Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ldt.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Licensed under the GPL
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <asm/unistd.h>
10 #include <os.h>
11 #include <proc_mm.h>
12 #include <skas.h>
13 #include <skas_ptrace.h>
14 #include <sysdep/tls.h>
15 
16 extern int modify_ldt(int func, void *ptr, unsigned long bytecount);
17 
18 static long write_ldt_entry(struct mm_id *mm_idp, int func,
19  struct user_desc *desc, void **addr, int done)
20 {
21  long res;
22 
23  if (proc_mm) {
24  /*
25  * This is a special handling for the case, that the mm to
26  * modify isn't current->active_mm.
27  * If this is called directly by modify_ldt,
28  * (current->active_mm->context.skas.u == mm_idp)
29  * will be true. So no call to __switch_mm(mm_idp) is done.
30  * If this is called in case of init_new_ldt or PTRACE_LDT,
31  * mm_idp won't belong to current->active_mm, but child->mm.
32  * So we need to switch child's mm into our userspace, then
33  * later switch back.
34  *
35  * Note: I'm unsure: should interrupts be disabled here?
36  */
37  if (!current->active_mm || current->active_mm == &init_mm ||
38  mm_idp != &current->active_mm->context.id)
39  __switch_mm(mm_idp);
40  }
41 
42  if (ptrace_ldt) {
43  struct ptrace_ldt ldt_op = (struct ptrace_ldt) {
44  .func = func,
45  .ptr = desc,
46  .bytecount = sizeof(*desc)};
47  u32 cpu;
48  int pid;
49 
50  if (!proc_mm)
51  pid = mm_idp->u.pid;
52  else {
53  cpu = get_cpu();
54  pid = userspace_pid[cpu];
55  }
56 
57  res = os_ptrace_ldt(pid, 0, (unsigned long) &ldt_op);
58 
59  if (proc_mm)
60  put_cpu();
61  }
62  else {
63  void *stub_addr;
64  res = syscall_stub_data(mm_idp, (unsigned long *)desc,
65  (sizeof(*desc) + sizeof(long) - 1) &
66  ~(sizeof(long) - 1),
67  addr, &stub_addr);
68  if (!res) {
69  unsigned long args[] = { func,
70  (unsigned long)stub_addr,
71  sizeof(*desc),
72  0, 0, 0 };
73  res = run_syscall_stub(mm_idp, __NR_modify_ldt, args,
74  0, addr, done);
75  }
76  }
77 
78  if (proc_mm) {
79  /*
80  * This is the second part of special handling, that makes
81  * PTRACE_LDT possible to implement.
82  */
83  if (current->active_mm && current->active_mm != &init_mm &&
84  mm_idp != &current->active_mm->context.id)
85  __switch_mm(&current->active_mm->context.id);
86  }
87 
88  return res;
89 }
90 
91 static long read_ldt_from_host(void __user * ptr, unsigned long bytecount)
92 {
93  int res, n;
94  struct ptrace_ldt ptrace_ldt = (struct ptrace_ldt) {
95  .func = 0,
96  .bytecount = bytecount,
97  .ptr = kmalloc(bytecount, GFP_KERNEL)};
98  u32 cpu;
99 
100  if (ptrace_ldt.ptr == NULL)
101  return -ENOMEM;
102 
103  /*
104  * This is called from sys_modify_ldt only, so userspace_pid gives
105  * us the right number
106  */
107 
108  cpu = get_cpu();
109  res = os_ptrace_ldt(userspace_pid[cpu], 0, (unsigned long) &ptrace_ldt);
110  put_cpu();
111  if (res < 0)
112  goto out;
113 
114  n = copy_to_user(ptr, ptrace_ldt.ptr, res);
115  if (n != 0)
116  res = -EFAULT;
117 
118  out:
119  kfree(ptrace_ldt.ptr);
120 
121  return res;
122 }
123 
124 /*
125  * In skas mode, we hold our own ldt data in UML.
126  * Thus, the code implementing sys_modify_ldt_skas
127  * is very similar to (and mostly stolen from) sys_modify_ldt
128  * for arch/i386/kernel/ldt.c
129  * The routines copied and modified in part are:
130  * - read_ldt
131  * - read_default_ldt
132  * - write_ldt
133  * - sys_modify_ldt_skas
134  */
135 
136 static int read_ldt(void __user * ptr, unsigned long bytecount)
137 {
138  int i, err = 0;
139  unsigned long size;
140  uml_ldt_t *ldt = &current->mm->context.arch.ldt;
141 
142  if (!ldt->entry_count)
143  goto out;
144  if (bytecount > LDT_ENTRY_SIZE*LDT_ENTRIES)
145  bytecount = LDT_ENTRY_SIZE*LDT_ENTRIES;
146  err = bytecount;
147 
148  if (ptrace_ldt)
149  return read_ldt_from_host(ptr, bytecount);
150 
151  mutex_lock(&ldt->lock);
152  if (ldt->entry_count <= LDT_DIRECT_ENTRIES) {
154  if (size > bytecount)
155  size = bytecount;
156  if (copy_to_user(ptr, ldt->u.entries, size))
157  err = -EFAULT;
158  bytecount -= size;
159  ptr += size;
160  }
161  else {
162  for (i=0; i<ldt->entry_count/LDT_ENTRIES_PER_PAGE && bytecount;
163  i++) {
164  size = PAGE_SIZE;
165  if (size > bytecount)
166  size = bytecount;
167  if (copy_to_user(ptr, ldt->u.pages[i], size)) {
168  err = -EFAULT;
169  break;
170  }
171  bytecount -= size;
172  ptr += size;
173  }
174  }
175  mutex_unlock(&ldt->lock);
176 
177  if (bytecount == 0 || err == -EFAULT)
178  goto out;
179 
180  if (clear_user(ptr, bytecount))
181  err = -EFAULT;
182 
183 out:
184  return err;
185 }
186 
187 static int read_default_ldt(void __user * ptr, unsigned long bytecount)
188 {
189  int err;
190 
191  if (bytecount > 5*LDT_ENTRY_SIZE)
192  bytecount = 5*LDT_ENTRY_SIZE;
193 
194  err = bytecount;
195  /*
196  * UML doesn't support lcall7 and lcall27.
197  * So, we don't really have a default ldt, but emulate
198  * an empty ldt of common host default ldt size.
199  */
200  if (clear_user(ptr, bytecount))
201  err = -EFAULT;
202 
203  return err;
204 }
205 
206 static int write_ldt(void __user * ptr, unsigned long bytecount, int func)
207 {
208  uml_ldt_t *ldt = &current->mm->context.arch.ldt;
209  struct mm_id * mm_idp = &current->mm->context.id;
210  int i, err;
211  struct user_desc ldt_info;
212  struct ldt_entry entry0, *ldt_p;
213  void *addr = NULL;
214 
215  err = -EINVAL;
216  if (bytecount != sizeof(ldt_info))
217  goto out;
218  err = -EFAULT;
219  if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
220  goto out;
221 
222  err = -EINVAL;
223  if (ldt_info.entry_number >= LDT_ENTRIES)
224  goto out;
225  if (ldt_info.contents == 3) {
226  if (func == 1)
227  goto out;
228  if (ldt_info.seg_not_present == 0)
229  goto out;
230  }
231 
232  if (!ptrace_ldt)
233  mutex_lock(&ldt->lock);
234 
235  err = write_ldt_entry(mm_idp, func, &ldt_info, &addr, 1);
236  if (err)
237  goto out_unlock;
238  else if (ptrace_ldt) {
239  /* With PTRACE_LDT available, this is used as a flag only */
240  ldt->entry_count = 1;
241  goto out;
242  }
243 
244  if (ldt_info.entry_number >= ldt->entry_count &&
245  ldt_info.entry_number >= LDT_DIRECT_ENTRIES) {
246  for (i=ldt->entry_count/LDT_ENTRIES_PER_PAGE;
247  i*LDT_ENTRIES_PER_PAGE <= ldt_info.entry_number;
248  i++) {
249  if (i == 0)
250  memcpy(&entry0, ldt->u.entries,
251  sizeof(entry0));
252  ldt->u.pages[i] = (struct ldt_entry *)
254  if (!ldt->u.pages[i]) {
255  err = -ENOMEM;
256  /* Undo the change in host */
257  memset(&ldt_info, 0, sizeof(ldt_info));
258  write_ldt_entry(mm_idp, 1, &ldt_info, &addr, 1);
259  goto out_unlock;
260  }
261  if (i == 0) {
262  memcpy(ldt->u.pages[0], &entry0,
263  sizeof(entry0));
264  memcpy(ldt->u.pages[0]+1, ldt->u.entries+1,
265  sizeof(entry0)*(LDT_DIRECT_ENTRIES-1));
266  }
267  ldt->entry_count = (i + 1) * LDT_ENTRIES_PER_PAGE;
268  }
269  }
270  if (ldt->entry_count <= ldt_info.entry_number)
271  ldt->entry_count = ldt_info.entry_number + 1;
272 
273  if (ldt->entry_count <= LDT_DIRECT_ENTRIES)
274  ldt_p = ldt->u.entries + ldt_info.entry_number;
275  else
276  ldt_p = ldt->u.pages[ldt_info.entry_number/LDT_ENTRIES_PER_PAGE] +
277  ldt_info.entry_number%LDT_ENTRIES_PER_PAGE;
278 
279  if (ldt_info.base_addr == 0 && ldt_info.limit == 0 &&
280  (func == 1 || LDT_empty(&ldt_info))) {
281  ldt_p->a = 0;
282  ldt_p->b = 0;
283  }
284  else{
285  if (func == 1)
286  ldt_info.useable = 0;
287  ldt_p->a = LDT_entry_a(&ldt_info);
288  ldt_p->b = LDT_entry_b(&ldt_info);
289  }
290  err = 0;
291 
292 out_unlock:
293  mutex_unlock(&ldt->lock);
294 out:
295  return err;
296 }
297 
298 static long do_modify_ldt_skas(int func, void __user *ptr,
299  unsigned long bytecount)
300 {
301  int ret = -ENOSYS;
302 
303  switch (func) {
304  case 0:
305  ret = read_ldt(ptr, bytecount);
306  break;
307  case 1:
308  case 0x11:
309  ret = write_ldt(ptr, bytecount, func);
310  break;
311  case 2:
312  ret = read_default_ldt(ptr, bytecount);
313  break;
314  }
315  return ret;
316 }
317 
318 static DEFINE_SPINLOCK(host_ldt_lock);
319 static short dummy_list[9] = {0, -1};
320 static short * host_ldt_entries = NULL;
321 
322 static void ldt_get_host_info(void)
323 {
324  long ret;
325  struct ldt_entry * ldt;
326  short *tmp;
327  int i, size, k, order;
328 
329  spin_lock(&host_ldt_lock);
330 
331  if (host_ldt_entries != NULL) {
332  spin_unlock(&host_ldt_lock);
333  return;
334  }
335  host_ldt_entries = dummy_list+1;
336 
337  spin_unlock(&host_ldt_lock);
338 
339  for (i = LDT_PAGES_MAX-1, order=0; i; i>>=1, order++)
340  ;
341 
342  ldt = (struct ldt_entry *)
344  if (ldt == NULL) {
345  printk(KERN_ERR "ldt_get_host_info: couldn't allocate buffer "
346  "for host ldt\n");
347  return;
348  }
349 
350  ret = modify_ldt(0, ldt, (1<<order)*PAGE_SIZE);
351  if (ret < 0) {
352  printk(KERN_ERR "ldt_get_host_info: couldn't read host ldt\n");
353  goto out_free;
354  }
355  if (ret == 0) {
356  /* default_ldt is active, simply write an empty entry 0 */
357  host_ldt_entries = dummy_list;
358  goto out_free;
359  }
360 
361  for (i=0, size=0; i<ret/LDT_ENTRY_SIZE; i++) {
362  if (ldt[i].a != 0 || ldt[i].b != 0)
363  size++;
364  }
365 
366  if (size < ARRAY_SIZE(dummy_list))
367  host_ldt_entries = dummy_list;
368  else {
369  size = (size + 1) * sizeof(dummy_list[0]);
370  tmp = kmalloc(size, GFP_KERNEL);
371  if (tmp == NULL) {
372  printk(KERN_ERR "ldt_get_host_info: couldn't allocate "
373  "host ldt list\n");
374  goto out_free;
375  }
376  host_ldt_entries = tmp;
377  }
378 
379  for (i=0, k=0; i<ret/LDT_ENTRY_SIZE; i++) {
380  if (ldt[i].a != 0 || ldt[i].b != 0)
381  host_ldt_entries[k++] = i;
382  }
383  host_ldt_entries[k] = -1;
384 
385 out_free:
386  free_pages((unsigned long)ldt, order);
387 }
388 
389 long init_new_ldt(struct mm_context *new_mm, struct mm_context *from_mm)
390 {
391  struct user_desc desc;
392  short * num_p;
393  int i;
394  long page, err=0;
395  void *addr = NULL;
396  struct proc_mm_op copy;
397 
398 
399  if (!ptrace_ldt)
400  mutex_init(&new_mm->arch.ldt.lock);
401 
402  if (!from_mm) {
403  memset(&desc, 0, sizeof(desc));
404  /*
405  * We have to initialize a clean ldt.
406  */
407  if (proc_mm) {
408  /*
409  * If the new mm was created using proc_mm, host's
410  * default-ldt currently is assigned, which normally
411  * contains the call-gates for lcall7 and lcall27.
412  * To remove these gates, we simply write an empty
413  * entry as number 0 to the host.
414  */
415  err = write_ldt_entry(&new_mm->id, 1, &desc, &addr, 1);
416  }
417  else{
418  /*
419  * Now we try to retrieve info about the ldt, we
420  * inherited from the host. All ldt-entries found
421  * will be reset in the following loop
422  */
423  ldt_get_host_info();
424  for (num_p=host_ldt_entries; *num_p != -1; num_p++) {
425  desc.entry_number = *num_p;
426  err = write_ldt_entry(&new_mm->id, 1, &desc,
427  &addr, *(num_p + 1) == -1);
428  if (err)
429  break;
430  }
431  }
432  new_mm->arch.ldt.entry_count = 0;
433 
434  goto out;
435  }
436 
437  if (proc_mm) {
438  /*
439  * We have a valid from_mm, so we now have to copy the LDT of
440  * from_mm to new_mm, because using proc_mm an new mm with
441  * an empty/default LDT was created in new_mm()
442  */
443  copy = ((struct proc_mm_op) { .op = MM_COPY_SEGMENTS,
444  .u =
445  { .copy_segments =
446  from_mm->id.u.mm_fd } } );
447  i = os_write_file(new_mm->id.u.mm_fd, &copy, sizeof(copy));
448  if (i != sizeof(copy))
449  printk(KERN_ERR "new_mm : /proc/mm copy_segments "
450  "failed, err = %d\n", -i);
451  }
452 
453  if (!ptrace_ldt) {
454  /*
455  * Our local LDT is used to supply the data for
456  * modify_ldt(READLDT), if PTRACE_LDT isn't available,
457  * i.e., we have to use the stub for modify_ldt, which
458  * can't handle the big read buffer of up to 64kB.
459  */
460  mutex_lock(&from_mm->arch.ldt.lock);
461  if (from_mm->arch.ldt.entry_count <= LDT_DIRECT_ENTRIES)
462  memcpy(new_mm->arch.ldt.u.entries, from_mm->arch.ldt.u.entries,
463  sizeof(new_mm->arch.ldt.u.entries));
464  else {
465  i = from_mm->arch.ldt.entry_count / LDT_ENTRIES_PER_PAGE;
466  while (i-->0) {
468  if (!page) {
469  err = -ENOMEM;
470  break;
471  }
472  new_mm->arch.ldt.u.pages[i] =
473  (struct ldt_entry *) page;
474  memcpy(new_mm->arch.ldt.u.pages[i],
475  from_mm->arch.ldt.u.pages[i], PAGE_SIZE);
476  }
477  }
478  new_mm->arch.ldt.entry_count = from_mm->arch.ldt.entry_count;
479  mutex_unlock(&from_mm->arch.ldt.lock);
480  }
481 
482  out:
483  return err;
484 }
485 
486 
487 void free_ldt(struct mm_context *mm)
488 {
489  int i;
490 
491  if (!ptrace_ldt && mm->arch.ldt.entry_count > LDT_DIRECT_ENTRIES) {
492  i = mm->arch.ldt.entry_count / LDT_ENTRIES_PER_PAGE;
493  while (i-- > 0)
494  free_page((long) mm->arch.ldt.u.pages[i]);
495  }
496  mm->arch.ldt.entry_count = 0;
497 }
498 
499 int sys_modify_ldt(int func, void __user *ptr, unsigned long bytecount)
500 {
501  return do_modify_ldt_skas(func, ptr, bytecount);
502 }