Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
spi-bitbang-txrx.h
Go to the documentation of this file.
1 /*
2  * Mix this utility code with some glue code to get one of several types of
3  * simple SPI master driver. Two do polled word-at-a-time I/O:
4  *
5  * - GPIO/parport bitbangers. Provide chipselect() and txrx_word[](),
6  * expanding the per-word routines from the inline templates below.
7  *
8  * - Drivers for controllers resembling bare shift registers. Provide
9  * chipselect() and txrx_word[](), with custom setup()/cleanup() methods
10  * that use your controller's clock and chipselect registers.
11  *
12  * Some hardware works well with requests at spi_transfer scope:
13  *
14  * - Drivers leveraging smarter hardware, with fifos or DMA; or for half
15  * duplex (MicroWire) controllers. Provide chipselect() and txrx_bufs(),
16  * and custom setup()/cleanup() methods.
17  */
18 
19 /*
20  * The code that knows what GPIO pins do what should have declared four
21  * functions, ideally as inlines, before including this header:
22  *
23  * void setsck(struct spi_device *, int is_on);
24  * void setmosi(struct spi_device *, int is_on);
25  * int getmiso(struct spi_device *);
26  * void spidelay(unsigned);
27  *
28  * setsck()'s is_on parameter is a zero/nonzero boolean.
29  *
30  * setmosi()'s is_on parameter is a zero/nonzero boolean.
31  *
32  * getmiso() is required to return 0 or 1 only. Any other value is invalid
33  * and will result in improper operation.
34  *
35  * A non-inlined routine would call bitbang_txrx_*() routines. The
36  * main loop could easily compile down to a handful of instructions,
37  * especially if the delay is a NOP (to run at peak speed).
38  *
39  * Since this is software, the timings may not be exactly what your board's
40  * chips need ... there may be several reasons you'd need to tweak timings
41  * in these routines, not just make to make it faster or slower to match a
42  * particular CPU clock rate.
43  */
44 
45 static inline u32
46 bitbang_txrx_be_cpha0(struct spi_device *spi,
47  unsigned nsecs, unsigned cpol, unsigned flags,
48  u32 word, u8 bits)
49 {
50  /* if (cpol == 0) this is SPI_MODE_0; else this is SPI_MODE_2 */
51 
52  /* clock starts at inactive polarity */
53  for (word <<= (32 - bits); likely(bits); bits--) {
54 
55  /* setup MSB (to slave) on trailing edge */
56  if ((flags & SPI_MASTER_NO_TX) == 0)
57  setmosi(spi, word & (1 << 31));
58  spidelay(nsecs); /* T(setup) */
59 
60  setsck(spi, !cpol);
61  spidelay(nsecs);
62 
63  /* sample MSB (from slave) on leading edge */
64  word <<= 1;
65  if ((flags & SPI_MASTER_NO_RX) == 0)
66  word |= getmiso(spi);
67  setsck(spi, cpol);
68  }
69  return word;
70 }
71 
72 static inline u32
73 bitbang_txrx_be_cpha1(struct spi_device *spi,
74  unsigned nsecs, unsigned cpol, unsigned flags,
75  u32 word, u8 bits)
76 {
77  /* if (cpol == 0) this is SPI_MODE_1; else this is SPI_MODE_3 */
78 
79  /* clock starts at inactive polarity */
80  for (word <<= (32 - bits); likely(bits); bits--) {
81 
82  /* setup MSB (to slave) on leading edge */
83  setsck(spi, !cpol);
84  if ((flags & SPI_MASTER_NO_TX) == 0)
85  setmosi(spi, word & (1 << 31));
86  spidelay(nsecs); /* T(setup) */
87 
88  setsck(spi, cpol);
89  spidelay(nsecs);
90 
91  /* sample MSB (from slave) on trailing edge */
92  word <<= 1;
93  if ((flags & SPI_MASTER_NO_RX) == 0)
94  word |= getmiso(spi);
95  }
96  return word;
97 }