Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
trap.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Licensed under the GPL
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/sched.h>
8 #include <linux/hardirq.h>
9 #include <linux/module.h>
10 #include <asm/current.h>
11 #include <asm/pgtable.h>
12 #include <asm/tlbflush.h>
13 #include <arch.h>
14 #include <as-layout.h>
15 #include <kern_util.h>
16 #include <os.h>
17 #include <skas.h>
18 
19 /*
20  * Note this is constrained to return 0, -EFAULT, -EACCESS, -ENOMEM by
21  * segv().
22  */
23 int handle_page_fault(unsigned long address, unsigned long ip,
24  int is_write, int is_user, int *code_out)
25 {
26  struct mm_struct *mm = current->mm;
27  struct vm_area_struct *vma;
28  pgd_t *pgd;
29  pud_t *pud;
30  pmd_t *pmd;
31  pte_t *pte;
32  int err = -EFAULT;
33  unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
34  (is_write ? FAULT_FLAG_WRITE : 0);
35 
36  *code_out = SEGV_MAPERR;
37 
38  /*
39  * If the fault was during atomic operation, don't take the fault, just
40  * fail.
41  */
42  if (in_atomic())
43  goto out_nosemaphore;
44 
45 retry:
46  down_read(&mm->mmap_sem);
47  vma = find_vma(mm, address);
48  if (!vma)
49  goto out;
50  else if (vma->vm_start <= address)
51  goto good_area;
52  else if (!(vma->vm_flags & VM_GROWSDOWN))
53  goto out;
54  else if (is_user && !ARCH_IS_STACKGROW(address))
55  goto out;
56  else if (expand_stack(vma, address))
57  goto out;
58 
59 good_area:
60  *code_out = SEGV_ACCERR;
61  if (is_write && !(vma->vm_flags & VM_WRITE))
62  goto out;
63 
64  /* Don't require VM_READ|VM_EXEC for write faults! */
65  if (!is_write && !(vma->vm_flags & (VM_READ | VM_EXEC)))
66  goto out;
67 
68  do {
69  int fault;
70 
71  fault = handle_mm_fault(mm, vma, address, flags);
72 
73  if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
74  goto out_nosemaphore;
75 
76  if (unlikely(fault & VM_FAULT_ERROR)) {
77  if (fault & VM_FAULT_OOM) {
78  goto out_of_memory;
79  } else if (fault & VM_FAULT_SIGBUS) {
80  err = -EACCES;
81  goto out;
82  }
83  BUG();
84  }
85  if (flags & FAULT_FLAG_ALLOW_RETRY) {
86  if (fault & VM_FAULT_MAJOR)
87  current->maj_flt++;
88  else
89  current->min_flt++;
90  if (fault & VM_FAULT_RETRY) {
91  flags &= ~FAULT_FLAG_ALLOW_RETRY;
92  flags |= FAULT_FLAG_TRIED;
93 
94  goto retry;
95  }
96  }
97 
98  pgd = pgd_offset(mm, address);
99  pud = pud_offset(pgd, address);
100  pmd = pmd_offset(pud, address);
101  pte = pte_offset_kernel(pmd, address);
102  } while (!pte_present(*pte));
103  err = 0;
104  /*
105  * The below warning was added in place of
106  * pte_mkyoung(); if (is_write) pte_mkdirty();
107  * If it's triggered, we'd see normally a hang here (a clean pte is
108  * marked read-only to emulate the dirty bit).
109  * However, the generic code can mark a PTE writable but clean on a
110  * concurrent read fault, triggering this harmlessly. So comment it out.
111  */
112 #if 0
113  WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte)));
114 #endif
115  flush_tlb_page(vma, address);
116 out:
117  up_read(&mm->mmap_sem);
118 out_nosemaphore:
119  return err;
120 
122  /*
123  * We ran out of memory, call the OOM killer, and return the userspace
124  * (which will retry the fault, or kill us if we got oom-killed).
125  */
126  up_read(&mm->mmap_sem);
128  return 0;
129 }
130 EXPORT_SYMBOL(handle_page_fault);
131 
132 static void show_segv_info(struct uml_pt_regs *regs)
133 {
134  struct task_struct *tsk = current;
135  struct faultinfo *fi = UPT_FAULTINFO(regs);
136 
137  if (!unhandled_signal(tsk, SIGSEGV))
138  return;
139 
140  if (!printk_ratelimit())
141  return;
142 
143  printk("%s%s[%d]: segfault at %lx ip %p sp %p error %x",
144  task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
145  tsk->comm, task_pid_nr(tsk), FAULT_ADDRESS(*fi),
146  (void *)UPT_IP(regs), (void *)UPT_SP(regs),
147  fi->error_code);
148 
149  print_vma_addr(KERN_CONT " in ", UPT_IP(regs));
150  printk(KERN_CONT "\n");
151 }
152 
153 static void bad_segv(struct faultinfo fi, unsigned long ip)
154 {
155  struct siginfo si;
156 
157  si.si_signo = SIGSEGV;
158  si.si_code = SEGV_ACCERR;
159  si.si_addr = (void __user *) FAULT_ADDRESS(fi);
160  current->thread.arch.faultinfo = fi;
162 }
163 
164 void fatal_sigsegv(void)
165 {
167  do_signal();
168  /*
169  * This is to tell gcc that we're not returning - do_signal
170  * can, in general, return, but in this case, it's not, since
171  * we just got a fatal SIGSEGV queued.
172  */
173  os_dump_core();
174 }
175 
176 void segv_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
177 {
178  struct faultinfo * fi = UPT_FAULTINFO(regs);
179 
180  if (UPT_IS_USER(regs) && !SEGV_IS_FIXABLE(fi)) {
181  show_segv_info(regs);
182  bad_segv(*fi, UPT_IP(regs));
183  return;
184  }
185  segv(*fi, UPT_IP(regs), UPT_IS_USER(regs), regs);
186 }
187 
188 /*
189  * We give a *copy* of the faultinfo in the regs to segv.
190  * This must be done, since nesting SEGVs could overwrite
191  * the info in the regs. A pointer to the info then would
192  * give us bad data!
193  */
194 unsigned long segv(struct faultinfo fi, unsigned long ip, int is_user,
195  struct uml_pt_regs *regs)
196 {
197  struct siginfo si;
198  jmp_buf *catcher;
199  int err;
200  int is_write = FAULT_WRITE(fi);
201  unsigned long address = FAULT_ADDRESS(fi);
202 
203  if (!is_user && (address >= start_vm) && (address < end_vm)) {
205  return 0;
206  }
207  else if (current->mm == NULL) {
208  show_regs(container_of(regs, struct pt_regs, regs));
209  panic("Segfault with no mm");
210  }
211 
212  if (SEGV_IS_FIXABLE(&fi) || SEGV_MAYBE_FIXABLE(&fi))
213  err = handle_page_fault(address, ip, is_write, is_user,
214  &si.si_code);
215  else {
216  err = -EFAULT;
217  /*
218  * A thread accessed NULL, we get a fault, but CR2 is invalid.
219  * This code is used in __do_copy_from_user() of TT mode.
220  * XXX tt mode is gone, so maybe this isn't needed any more
221  */
222  address = 0;
223  }
224 
225  catcher = current->thread.fault_catcher;
226  if (!err)
227  return 0;
228  else if (catcher != NULL) {
229  current->thread.fault_addr = (void *) address;
230  UML_LONGJMP(catcher, 1);
231  }
232  else if (current->thread.fault_addr != NULL)
233  panic("fault_addr set but no fault catcher");
234  else if (!is_user && arch_fixup(ip, regs))
235  return 0;
236 
237  if (!is_user) {
238  show_regs(container_of(regs, struct pt_regs, regs));
239  panic("Kernel mode fault at addr 0x%lx, ip 0x%lx",
240  address, ip);
241  }
242 
243  show_segv_info(regs);
244 
245  if (err == -EACCES) {
246  si.si_signo = SIGBUS;
247  si.si_errno = 0;
248  si.si_code = BUS_ADRERR;
249  si.si_addr = (void __user *)address;
250  current->thread.arch.faultinfo = fi;
252  } else {
253  BUG_ON(err != -EFAULT);
254  si.si_signo = SIGSEGV;
255  si.si_addr = (void __user *) address;
256  current->thread.arch.faultinfo = fi;
258  }
259  return 0;
260 }
261 
262 void relay_signal(int sig, struct siginfo *si, struct uml_pt_regs *regs)
263 {
264  struct faultinfo *fi;
265  struct siginfo clean_si;
266 
267  if (!UPT_IS_USER(regs)) {
268  if (sig == SIGBUS)
269  printk(KERN_ERR "Bus error - the host /dev/shm or /tmp "
270  "mount likely just ran out of space\n");
271  panic("Kernel mode signal %d", sig);
272  }
273 
274  arch_examine_signal(sig, regs);
275 
276  memset(&clean_si, 0, sizeof(clean_si));
277  clean_si.si_signo = si->si_signo;
278  clean_si.si_errno = si->si_errno;
279  clean_si.si_code = si->si_code;
280  switch (sig) {
281  case SIGILL:
282  case SIGFPE:
283  case SIGSEGV:
284  case SIGBUS:
285  case SIGTRAP:
286  fi = UPT_FAULTINFO(regs);
287  clean_si.si_addr = (void __user *) FAULT_ADDRESS(*fi);
288  current->thread.arch.faultinfo = *fi;
289 #ifdef __ARCH_SI_TRAPNO
290  clean_si.si_trapno = si->si_trapno;
291 #endif
292  break;
293  default:
294  printk(KERN_ERR "Attempted to relay unknown signal %d (si_code = %d)\n",
295  sig, si->si_code);
296  }
297 
298  force_sig_info(sig, &clean_si, current);
299 }
300 
301 void bus_handler(int sig, struct siginfo *si, struct uml_pt_regs *regs)
302 {
303  if (current->thread.fault_catcher != NULL)
304  UML_LONGJMP(current->thread.fault_catcher, 1);
305  else
306  relay_signal(sig, si, regs);
307 }
308 
309 void winch(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
310 {
311  do_IRQ(WINCH_IRQ, regs);
312 }
313 
314 void trap_init(void)
315 {
316 }