Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
slub_def.h
Go to the documentation of this file.
1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
3 
4 /*
5  * SLUB : A Slab allocator without object queues.
6  *
7  * (C) 2007 SGI, Christoph Lameter
8  */
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/workqueue.h>
13 #include <linux/kobject.h>
14 
15 #include <linux/kmemleak.h>
16 
17 enum stat_item {
18  ALLOC_FASTPATH, /* Allocation from cpu slab */
19  ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20  FREE_FASTPATH, /* Free to cpu slub */
21  FREE_SLOWPATH, /* Freeing not to cpu slab */
22  FREE_FROZEN, /* Freeing to frozen slab */
23  FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24  FREE_REMOVE_PARTIAL, /* Freeing removes last object */
25  ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
26  ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27  ALLOC_REFILL, /* Refill cpu slab from slab freelist */
28  ALLOC_NODE_MISMATCH, /* Switching cpu slab */
29  FREE_SLAB, /* Slab freed to the page allocator */
30  CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
31  DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
32  DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
33  DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
34  DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
35  DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
36  DEACTIVATE_BYPASS, /* Implicit deactivation */
37  ORDER_FALLBACK, /* Number of times fallback was necessary */
38  CMPXCHG_DOUBLE_CPU_FAIL,/* Failure of this_cpu_cmpxchg_double */
39  CMPXCHG_DOUBLE_FAIL, /* Number of times that cmpxchg double did not match */
40  CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
41  CPU_PARTIAL_FREE, /* Refill cpu partial on free */
42  CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
43  CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
45 
47  void **freelist; /* Pointer to next available object */
48  unsigned long tid; /* Globally unique transaction id */
49  struct page *page; /* The slab from which we are allocating */
50  struct page *partial; /* Partially allocated frozen slabs */
51 #ifdef CONFIG_SLUB_STATS
52  unsigned stat[NR_SLUB_STAT_ITEMS];
53 #endif
54 };
55 
57  spinlock_t list_lock; /* Protect partial list and nr_partial */
58  unsigned long nr_partial;
60 #ifdef CONFIG_SLUB_DEBUG
61  atomic_long_t nr_slabs;
62  atomic_long_t total_objects;
63  struct list_head full;
64 #endif
65 };
66 
67 /*
68  * Word size structure that can be atomically updated or read and that
69  * contains both the order and the number of objects that a slab of the
70  * given order would contain.
71  */
73  unsigned long x;
74 };
75 
76 /*
77  * Slab cache management.
78  */
79 struct kmem_cache {
81  /* Used for retriving partial slabs etc */
82  unsigned long flags;
83  unsigned long min_partial;
84  int size; /* The size of an object including meta data */
85  int object_size; /* The size of an object without meta data */
86  int offset; /* Free pointer offset. */
87  int cpu_partial; /* Number of per cpu partial objects to keep around */
89 
90  /* Allocation and freeing of slabs */
93  gfp_t allocflags; /* gfp flags to use on each alloc */
94  int refcount; /* Refcount for slab cache destroy */
95  void (*ctor)(void *);
96  int inuse; /* Offset to metadata */
97  int align; /* Alignment */
98  int reserved; /* Reserved bytes at the end of slabs */
99  const char *name; /* Name (only for display!) */
100  struct list_head list; /* List of slab caches */
101 #ifdef CONFIG_SYSFS
102  struct kobject kobj; /* For sysfs */
103 #endif
104 
105 #ifdef CONFIG_NUMA
106  /*
107  * Defragmentation by allocating from a remote node.
108  */
109  int remote_node_defrag_ratio;
110 #endif
112 };
113 
114 /*
115  * Kmalloc subsystem.
116  */
117 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
118 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
119 #else
120 #define KMALLOC_MIN_SIZE 8
121 #endif
122 
123 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
124 
125 /*
126  * Maximum kmalloc object size handled by SLUB. Larger object allocations
127  * are passed through to the page allocator. The page allocator "fastpath"
128  * is relatively slow so we need this value sufficiently high so that
129  * performance critical objects are allocated through the SLUB fastpath.
130  *
131  * This should be dropped to PAGE_SIZE / 2 once the page allocator
132  * "fastpath" becomes competitive with the slab allocator fastpaths.
133  */
134 #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
135 
136 #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
137 
138 #ifdef CONFIG_ZONE_DMA
139 #define SLUB_DMA __GFP_DMA
140 #else
141 /* Disable DMA functionality */
142 #define SLUB_DMA (__force gfp_t)0
143 #endif
144 
145 /*
146  * We keep the general caches in an array of slab caches that are used for
147  * 2^x bytes of allocations.
148  */
150 
151 /*
152  * Sorry that the following has to be that ugly but some versions of GCC
153  * have trouble with constant propagation and loops.
154  */
155 static __always_inline int kmalloc_index(size_t size)
156 {
157  if (!size)
158  return 0;
159 
160  if (size <= KMALLOC_MIN_SIZE)
161  return KMALLOC_SHIFT_LOW;
162 
163  if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
164  return 1;
165  if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
166  return 2;
167  if (size <= 8) return 3;
168  if (size <= 16) return 4;
169  if (size <= 32) return 5;
170  if (size <= 64) return 6;
171  if (size <= 128) return 7;
172  if (size <= 256) return 8;
173  if (size <= 512) return 9;
174  if (size <= 1024) return 10;
175  if (size <= 2 * 1024) return 11;
176  if (size <= 4 * 1024) return 12;
177 /*
178  * The following is only needed to support architectures with a larger page
179  * size than 4k. We need to support 2 * PAGE_SIZE here. So for a 64k page
180  * size we would have to go up to 128k.
181  */
182  if (size <= 8 * 1024) return 13;
183  if (size <= 16 * 1024) return 14;
184  if (size <= 32 * 1024) return 15;
185  if (size <= 64 * 1024) return 16;
186  if (size <= 128 * 1024) return 17;
187  if (size <= 256 * 1024) return 18;
188  if (size <= 512 * 1024) return 19;
189  if (size <= 1024 * 1024) return 20;
190  if (size <= 2 * 1024 * 1024) return 21;
191  BUG();
192  return -1; /* Will never be reached */
193 
194 /*
195  * What we really wanted to do and cannot do because of compiler issues is:
196  * int i;
197  * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
198  * if (size <= (1 << i))
199  * return i;
200  */
201 }
202 
203 /*
204  * Find the slab cache for a given combination of allocation flags and size.
205  *
206  * This ought to end up with a global pointer to the right cache
207  * in kmalloc_caches.
208  */
209 static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
210 {
211  int index = kmalloc_index(size);
212 
213  if (index == 0)
214  return NULL;
215 
216  return kmalloc_caches[index];
217 }
218 
219 void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
220 void *__kmalloc(size_t size, gfp_t flags);
221 
222 static __always_inline void *
223 kmalloc_order(size_t size, gfp_t flags, unsigned int order)
224 {
225  void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
226  kmemleak_alloc(ret, size, 1, flags);
227  return ret;
228 }
229 
234 #ifdef CONFIG_SLUB_DEBUG
235 extern bool verify_mem_not_deleted(const void *x);
236 #else
237 static inline bool verify_mem_not_deleted(const void *x)
238 {
239  return true;
240 }
241 #endif
242 
243 #ifdef CONFIG_TRACING
244 extern void *
245 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
246 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
247 #else
248 static __always_inline void *
249 kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
250 {
251  return kmem_cache_alloc(s, gfpflags);
252 }
253 
254 static __always_inline void *
255 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
256 {
257  return kmalloc_order(size, flags, order);
258 }
259 #endif
260 
261 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
262 {
263  unsigned int order = get_order(size);
264  return kmalloc_order_trace(size, flags, order);
265 }
266 
267 static __always_inline void *kmalloc(size_t size, gfp_t flags)
268 {
269  if (__builtin_constant_p(size)) {
270  if (size > SLUB_MAX_SIZE)
271  return kmalloc_large(size, flags);
272 
273  if (!(flags & SLUB_DMA)) {
274  struct kmem_cache *s = kmalloc_slab(size);
275 
276  if (!s)
277  return ZERO_SIZE_PTR;
278 
279  return kmem_cache_alloc_trace(s, flags, size);
280  }
281  }
282  return __kmalloc(size, flags);
283 }
284 
285 #ifdef CONFIG_NUMA
286 void *__kmalloc_node(size_t size, gfp_t flags, int node);
287 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
288 
289 #ifdef CONFIG_TRACING
290 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
291  gfp_t gfpflags,
292  int node, size_t size);
293 #else
294 static __always_inline void *
295 kmem_cache_alloc_node_trace(struct kmem_cache *s,
296  gfp_t gfpflags,
297  int node, size_t size)
298 {
299  return kmem_cache_alloc_node(s, gfpflags, node);
300 }
301 #endif
302 
303 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
304 {
305  if (__builtin_constant_p(size) &&
306  size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
307  struct kmem_cache *s = kmalloc_slab(size);
308 
309  if (!s)
310  return ZERO_SIZE_PTR;
311 
312  return kmem_cache_alloc_node_trace(s, flags, node, size);
313  }
314  return __kmalloc_node(size, flags, node);
315 }
316 #endif
317 
318 #endif /* _LINUX_SLUB_DEF_H */