union ii_iprte5b_u {
1973  struct {
1978  } ii_iprte5b_fld_s;
1979 } ii_iprte5b_u_t;
1980 
1981 /************************************************************************
1982  * *
1983  * There are 8 instances of this register. This register contains *
1984  * the information that the II has to remember once it has launched a *
1985  * PIO Read operation. The contents are used to form the correct *
1986  * Router Network packet and direct the Crosstalk reply to the *
1987  * appropriate processor. *
1988  * *
1989  ************************************************************************/
1990 
1991 typedef union ii_iprte6b_u {
1993  struct {
1998 
1999  } ii_iprte6b_fld_s;
2000 } ii_iprte6b_u_t;
2001 
2002 /************************************************************************
2003  * *
2004  * There are 8 instances of this register. This register contains *
2005  * the information that the II has to remember once it has launched a *
2006  * PIO Read operation. The contents are used to form the correct *
2007  * Router Network packet and direct the Crosstalk reply to the *
2008  * appropriate processor. *
2009  * *
2010  ************************************************************************/
2011 
2012 typedef union ii_iprte7b_u {
2014  struct {
2019  } ii_iprte7b_fld_s;
2020 } ii_iprte7b_u_t;
2021 
2022 /************************************************************************
2023  * *
2024  * Description: SHub II contains a feature which did not exist in *
2025  * the Hub which automatically cleans up after a Read Response *
2026  * timeout, including deallocation of the IPRTE and recovery of IBuf *
2027  * space. The inclusion of this register in SHub is for backward *
2028  * compatibility *
2029  * A write to this register causes an entry from the table of *
2030  * outstanding PIO Read Requests to be freed and returned to the *
2031  * stack of free entries. This register is used in handling the *
2032  * timeout errors that result in a PIO Reply never returning from *
2033  * Crosstalk. *
2034  * Note that this register does not affect the contents of the IPRTE *
2035  * registers. The Valid bits in those registers have to be *
2036  * specifically turned off by software. *
2037  * *
2038  ************************************************************************/
2039 
2040 typedef union ii_ipdr_u {
2042  struct {
2048  } ii_ipdr_fld_s;
2049 } ii_ipdr_u_t;
2050 
2051 /************************************************************************
2052  * *
2053  * A write to this register causes a CRB entry to be returned to the *
2054  * queue of free CRBs. The entry should have previously been cleared *
2055  * (mark bit) via backdoor access to the pertinent CRB entry. This *
2056  * register is used in the last step of handling the errors that are *
2057  * captured and marked in CRB entries. Briefly: 1) first error for *
2058  * DMA write from a particular device, and first error for a *
2059  * particular BTE stream, lead to a marked CRB entry, and processor *
2060  * interrupt, 2) software reads the error information captured in the *
2061  * CRB entry, and presumably takes some corrective action, 3) *
2062  * software clears the mark bit, and finally 4) software writes to *
2063  * the ICDR register to return the CRB entry to the list of free CRB *
2064  * entries. *
2065  * *
2066  ************************************************************************/
2067 
2068 typedef union ii_icdr_u {
2070  struct {
2074  } ii_icdr_fld_s;
2075 } ii_icdr_u_t;
2076 
2077 /************************************************************************
2078  * *
2079  * This register provides debug access to two FIFOs inside of II. *
2080  * Both IOQ_MAX* fields of this register contain the instantaneous *
2081  * depth (in units of the number of available entries) of the *
2082  * associated IOQ FIFO. A read of this register will return the *
2083  * number of free entries on each FIFO at the time of the read. So *
2084  * when a FIFO is idle, the associated field contains the maximum *
2085  * depth of the FIFO. This register is writable for debug reasons *
2086  * and is intended to be written with the maximum desired FIFO depth *
2087  * while the FIFO is idle. Software must assure that II is idle when *
2088  * this register is written. If there are any active entries in any *
2089  * of these FIFOs when this register is written, the results are *
2090  * undefined. *
2091  * *
2092  ************************************************************************/
2093 
2094 typedef union ii_ifdr_u {
2096  struct {
2102  } ii_ifdr_fld_s;
2103 } ii_ifdr_u_t;
2104 
2105 /************************************************************************
2106  * *
2107  * This register allows the II to become sluggish in removing *
2108  * messages from its inbound queue (IIQ). This will cause messages to *
2109  * back up in either virtual channel. Disabling the "molasses" mode *
2110  * subsequently allows the II to be tested under stress. In the *
2111  * sluggish ("Molasses") mode, the localized effects of congestion *
2112  * can be observed. *
2113  * *
2114  ************************************************************************/
2115 
2116 typedef union ii_iiap_u {
2118  struct {
2123  } ii_iiap_fld_s;
2124 } ii_iiap_u_t;
2125 
2126 /************************************************************************
2127  * *
2128  * This register allows several parameters of CRB operation to be *
2129  * set. Note that writing to this register can have catastrophic side *
2130  * effects, if the CRB is not quiescent, i.e. if the CRB is *
2131  * processing protocol messages when the write occurs. *
2132  * *
2133  ************************************************************************/
2134 
2135 typedef union ii_icmr_u {
2137  struct {
2152  } ii_icmr_fld_s;
2153 } ii_icmr_u_t;
2154 
2155 /************************************************************************
2156  * *
2157  * This register allows control of the table portion of the CRB *
2158  * logic via software. Control operations from this register have *
2159  * priority over all incoming Crosstalk or BTE requests. *
2160  * *
2161  ************************************************************************/
2162 
2163 typedef union ii_iccr_u {
2165  struct {
2171  } ii_iccr_fld_s;
2172 } ii_iccr_u_t;
2173 
2174 /************************************************************************
2175  * *
2176  * This register allows the maximum timeout value to be programmed. *
2177  * *
2178  ************************************************************************/
2179 
2180 typedef union ii_icto_u {
2182  struct {
2185  } ii_icto_fld_s;
2186 } ii_icto_u_t;
2187 
2188 /************************************************************************
2189  * *
2190  * This register allows the timeout prescalar to be programmed. An *
2191  * internal counter is associated with this register. When the *
2192  * internal counter reaches the value of the PRESCALE field, the *
2193  * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT] *
2194  * field). The internal counter resets to zero, and then continues *
2195  * counting. *
2196  * *
2197  ************************************************************************/
2198 
2199 typedef union ii_ictp_u {
2201  struct {
2204  } ii_ictp_fld_s;
2205 } ii_ictp_u_t;
2206 
2207 /************************************************************************
2208  * *
2209  * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
2210  * used for Crosstalk operations (both cacheline and partial *
2211  * operations) or BTE/IO. Because the CRB entries are very wide, five *
2212  * registers (_A to _E) are required to read and write each entry. *
2213  * The CRB Entry registers can be conceptualized as rows and columns *
2214  * (illustrated in the table above). Each row contains the 4 *
2215  * registers required for a single CRB Entry. The first doubleword *
2216  * (column) for each entry is labeled A, and the second doubleword *
2217  * (higher address) is labeled B, the third doubleword is labeled C, *
2218  * the fourth doubleword is labeled D and the fifth doubleword is *
2219  * labeled E. All CRB entries have their addresses on a quarter *
2220  * cacheline aligned boundary. *
2221  * Upon reset, only the following fields are initialized: valid *
2222  * (VLD), priority count, timeout, timeout valid, and context valid. *
2223  * All other bits should be cleared by software before use (after *
2224  * recovering any potential error state from before the reset). *
2225  * The following four tables summarize the format for the four *
2226  * registers that are used for each ICRB# Entry. *
2227  * *
2228  ************************************************************************/
2229 
2230 typedef union ii_icrb0_a_u {
2232  struct {
2239  } ii_icrb0_a_fld_s;
2240 } ii_icrb0_a_u_t;
2241 
2242 /************************************************************************
2243  * *
2244  * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
2245  * used for Crosstalk operations (both cacheline and partial *
2246  * operations) or BTE/IO. Because the CRB entries are very wide, five *
2247  * registers (_A to _E) are required to read and write each entry. *
2248  * *
2249  ************************************************************************/
2250 
2251 typedef union ii_icrb0_b_u {
2253  struct {
2276  } ii_icrb0_b_fld_s;
2277 } ii_icrb0_b_u_t;
2278 
2279 /************************************************************************
2280  * *
2281  * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
2282  * used for Crosstalk operations (both cacheline and partial *
2283  * operations) or BTE/IO. Because the CRB entries are very wide, five *
2284  * registers (_A to _E) are required to read and write each entry. *
2285  * *
2286  ************************************************************************/
2287 
2288 typedef union ii_icrb0_c_u {
2290  struct {
2300  } ii_icrb0_c_fld_s;
2301 } ii_icrb0_c_u_t;
2302 
2303 /************************************************************************
2304  * *
2305  * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
2306  * used for Crosstalk operations (both cacheline and partial *
2307  * operations) or BTE/IO. Because the CRB entries are very wide, five *
2308  * registers (_A to _E) are required to read and write each entry. *
2309  * *
2310  ************************************************************************/
2311 
2312 typedef union ii_icrb0_d_u {
2314  struct {
2321  } ii_icrb0_d_fld_s;
2322 } ii_icrb0_d_u_t;
2323 
2324 /************************************************************************
2325  * *
2326  * Description: There are 15 CRB Entries (ICRB0 to ICRBE) that are *
2327  * used for Crosstalk operations (both cacheline and partial *
2328  * operations) or BTE/IO. Because the CRB entries are very wide, five *
2329  * registers (_A to _E) are required to read and write each entry. *
2330  * *
2331  ************************************************************************/
2332 
2333 typedef union ii_icrb0_e_u {
2335  struct {
2342  } ii_icrb0_e_fld_s;
2343 } ii_icrb0_e_u_t;
2344 
2345 /************************************************************************
2346  * *
2347  * This register contains the lower 64 bits of the header of the *
2348  * spurious message captured by II. Valid when the SP_MSG bit in ICMR *
2349  * register is set. *
2350  * *
2351  ************************************************************************/
2352 
2353 typedef union ii_icsml_u {
2355  struct {
2360  } ii_icsml_fld_s;
2361 } ii_icsml_u_t;
2362 
2363 /************************************************************************
2364  * *
2365  * This register contains the middle 64 bits of the header of the *
2366  * spurious message captured by II. Valid when the SP_MSG bit in ICMR *
2367  * register is set. *
2368  * *
2369  ************************************************************************/
2370 
2371 typedef union ii_icsmm_u {
2373  struct {
2376  } ii_icsmm_fld_s;
2377 } ii_icsmm_u_t;
2378 
2379 /************************************************************************
2380  * *
2381  * This register contains the microscopic state, all the inputs to *
2382  * the protocol table, captured with the spurious message. Valid when *
2383  * the SP_MSG bit in the ICMR register is set. *
2384  * *
2385  ************************************************************************/
2386 
2387 typedef union ii_icsmh_u {
2389  struct {
2430  } ii_icsmh_fld_s;
2431 } ii_icsmh_u_t;
2432 
2433 /************************************************************************
2434  * *
2435  * The Shub DEBUG unit provides a 3-bit selection signal to the *
2436  * II core and a 3-bit selection signal to the fsbclk domain in the II *
2437  * wrapper. *
2438  * *
2439  ************************************************************************/
2440 
2441 typedef union ii_idbss_u {
2443  struct {
2450  } ii_idbss_fld_s;
2451 } ii_idbss_u_t;
2452 
2453 /************************************************************************
2454  * *
2455  * Description: This register is used to set up the length for a *
2456  * transfer and then to monitor the progress of that transfer. This *
2457  * register needs to be initialized before a transfer is started. A *
2458  * legitimate write to this register will set the Busy bit, clear the *
2459  * Error bit, and initialize the length to the value desired. *
2460  * While the transfer is in progress, hardware will decrement the *
2461  * length field with each successful block that is copied. Once the *
2462  * transfer completes, hardware will clear the Busy bit. The length *
2463  * field will also contain the number of cache lines left to be *
2464  * transferred. *
2465  * *
2466  ************************************************************************/
2467 
2468 typedef union ii_ibls0_u {
2470  struct {
2476  } ii_ibls0_fld_s;
2477 } ii_ibls0_u_t;
2478 
2479 /************************************************************************
2480  * *
2481  * This register should be loaded before a transfer is started. The *
2482  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
2483  * address as described in Section 1.3, Figure2 and Figure3. Since *
2484  * the bottom 7 bits of the address are always taken to be zero, BTE *
2485  * transfers are always cacheline-aligned. *
2486  * *
2487  ************************************************************************/
2488 
2489 typedef union ii_ibsa0_u {
2491  struct {
2495  } ii_ibsa0_fld_s;
2496 } ii_ibsa0_u_t;
2497 
2498 /************************************************************************
2499  * *
2500  * This register should be loaded before a transfer is started. The *
2501  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
2502  * address as described in Section 1.3, Figure2 and Figure3. Since *
2503  * the bottom 7 bits of the address are always taken to be zero, BTE *
2504  * transfers are always cacheline-aligned. *
2505  * *
2506  ************************************************************************/
2507 
2508 typedef union ii_ibda0_u {
2510  struct {
2514  } ii_ibda0_fld_s;
2515 } ii_ibda0_u_t;
2516 
2517 /************************************************************************
2518  * *
2519  * Writing to this register sets up the attributes of the transfer *
2520  * and initiates the transfer operation. Reading this register has *
2521  * the side effect of terminating any transfer in progress. Note: *
2522  * stopping a transfer midstream could have an adverse impact on the *
2523  * other BTE. If a BTE stream has to be stopped (due to error *
2524  * handling for example), both BTE streams should be stopped and *
2525  * their transfers discarded. *
2526  * *
2527  ************************************************************************/
2528 
2529 typedef union ii_ibct0_u {
2531  struct {
2538  } ii_ibct0_fld_s;
2539 } ii_ibct0_u_t;
2540 
2541 /************************************************************************
2542  * *
2543  * This register contains the address to which the WINV is sent. *
2544  * This address has to be cache line aligned. *
2545  * *
2546  ************************************************************************/
2547 
2548 typedef union ii_ibna0_u {
2550  struct {
2554  } ii_ibna0_fld_s;
2555 } ii_ibna0_u_t;
2556 
2557 /************************************************************************
2558  * *
2559  * This register contains the programmable level as well as the node *
2560  * ID and PI unit of the processor to which the interrupt will be *
2561  * sent. *
2562  * *
2563  ************************************************************************/
2564 
2565 typedef union ii_ibia0_u {
2567  struct {
2573  } ii_ibia0_fld_s;
2574 } ii_ibia0_u_t;
2575 
2576 /************************************************************************
2577  * *
2578  * Description: This register is used to set up the length for a *
2579  * transfer and then to monitor the progress of that transfer. This *
2580  * register needs to be initialized before a transfer is started. A *
2581  * legitimate write to this register will set the Busy bit, clear the *
2582  * Error bit, and initialize the length to the value desired. *
2583  * While the transfer is in progress, hardware will decrement the *
2584  * length field with each successful block that is copied. Once the *
2585  * transfer completes, hardware will clear the Busy bit. The length *
2586  * field will also contain the number of cache lines left to be *
2587  * transferred. *
2588  * *
2589  ************************************************************************/
2590 
2591 typedef union ii_ibls1_u {
2593  struct {
2599  } ii_ibls1_fld_s;
2600 } ii_ibls1_u_t;
2601 
2602 /************************************************************************
2603  * *
2604  * This register should be loaded before a transfer is started. The *
2605  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
2606  * address as described in Section 1.3, Figure2 and Figure3. Since *
2607  * the bottom 7 bits of the address are always taken to be zero, BTE *
2608  * transfers are always cacheline-aligned. *
2609  * *
2610  ************************************************************************/
2611 
2612 typedef union ii_ibsa1_u {
2614  struct {
2618  } ii_ibsa1_fld_s;
2619 } ii_ibsa1_u_t;
2620 
2621 /************************************************************************
2622  * *
2623  * This register should be loaded before a transfer is started. The *
2624  * address to be loaded in bits 39:0 is the 40-bit TRex+ physical *
2625  * address as described in Section 1.3, Figure2 and Figure3. Since *
2626  * the bottom 7 bits of the address are always taken to be zero, BTE *
2627  * transfers are always cacheline-aligned. *
2628  * *
2629  ************************************************************************/
2630 
2631 typedef union ii_ibda1_u {
2633  struct {
2637  } ii_ibda1_fld_s;
2638 } ii_ibda1_u_t;
2639 
2640 /************************************************************************
2641  * *
2642  * Writing to this register sets up the attributes of the transfer *
2643  * and initiates the transfer operation. Reading this register has *
2644  * the side effect of terminating any transfer in progress. Note: *
2645  * stopping a transfer midstream could have an adverse impact on the *
2646  * other BTE. If a BTE stream has to be stopped (due to error *
2647  * handling for example), both BTE streams should be stopped and *
2648  * their transfers discarded. *
2649  * *
2650  ************************************************************************/
2651 
2652 typedef union ii_ibct1_u {
2654  struct {
2661  } ii_ibct1_fld_s;
2662 } ii_ibct1_u_t;
2663 
2664 /************************************************************************
2665  * *
2666  * This register contains the address to which the WINV is sent. *
2667  * This address has to be cache line aligned. *
2668  * *
2669  ************************************************************************/
2670 
2671 typedef union ii_ibna1_u {
2673  struct {
2677  } ii_ibna1_fld_s;
2678 } ii_ibna1_u_t;
2679 
2680 /************************************************************************
2681  * *
2682  * This register contains the programmable level as well as the node *
2683  * ID and PI unit of the processor to which the interrupt will be *
2684  * sent. *
2685  * *
2686  ************************************************************************/
2687 
2688 typedef union ii_ibia1_u {
2690  struct {
2696  } ii_ibia1_fld_s;
2697 } ii_ibia1_u_t;
2698 
2699 /************************************************************************
2700  * *
2701  * This register defines the resources that feed information into *
2702  * the two performance counters located in the IO Performance *
2703  * Profiling Register. There are 17 different quantities that can be *
2704  * measured. Given these 17 different options, the two performance *
2705  * counters have 15 of them in common; menu selections 0 through 0xE *
2706  * are identical for each performance counter. As for the other two *
2707  * options, one is available from one performance counter and the *
2708  * other is available from the other performance counter. Hence, the *
2709  * II supports all 17*16=272 possible combinations of quantities to *
2710  * measure. *
2711  * *
2712  ************************************************************************/
2713 
2714 typedef union ii_ipcr_u {
2716  struct {
2721  } ii_ipcr_fld_s;
2722 } ii_ipcr_u_t;
2723 
2724 /************************************************************************
2725  * *
2726  * *
2727  * *
2728  ************************************************************************/
2729 
2730 typedef union ii_ippr_u {
2732  struct {
2735  } ii_ippr_fld_s;
2736 } ii_ippr_u_t;
2737 
2738 /************************************************************************
2739  * *
2740  * The following defines which were not formed into structures are *
2741  * probably identical to another register, and the name of the *
2742  * register is provided against each of these registers. This *
2743  * information needs to be checked carefully *
2744  * *
2745  * IIO_ICRB1_A IIO_ICRB0_A *
2746  * IIO_ICRB1_B IIO_ICRB0_B *
2747  * IIO_ICRB1_C IIO_ICRB0_C *
2748  * IIO_ICRB1_D IIO_ICRB0_D *
2749  * IIO_ICRB1_E IIO_ICRB0_E *
2750  * IIO_ICRB2_A IIO_ICRB0_A *
2751  * IIO_ICRB2_B IIO_ICRB0_B *
2752  * IIO_ICRB2_C IIO_ICRB0_C *
2753  * IIO_ICRB2_D IIO_ICRB0_D *
2754  * IIO_ICRB2_E IIO_ICRB0_E *
2755  * IIO_ICRB3_A IIO_ICRB0_A *
2756  * IIO_ICRB3_B IIO_ICRB0_B *
2757  * IIO_ICRB3_C IIO_ICRB0_C *
2758  * IIO_ICRB3_D IIO_ICRB0_D *
2759  * IIO_ICRB3_E IIO_ICRB0_E *
2760  * IIO_ICRB4_A IIO_ICRB0_A *
2761  * IIO_ICRB4_B IIO_ICRB0_B *
2762  * IIO_ICRB4_C IIO_ICRB0_C *
2763  * IIO_ICRB4_D IIO_ICRB0_D *
2764  * IIO_ICRB4_E IIO_ICRB0_E *
2765  * IIO_ICRB5_A IIO_ICRB0_A *
2766  * IIO_ICRB5_B IIO_ICRB0_B *
2767  * IIO_ICRB5_C IIO_ICRB0_C *
2768  * IIO_ICRB5_D IIO_ICRB0_D *
2769  * IIO_ICRB5_E IIO_ICRB0_E *
2770  * IIO_ICRB6_A IIO_ICRB0_A *
2771  * IIO_ICRB6_B IIO_ICRB0_B *
2772  * IIO_ICRB6_C IIO_ICRB0_C *
2773  * IIO_ICRB6_D IIO_ICRB0_D *
2774  * IIO_ICRB6_E IIO_ICRB0_E *
2775  * IIO_ICRB7_A IIO_ICRB0_A *
2776  * IIO_ICRB7_B IIO_ICRB0_B *
2777  * IIO_ICRB7_C IIO_ICRB0_C *
2778  * IIO_ICRB7_D IIO_ICRB0_D *
2779  * IIO_ICRB7_E IIO_ICRB0_E *
2780  * IIO_ICRB8_A IIO_ICRB0_A *
2781  * IIO_ICRB8_B IIO_ICRB0_B *
2782  * IIO_ICRB8_C IIO_ICRB0_C *
2783  * IIO_ICRB8_D IIO_ICRB0_D *
2784  * IIO_ICRB8_E IIO_ICRB0_E *
2785  * IIO_ICRB9_A IIO_ICRB0_A *
2786  * IIO_ICRB9_B IIO_ICRB0_B *
2787  * IIO_ICRB9_C IIO_ICRB0_C *
2788  * IIO_ICRB9_D IIO_ICRB0_D *
2789  * IIO_ICRB9_E IIO_ICRB0_E *
2790  * IIO_ICRBA_A IIO_ICRB0_A *
2791  * IIO_ICRBA_B IIO_ICRB0_B *
2792  * IIO_ICRBA_C IIO_ICRB0_C *
2793  * IIO_ICRBA_D IIO_ICRB0_D *
2794  * IIO_ICRBA_E IIO_ICRB0_E *
2795  * IIO_ICRBB_A IIO_ICRB0_A *
2796  * IIO_ICRBB_B IIO_ICRB0_B *
2797  * IIO_ICRBB_C IIO_ICRB0_C *
2798  * IIO_ICRBB_D IIO_ICRB0_D *
2799  * IIO_ICRBB_E IIO_ICRB0_E *
2800  * IIO_ICRBC_A IIO_ICRB0_A *
2801  * IIO_ICRBC_B IIO_ICRB0_B *
2802  * IIO_ICRBC_C IIO_ICRB0_C *
2803  * IIO_ICRBC_D IIO_ICRB0_D *
2804  * IIO_ICRBC_E IIO_ICRB0_E *
2805  * IIO_ICRBD_A IIO_ICRB0_A *
2806  * IIO_ICRBD_B IIO_ICRB0_B *
2807  * IIO_ICRBD_C IIO_ICRB0_C *
2808  * IIO_ICRBD_D IIO_ICRB0_D *
2809  * IIO_ICRBD_E IIO_ICRB0_E *
2810  * IIO_ICRBE_A IIO_ICRB0_A *
2811  * IIO_ICRBE_B IIO_ICRB0_B *
2812  * IIO_ICRBE_C IIO_ICRB0_C *
2813  * IIO_ICRBE_D IIO_ICRB0_D *
2814  * IIO_ICRBE_E IIO_ICRB0_E *
2815  * *
2816  ************************************************************************/
2817 
2818 /*
2819  * Slightly friendlier names for some common registers.
2820  */
2821 #define IIO_WIDGET IIO_WID /* Widget identification */
2822 #define IIO_WIDGET_STAT IIO_WSTAT /* Widget status register */
2823 #define IIO_WIDGET_CTRL IIO_WCR /* Widget control register */
2824 #define IIO_PROTECT IIO_ILAPR /* IO interface protection */
2825 #define IIO_PROTECT_OVRRD IIO_ILAPO /* IO protect override */
2826 #define IIO_OUTWIDGET_ACCESS IIO_IOWA /* Outbound widget access */
2827 #define IIO_INWIDGET_ACCESS IIO_IIWA /* Inbound widget access */
2828 #define IIO_INDEV_ERR_MASK IIO_IIDEM /* Inbound device error mask */
2829 #define IIO_LLP_CSR IIO_ILCSR /* LLP control and status */
2830 #define IIO_LLP_LOG IIO_ILLR /* LLP log */
2831 #define IIO_XTALKCC_TOUT IIO_IXCC /* Xtalk credit count timeout */
2832 #define IIO_XTALKTT_TOUT IIO_IXTT /* Xtalk tail timeout */
2833 #define IIO_IO_ERR_CLR IIO_IECLR /* IO error clear */
2834 #define IIO_IGFX_0 IIO_IGFX0
2835 #define IIO_IGFX_1 IIO_IGFX1
2836 #define IIO_IBCT_0 IIO_IBCT0
2837 #define IIO_IBCT_1 IIO_IBCT1
2838 #define IIO_IBLS_0 IIO_IBLS0
2839 #define IIO_IBLS_1 IIO_IBLS1
2840 #define IIO_IBSA_0 IIO_IBSA0
2841 #define IIO_IBSA_1 IIO_IBSA1
2842 #define IIO_IBDA_0 IIO_IBDA0
2843 #define IIO_IBDA_1 IIO_IBDA1
2844 #define IIO_IBNA_0 IIO_IBNA0
2845 #define IIO_IBNA_1 IIO_IBNA1
2846 #define IIO_IBIA_0 IIO_IBIA0
2847 #define IIO_IBIA_1 IIO_IBIA1
2848 #define IIO_IOPRB_0 IIO_IPRB0
2849 
2850 #define IIO_PRTE_A(_x) (IIO_IPRTE0_A + (8 * (_x)))
2851 #define IIO_PRTE_B(_x) (IIO_IPRTE0_B + (8 * (_x)))
2852 #define IIO_NUM_PRTES 8 /* Total number of PRB table entries */
2853 #define IIO_WIDPRTE_A(x) IIO_PRTE_A(((x) - 8)) /* widget ID to its PRTE num */
2854 #define IIO_WIDPRTE_B(x) IIO_PRTE_B(((x) - 8)) /* widget ID to its PRTE num */
2855 
2856 #define IIO_NUM_IPRBS 9
2857 
2858 #define IIO_LLP_CSR_IS_UP 0x00002000
2859 #define IIO_LLP_CSR_LLP_STAT_MASK 0x00003000
2860 #define IIO_LLP_CSR_LLP_STAT_SHFT 12
2861 
2862 #define IIO_LLP_CB_MAX 0xffff /* in ILLR CB_CNT, Max Check Bit errors */
2863 #define IIO_LLP_SN_MAX 0xffff /* in ILLR SN_CNT, Max Sequence Number errors */
2864 
2865 /* key to IIO_PROTECT_OVRRD */
2866 #define IIO_PROTECT_OVRRD_KEY 0x53474972756c6573ull /* "SGIrules" */
2867 
2868 /* BTE register names */
2869 #define IIO_BTE_STAT_0 IIO_IBLS_0 /* Also BTE length/status 0 */
2870 #define IIO_BTE_SRC_0 IIO_IBSA_0 /* Also BTE source address 0 */
2871 #define IIO_BTE_DEST_0 IIO_IBDA_0 /* Also BTE dest. address 0 */
2872 #define IIO_BTE_CTRL_0 IIO_IBCT_0 /* Also BTE control/terminate 0 */
2873 #define IIO_BTE_NOTIFY_0 IIO_IBNA_0 /* Also BTE notification 0 */
2874 #define IIO_BTE_INT_0 IIO_IBIA_0 /* Also BTE interrupt 0 */
2875 #define IIO_BTE_OFF_0 0 /* Base offset from BTE 0 regs. */
2876 #define IIO_BTE_OFF_1 (IIO_IBLS_1 - IIO_IBLS_0) /* Offset from base to BTE 1 */
2877 
2878 /* BTE register offsets from base */
2879 #define BTEOFF_STAT 0
2880 #define BTEOFF_SRC (IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
2881 #define BTEOFF_DEST (IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
2882 #define BTEOFF_CTRL (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
2883 #define BTEOFF_NOTIFY (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
2884 #define BTEOFF_INT (IIO_BTE_INT_0 - IIO_BTE_STAT_0)
2885 
2886 /* names used in shub diags */
2887 #define IIO_BASE_BTE0 IIO_IBLS_0
2888 #define IIO_BASE_BTE1 IIO_IBLS_1
2889 
2890 /*
2891  * Macro which takes the widget number, and returns the
2892  * IO PRB address of that widget.
2893  * value _x is expected to be a widget number in the range
2894  * 0, 8 - 0xF
2895  */
2896 #define IIO_IOPRB(_x) (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
2897  (_x) : \
2898  (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )
2899 
2900 /* GFX Flow Control Node/Widget Register */
2901 #define IIO_IGFX_W_NUM_BITS 4 /* size of widget num field */
2902 #define IIO_IGFX_W_NUM_MASK ((1<<IIO_IGFX_W_NUM_BITS)-1)
2903 #define IIO_IGFX_W_NUM_SHIFT 0
2904 #define IIO_IGFX_PI_NUM_BITS 1 /* size of PI num field */
2905 #define IIO_IGFX_PI_NUM_MASK ((1<<IIO_IGFX_PI_NUM_BITS)-1)
2906 #define IIO_IGFX_PI_NUM_SHIFT 4
2907 #define IIO_IGFX_N_NUM_BITS 8 /* size of node num field */
2908 #define IIO_IGFX_N_NUM_MASK ((1<<IIO_IGFX_N_NUM_BITS)-1)
2909 #define IIO_IGFX_N_NUM_SHIFT 5
2910 #define IIO_IGFX_P_NUM_BITS 1 /* size of processor num field */
2911 #define IIO_IGFX_P_NUM_MASK ((1<<IIO_IGFX_P_NUM_BITS)-1)
2912 #define IIO_IGFX_P_NUM_SHIFT 16
2913 #define IIO_IGFX_INIT(widget, pi, node, cpu) (\
2914  (((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) | \
2915  (((pi) & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)| \
2916  (((node) & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) | \
2917  (((cpu) & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))
2918 
2919 /* Scratch registers (all bits available) */
2920 #define IIO_SCRATCH_REG0 IIO_ISCR0
2921 #define IIO_SCRATCH_REG1 IIO_ISCR1
2922 #define IIO_SCRATCH_MASK 0xffffffffffffffffUL
2923 
2924 #define IIO_SCRATCH_BIT0_0 0x0000000000000001UL
2925 #define IIO_SCRATCH_BIT0_1 0x0000000000000002UL
2926 #define IIO_SCRATCH_BIT0_2 0x0000000000000004UL
2927 #define IIO_SCRATCH_BIT0_3 0x0000000000000008UL
2928 #define IIO_SCRATCH_BIT0_4 0x0000000000000010UL
2929 #define IIO_SCRATCH_BIT0_5 0x0000000000000020UL
2930 #define IIO_SCRATCH_BIT0_6 0x0000000000000040UL
2931 #define IIO_SCRATCH_BIT0_7 0x0000000000000080UL
2932 #define IIO_SCRATCH_BIT0_8 0x0000000000000100UL
2933 #define IIO_SCRATCH_BIT0_9 0x0000000000000200UL
2934 #define IIO_SCRATCH_BIT0_A 0x0000000000000400UL
2935 
2936 #define IIO_SCRATCH_BIT1_0 0x0000000000000001UL
2937 #define IIO_SCRATCH_BIT1_1 0x0000000000000002UL
2938 /* IO Translation Table Entries */
2939 #define IIO_NUM_ITTES 7 /* ITTEs numbered 0..6 */
2940  /* Hw manuals number them 1..7! */
2941 /*
2942  * IIO_IMEM Register fields.
2943  */
2944 #define IIO_IMEM_W0ESD 0x1UL /* Widget 0 shut down due to error */
2945 #define IIO_IMEM_B0ESD (1UL << 4) /* BTE 0 shut down due to error */
2946 #define IIO_IMEM_B1ESD (1UL << 8) /* BTE 1 Shut down due to error */
2947 
2948 /*
2949  * As a permanent workaround for a bug in the PI side of the shub, we've
2950  * redefined big window 7 as small window 0.
2951  XXX does this still apply for SN1??
2952  */
2953 #define HUB_NUM_BIG_WINDOW (IIO_NUM_ITTES - 1)
2954 
2955 /*
2956  * Use the top big window as a surrogate for the first small window
2957  */
2958 #define SWIN0_BIGWIN HUB_NUM_BIG_WINDOW
2959 
2960 #define ILCSR_WARM_RESET 0x100
2961 
2962 /*
2963  * CRB manipulation macros
2964  * The CRB macros are slightly complicated, since there are up to
2965  * four registers associated with each CRB entry.
2966  */
2967 #define IIO_NUM_CRBS 15 /* Number of CRBs */
2968 #define IIO_NUM_PC_CRBS 4 /* Number of partial cache CRBs */
2969 #define IIO_ICRB_OFFSET 8
2970 #define IIO_ICRB_0 IIO_ICRB0_A
2971 #define IIO_ICRB_ADDR_SHFT 2 /* Shift to get proper address */
2972 /* XXX - This is now tuneable:
2973  #define IIO_FIRST_PC_ENTRY 12
2974  */
2975 
2976 #define IIO_ICRB_A(_x) ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))
2977 #define IIO_ICRB_B(_x) ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))
2978 #define IIO_ICRB_C(_x) ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))
2979 #define IIO_ICRB_D(_x) ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))
2980 #define IIO_ICRB_E(_x) ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))
2981 
2982 #define TNUM_TO_WIDGET_DEV(_tnum) (_tnum & 0x7)
2983 
2984 /*
2985  * values for "ecode" field
2986  */
2987 #define IIO_ICRB_ECODE_DERR 0 /* Directory error due to IIO access */
2988 #define IIO_ICRB_ECODE_PERR 1 /* Poison error on IO access */
2989 #define IIO_ICRB_ECODE_WERR 2 /* Write error by IIO access
2990  * e.g. WINV to a Read only line. */
2991 #define IIO_ICRB_ECODE_AERR 3 /* Access error caused by IIO access */
2992 #define IIO_ICRB_ECODE_PWERR 4 /* Error on partial write */
2993 #define IIO_ICRB_ECODE_PRERR 5 /* Error on partial read */
2994 #define IIO_ICRB_ECODE_TOUT 6 /* CRB timeout before deallocating */
2995 #define IIO_ICRB_ECODE_XTERR 7 /* Incoming xtalk pkt had error bit */
2996 
2997 /*
2998  * Values for field imsgtype
2999  */
3000 #define IIO_ICRB_IMSGT_XTALK 0 /* Incoming Meessage from Xtalk */
3001 #define IIO_ICRB_IMSGT_BTE 1 /* Incoming message from BTE */
3002 #define IIO_ICRB_IMSGT_SN1NET 2 /* Incoming message from SN1 net */
3003 #define IIO_ICRB_IMSGT_CRB 3 /* Incoming message from CRB ??? */
3004 
3005 /*
3006  * values for field initiator.
3007  */
3008 #define IIO_ICRB_INIT_XTALK 0 /* Message originated in xtalk */
3009 #define IIO_ICRB_INIT_BTE0 0x1 /* Message originated in BTE 0 */
3010 #define IIO_ICRB_INIT_SN1NET 0x2 /* Message originated in SN1net */
3011 #define IIO_ICRB_INIT_CRB 0x3 /* Message originated in CRB ? */
3012 #define IIO_ICRB_INIT_BTE1 0x5 /* MEssage originated in BTE 1 */
3013 
3014 /*
3015  * Number of credits Hub widget has while sending req/response to
3016  * xbow.
3017  * Value of 3 is required by Xbow 1.1
3018  * We may be able to increase this to 4 with Xbow 1.2.
3019  */
3020 #define HUBII_XBOW_CREDIT 3
3021 #define HUBII_XBOW_REV2_CREDIT 4
3022 
3023 /*
3024  * Number of credits that xtalk devices should use when communicating
3025  * with a SHub (depth of SHub's queue).
3026  */
3027 #define HUB_CREDIT 4
3028 
3029 /*
3030  * Some IIO_PRB fields
3031  */
3032 #define IIO_PRB_MULTI_ERR (1LL << 63)
3033 #define IIO_PRB_SPUR_RD (1LL << 51)
3034 #define IIO_PRB_SPUR_WR (1LL << 50)
3035 #define IIO_PRB_RD_TO (1LL << 49)
3036 #define IIO_PRB_ERROR (1LL << 48)
3037 
3038 /*************************************************************************
3039 
3040  Some of the IIO field masks and shifts are defined here.
3041  This is in order to maintain compatibility in SN0 and SN1 code
3042 
3043 **************************************************************************/
3044 
3045 /*
3046  * ICMR register fields
3047  * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not
3048  * present in SHub)
3049  */
3051 #define IIO_ICMR_CRB_VLD_SHFT 20
3052 #define IIO_ICMR_CRB_VLD_MASK (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)
3054 #define IIO_ICMR_FC_CNT_SHFT 16
3055 #define IIO_ICMR_FC_CNT_MASK (0xf << IIO_ICMR_FC_CNT_SHFT)
3057 #define IIO_ICMR_C_CNT_SHFT 4
3058 #define IIO_ICMR_C_CNT_MASK (0xf << IIO_ICMR_C_CNT_SHFT)
3060 #define IIO_ICMR_PRECISE (1UL << 52)
3061 #define IIO_ICMR_CLR_RPPD (1UL << 13)
3062 #define IIO_ICMR_CLR_RQPD (1UL << 12)
3063 
3064 /*
3065  * IIO PIO Deallocation register field masks : (IIO_IPDR)
3066  XXX present but not needed in bedrock? See the manual.
3067  */
3068 #define IIO_IPDR_PND (1 << 4)
3069 
3070 /*
3071  * IIO CRB deallocation register field masks: (IIO_ICDR)
3072  */
3073 #define IIO_ICDR_PND (1 << 4)
3074 
3075 /*
3076  * IO BTE Length/Status (IIO_IBLS) register bit field definitions
3077  */
3078 #define IBLS_BUSY (0x1UL << 20)
3079 #define IBLS_ERROR_SHFT 16
3080 #define IBLS_ERROR (0x1UL << IBLS_ERROR_SHFT)
3081 #define IBLS_LENGTH_MASK 0xffff
3082 
3083 /*
3084  * IO BTE Control/Terminate register (IBCT) register bit field definitions
3085  */
3086 #define IBCT_POISON (0x1UL << 8)
3087 #define IBCT_NOTIFY (0x1UL << 4)
3088 #define IBCT_ZFIL_MODE (0x1UL << 0)
3089 
3090 /*
3091  * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2)
3092  */
3093 #define IIEPH1_VALID (1UL << 44)
3094 #define IIEPH1_OVERRUN (1UL << 40)
3095 #define IIEPH1_ERR_TYPE_SHFT 32
3096 #define IIEPH1_ERR_TYPE_MASK 0xf
3097 #define IIEPH1_SOURCE_SHFT 20
3098 #define IIEPH1_SOURCE_MASK 11
3099 #define IIEPH1_SUPPL_SHFT 8
3100 #define IIEPH1_SUPPL_MASK 11
3101 #define IIEPH1_CMD_SHFT 0
3102 #define IIEPH1_CMD_MASK 7
3104 #define IIEPH2_TAIL (1UL << 40)
3105 #define IIEPH2_ADDRESS_SHFT 0
3106 #define IIEPH2_ADDRESS_MASK 38
3108 #define IIEPH1_ERR_SHORT_REQ 2
3109 #define IIEPH1_ERR_SHORT_REPLY 3
3110 #define IIEPH1_ERR_LONG_REQ 4
3111 #define IIEPH1_ERR_LONG_REPLY 5
3112 
3113 /*
3114  * IO Error Clear register bit field definitions
3115  */
3116 #define IECLR_PI1_FWD_INT (1UL << 31) /* clear PI1_FORWARD_INT in iidsr */
3117 #define IECLR_PI0_FWD_INT (1UL << 30) /* clear PI0_FORWARD_INT in iidsr */
3118 #define IECLR_SPUR_RD_HDR (1UL << 29) /* clear valid bit in ixss reg */
3119 #define IECLR_BTE1 (1UL << 18) /* clear bte error 1 */
3120 #define IECLR_BTE0 (1UL << 17) /* clear bte error 0 */
3121 #define IECLR_CRAZY (1UL << 16) /* clear crazy bit in wstat reg */
3122 #define IECLR_PRB_F (1UL << 15) /* clear err bit in PRB_F reg */
3123 #define IECLR_PRB_E (1UL << 14) /* clear err bit in PRB_E reg */
3124 #define IECLR_PRB_D (1UL << 13) /* clear err bit in PRB_D reg */
3125 #define IECLR_PRB_C (1UL << 12) /* clear err bit in PRB_C reg */
3126 #define IECLR_PRB_B (1UL << 11) /* clear err bit in PRB_B reg */
3127 #define IECLR_PRB_A (1UL << 10) /* clear err bit in PRB_A reg */
3128 #define IECLR_PRB_9 (1UL << 9) /* clear err bit in PRB_9 reg */
3129 #define IECLR_PRB_8 (1UL << 8) /* clear err bit in PRB_8 reg */
3130 #define IECLR_PRB_0 (1UL << 0) /* clear err bit in PRB_0 reg */
3131 
3132 /*
3133  * IIO CRB control register Fields: IIO_ICCR
3134  */
3135 #define IIO_ICCR_PENDING 0x10000
3136 #define IIO_ICCR_CMD_MASK 0xFF
3137 #define IIO_ICCR_CMD_SHFT 7
3138 #define IIO_ICCR_CMD_NOP 0x0 /* No Op */
3139 #define IIO_ICCR_CMD_WAKE 0x100 /* Reactivate CRB entry and process */
3140 #define IIO_ICCR_CMD_TIMEOUT 0x200 /* Make CRB timeout & mark invalid */
3141 #define IIO_ICCR_CMD_EJECT 0x400 /* Contents of entry written to memory
3142  * via a WB
3143  */
3144 #define IIO_ICCR_CMD_FLUSH 0x800
3145 
3146 /*
3147  *
3148  * CRB Register description.
3149  *
3150  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3151  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3152  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3153  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3154  * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3155  *
3156  * Many of the fields in CRB are status bits used by hardware
3157  * for implementation of the protocol. It's very dangerous to
3158  * mess around with the CRB registers.
3159  *
3160  * It's OK to read the CRB registers and try to make sense out of the
3161  * fields in CRB.
3162  *
3163  * Updating CRB requires all activities in Hub IIO to be quiesced.
3164  * otherwise, a write to CRB could corrupt other CRB entries.
3165  * CRBs are here only as a back door peek to shub IIO's status.
3166  * Quiescing implies no dmas no PIOs
3167  * either directly from the cpu or from sn0net.
3168  * this is not something that can be done easily. So, AVOID updating
3169  * CRBs.
3170  */
3171 
3172 /*
3173  * Easy access macros for CRBs, all 5 registers (A-E)
3174  */
3176 #define a_sidn ii_icrb0_a_fld_s.ia_sidn
3177 #define a_tnum ii_icrb0_a_fld_s.ia_tnum
3178 #define a_addr ii_icrb0_a_fld_s.ia_addr
3179 #define a_valid ii_icrb0_a_fld_s.ia_vld
3180 #define a_iow ii_icrb0_a_fld_s.ia_iow
3181 #define a_regvalue ii_icrb0_a_regval
3184 #define b_use_old ii_icrb0_b_fld_s.ib_use_old
3185 #define b_imsgtype ii_icrb0_b_fld_s.ib_imsgtype
3186 #define b_imsg ii_icrb0_b_fld_s.ib_imsg
3187 #define b_initiator ii_icrb0_b_fld_s.ib_init
3188 #define b_exc ii_icrb0_b_fld_s.ib_exc
3189 #define b_ackcnt ii_icrb0_b_fld_s.ib_ack_cnt
3190 #define b_resp ii_icrb0_b_fld_s.ib_resp
3191 #define b_ack ii_icrb0_b_fld_s.ib_ack
3192 #define b_hold ii_icrb0_b_fld_s.ib_hold
3193 #define b_wb ii_icrb0_b_fld_s.ib_wb
3194 #define b_intvn ii_icrb0_b_fld_s.ib_intvn
3195 #define b_stall_ib ii_icrb0_b_fld_s.ib_stall_ib
3196 #define b_stall_int ii_icrb0_b_fld_s.ib_stall__intr
3197 #define b_stall_bte_0 ii_icrb0_b_fld_s.ib_stall__bte_0
3198 #define b_stall_bte_1 ii_icrb0_b_fld_s.ib_stall__bte_1
3199 #define b_error ii_icrb0_b_fld_s.ib_error
3200 #define b_ecode ii_icrb0_b_fld_s.ib_errcode
3201 #define b_lnetuce ii_icrb0_b_fld_s.ib_ln_uce
3202 #define b_mark ii_icrb0_b_fld_s.ib_mark
3203 #define b_xerr ii_icrb0_b_fld_s.ib_xt_err
3204 #define b_regvalue ii_icrb0_b_regval
3207 #define c_suppl ii_icrb0_c_fld_s.ic_suppl
3208 #define c_barrop ii_icrb0_c_fld_s.ic_bo
3209 #define c_doresp ii_icrb0_c_fld_s.ic_resprqd
3210 #define c_gbr ii_icrb0_c_fld_s.ic_gbr
3211 #define c_btenum ii_icrb0_c_fld_s.ic_bte_num
3212 #define c_cohtrans ii_icrb0_c_fld_s.ic_ct
3213 #define c_xtsize ii_icrb0_c_fld_s.ic_size
3214 #define c_source ii_icrb0_c_fld_s.ic_source
3215 #define c_regvalue ii_icrb0_c_regval
3218 #define d_sleep ii_icrb0_d_fld_s.id_sleep
3219 #define d_pricnt ii_icrb0_d_fld_s.id_pr_cnt
3220 #define d_pripsc ii_icrb0_d_fld_s.id_pr_psc
3221 #define d_bteop ii_icrb0_d_fld_s.id_bte_op
3222 #define d_bteaddr ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names */
3223 #define d_benable ii_icrb0_d_fld_s.id_pa_be /* ic_pa_be fld has 2 names */
3224 #define d_regvalue ii_icrb0_d_regval
3227 #define icrbe_ctxtvld ii_icrb0_e_fld_s.ie_cvld
3228 #define icrbe_toutvld ii_icrb0_e_fld_s.ie_tvld
3229 #define icrbe_context ii_icrb0_e_fld_s.ie_context
3230 #define icrbe_timeout ii_icrb0_e_fld_s.ie_timeout
3231 #define e_regvalue ii_icrb0_e_regval
3233 /* Number of widgets supported by shub */
3234 #define HUB_NUM_WIDGET 9
3235 #define HUB_WIDGET_ID_MIN 0x8
3236 #define HUB_WIDGET_ID_MAX 0xf
3237 
3238 #define HUB_WIDGET_PART_NUM 0xc120
3239 #define MAX_HUBS_PER_XBOW 2
3241 /* A few more #defines for backwards compatibility */
3242 #define iprb_t ii_iprb0_u_t
3243 #define iprb_regval ii_iprb0_regval
3244 #define iprb_mult_err ii_iprb0_fld_s.i_mult_err
3245 #define iprb_spur_rd ii_iprb0_fld_s.i_spur_rd
3246 #define iprb_spur_wr ii_iprb0_fld_s.i_spur_wr
3247 #define iprb_rd_to ii_iprb0_fld_s.i_rd_to
3248 #define iprb_ovflow ii_iprb0_fld_s.i_of_cnt
3249 #define iprb_error ii_iprb0_fld_s.i_error
3250 #define iprb_ff ii_iprb0_fld_s.i_f
3251 #define iprb_mode ii_iprb0_fld_s.i_m
3252 #define iprb_bnakctr ii_iprb0_fld_s.i_nb
3253 #define iprb_anakctr ii_iprb0_fld_s.i_na
3254 #define iprb_xtalkctr ii_iprb0_fld_s.i_c
3256 #define LNK_STAT_WORKING 0x2 /* LLP is working */
3258 #define IIO_WSTAT_ECRAZY (1ULL << 32) /* Hub gone crazy */
3259 #define IIO_WSTAT_TXRETRY (1ULL << 9) /* Hub Tx Retry timeout */
3260 #define IIO_WSTAT_TXRETRY_MASK 0x7F /* should be 0xFF?? */
3261 #define IIO_WSTAT_TXRETRY_SHFT 16
3262 #define IIO_WSTAT_TXRETRY_CNT(w) (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
3263  IIO_WSTAT_TXRETRY_MASK)
3265 /* Number of II perf. counters we can multiplex at once */
3266 
3267 #define IO_PERF_SETS 32
3268 
3269 /* Bit for the widget in inbound access register */
3270 #define IIO_IIWA_WIDGET(_w) ((u64)(1ULL << _w))
3271 /* Bit for the widget in outbound access register */
3272 #define IIO_IOWA_WIDGET(_w) ((u64)(1ULL << _w))
3273 
3274 /* NOTE: The following define assumes that we are going to get
3275  * widget numbers from 8 thru F and the device numbers within
3276  * widget from 0 thru 7.
3277  */
3278 #define IIO_IIDEM_WIDGETDEV_MASK(w, d) ((u64)(1ULL << (8 * ((w) - 8) + (d))))
3280 /* IO Interrupt Destination Register */
3281 #define IIO_IIDSR_SENT_SHIFT 28
3282 #define IIO_IIDSR_SENT_MASK 0x30000000
3283 #define IIO_IIDSR_ENB_SHIFT 24
3284 #define IIO_IIDSR_ENB_MASK 0x01000000
3285 #define IIO_IIDSR_NODE_SHIFT 9
3286 #define IIO_IIDSR_NODE_MASK 0x000ff700
3287 #define IIO_IIDSR_PI_ID_SHIFT 8
3288 #define IIO_IIDSR_PI_ID_MASK 0x00000100
3289 #define IIO_IIDSR_LVL_SHIFT 0
3290 #define IIO_IIDSR_LVL_MASK 0x000000ff
3292 /* Xtalk timeout threshold register (IIO_IXTT) */
3293 #define IXTT_RRSP_TO_SHFT 55 /* read response timeout */
3294 #define IXTT_RRSP_TO_MASK (0x1FULL << IXTT_RRSP_TO_SHFT)
3295 #define IXTT_RRSP_PS_SHFT 32 /* read responsed TO prescalar */
3296 #define IXTT_RRSP_PS_MASK (0x7FFFFFULL << IXTT_RRSP_PS_SHFT)
3297 #define IXTT_TAIL_TO_SHFT 0 /* tail timeout counter threshold */
3298 #define IXTT_TAIL_TO_MASK (0x3FFFFFFULL << IXTT_TAIL_TO_SHFT)
3299 
3300 /*
3301  * The IO LLP control status register and widget control register
3302  */
3303 
3304 typedef union hubii_wcr_u {
3306  struct {
3307  u64 wcr_widget_id:4, /* LLP crossbar credit */
3308  wcr_tag_mode:1, /* Tag mode */
3309  wcr_rsvd1:8, /* Reserved */
3310  wcr_xbar_crd:3, /* LLP crossbar credit */
3311  wcr_f_bad_pkt:1, /* Force bad llp pkt enable */
3312  wcr_dir_con:1, /* widget direct connect */
3313  wcr_e_thresh:5, /* elasticity threshold */
3314  wcr_rsvd:41; /* unused */
3316 } hubii_wcr_t;
3317 
3318 #define iwcr_dir_con wcr_fields_s.wcr_dir_con
3319 
3320 /* The structures below are defined to extract and modify the ii
3321 performance registers */
3322 
3323 /* io_perf_sel allows the caller to specify what tests will be
3324  performed */
3325 
3326 typedef union io_perf_sel {
3327  u64 perf_sel_reg;
3328  struct {
3330  } perf_sel_bits;
3331 } io_perf_sel_t;
3332 
3333 /* io_perf_cnt is to extract the count from the shub registers. Due to
3334  hardware problems there is only one counter, not two. */
3335 
3336 typedef union io_perf_cnt {
3337  u64 perf_cnt;
3338  struct {
3339  u64 perf_cnt:20, perf_rsvd2:12, perf_rsvd1:32;
3340  } perf_cnt_bits;
3343 
3344 typedef union iprte_a {
3346  struct {
3352  u64 i_widget:4;
3353  u64 i_to_cnt:5;
3354  u64 i_vld:1;
3355  } iprte_fields;
3356 } iprte_a_t;
3357 
3358 #endif /* _ASM_IA64_SN_SHUBIO_H */