Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
utmath.c
Go to the documentation of this file.
1 /*******************************************************************************
2  *
3  * Module Name: utmath - Integer math support routines
4  *
5  ******************************************************************************/
6 
7 /*
8  * Copyright (C) 2000 - 2012, Intel Corp.
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  * notice, this list of conditions, and the following disclaimer,
16  * without modification.
17  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18  * substantially similar to the "NO WARRANTY" disclaimer below
19  * ("Disclaimer") and any redistribution must be conditioned upon
20  * including a substantially similar Disclaimer requirement for further
21  * binary redistribution.
22  * 3. Neither the names of the above-listed copyright holders nor the names
23  * of any contributors may be used to endorse or promote products derived
24  * from this software without specific prior written permission.
25  *
26  * Alternatively, this software may be distributed under the terms of the
27  * GNU General Public License ("GPL") version 2 as published by the Free
28  * Software Foundation.
29  *
30  * NO WARRANTY
31  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41  * POSSIBILITY OF SUCH DAMAGES.
42  */
43 
44 #include <acpi/acpi.h>
45 #include "accommon.h"
46 
47 #define _COMPONENT ACPI_UTILITIES
48 ACPI_MODULE_NAME("utmath")
49 
50 /*
51  * Optional support for 64-bit double-precision integer divide. This code
52  * is configurable and is implemented in order to support 32-bit kernel
53  * environments where a 64-bit double-precision math library is not available.
54  *
55  * Support for a more normal 64-bit divide/modulo (with check for a divide-
56  * by-zero) appears after this optional section of code.
57  */
58 #ifndef ACPI_USE_NATIVE_DIVIDE
59 /* Structures used only for 64-bit divide */
60 typedef struct uint64_struct {
63 
65 
66 typedef union uint64_overlay {
69 
71 
72 /*******************************************************************************
73  *
74  * FUNCTION: acpi_ut_short_divide
75  *
76  * PARAMETERS: dividend - 64-bit dividend
77  * divisor - 32-bit divisor
78  * out_quotient - Pointer to where the quotient is returned
79  * out_remainder - Pointer to where the remainder is returned
80  *
81  * RETURN: Status (Checks for divide-by-zero)
82  *
83  * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits)
84  * divide and modulo. The result is a 64-bit quotient and a
85  * 32-bit remainder.
86  *
87  ******************************************************************************/
88 
91  u32 divisor, u64 *out_quotient, u32 *out_remainder)
92 {
93  union uint64_overlay dividend_ovl;
94  union uint64_overlay quotient;
95  u32 remainder32;
96 
97  ACPI_FUNCTION_TRACE(ut_short_divide);
98 
99  /* Always check for a zero divisor */
100 
101  if (divisor == 0) {
102  ACPI_ERROR((AE_INFO, "Divide by zero"));
104  }
105 
106  dividend_ovl.full = dividend;
107 
108  /*
109  * The quotient is 64 bits, the remainder is always 32 bits,
110  * and is generated by the second divide.
111  */
112  ACPI_DIV_64_BY_32(0, dividend_ovl.part.hi, divisor,
113  quotient.part.hi, remainder32);
114  ACPI_DIV_64_BY_32(remainder32, dividend_ovl.part.lo, divisor,
115  quotient.part.lo, remainder32);
116 
117  /* Return only what was requested */
118 
119  if (out_quotient) {
120  *out_quotient = quotient.full;
121  }
122  if (out_remainder) {
123  *out_remainder = remainder32;
124  }
125 
127 }
128 
129 /*******************************************************************************
130  *
131  * FUNCTION: acpi_ut_divide
132  *
133  * PARAMETERS: in_dividend - Dividend
134  * in_divisor - Divisor
135  * out_quotient - Pointer to where the quotient is returned
136  * out_remainder - Pointer to where the remainder is returned
137  *
138  * RETURN: Status (Checks for divide-by-zero)
139  *
140  * DESCRIPTION: Perform a divide and modulo.
141  *
142  ******************************************************************************/
143 
145 acpi_ut_divide(u64 in_dividend,
146  u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
147 {
148  union uint64_overlay dividend;
149  union uint64_overlay divisor;
150  union uint64_overlay quotient;
151  union uint64_overlay remainder;
152  union uint64_overlay normalized_dividend;
153  union uint64_overlay normalized_divisor;
154  u32 partial1;
155  union uint64_overlay partial2;
156  union uint64_overlay partial3;
157 
158  ACPI_FUNCTION_TRACE(ut_divide);
159 
160  /* Always check for a zero divisor */
161 
162  if (in_divisor == 0) {
163  ACPI_ERROR((AE_INFO, "Divide by zero"));
165  }
166 
167  divisor.full = in_divisor;
168  dividend.full = in_dividend;
169  if (divisor.part.hi == 0) {
170  /*
171  * 1) Simplest case is where the divisor is 32 bits, we can
172  * just do two divides
173  */
174  remainder.part.hi = 0;
175 
176  /*
177  * The quotient is 64 bits, the remainder is always 32 bits,
178  * and is generated by the second divide.
179  */
180  ACPI_DIV_64_BY_32(0, dividend.part.hi, divisor.part.lo,
181  quotient.part.hi, partial1);
182  ACPI_DIV_64_BY_32(partial1, dividend.part.lo, divisor.part.lo,
183  quotient.part.lo, remainder.part.lo);
184  }
185 
186  else {
187  /*
188  * 2) The general case where the divisor is a full 64 bits
189  * is more difficult
190  */
191  quotient.part.hi = 0;
192  normalized_dividend = dividend;
193  normalized_divisor = divisor;
194 
195  /* Normalize the operands (shift until the divisor is < 32 bits) */
196 
197  do {
198  ACPI_SHIFT_RIGHT_64(normalized_divisor.part.hi,
199  normalized_divisor.part.lo);
200  ACPI_SHIFT_RIGHT_64(normalized_dividend.part.hi,
201  normalized_dividend.part.lo);
202 
203  } while (normalized_divisor.part.hi != 0);
204 
205  /* Partial divide */
206 
207  ACPI_DIV_64_BY_32(normalized_dividend.part.hi,
208  normalized_dividend.part.lo,
209  normalized_divisor.part.lo,
210  quotient.part.lo, partial1);
211 
212  /*
213  * The quotient is always 32 bits, and simply requires adjustment.
214  * The 64-bit remainder must be generated.
215  */
216  partial1 = quotient.part.lo * divisor.part.hi;
217  partial2.full = (u64) quotient.part.lo * divisor.part.lo;
218  partial3.full = (u64) partial2.part.hi + partial1;
219 
220  remainder.part.hi = partial3.part.lo;
221  remainder.part.lo = partial2.part.lo;
222 
223  if (partial3.part.hi == 0) {
224  if (partial3.part.lo >= dividend.part.hi) {
225  if (partial3.part.lo == dividend.part.hi) {
226  if (partial2.part.lo > dividend.part.lo) {
227  quotient.part.lo--;
228  remainder.full -= divisor.full;
229  }
230  } else {
231  quotient.part.lo--;
232  remainder.full -= divisor.full;
233  }
234  }
235 
236  remainder.full = remainder.full - dividend.full;
237  remainder.part.hi = (u32) - ((s32) remainder.part.hi);
238  remainder.part.lo = (u32) - ((s32) remainder.part.lo);
239 
240  if (remainder.part.lo) {
241  remainder.part.hi--;
242  }
243  }
244  }
245 
246  /* Return only what was requested */
247 
248  if (out_quotient) {
249  *out_quotient = quotient.full;
250  }
251  if (out_remainder) {
252  *out_remainder = remainder.full;
253  }
254 
256 }
257 
258 #else
259 /*******************************************************************************
260  *
261  * FUNCTION: acpi_ut_short_divide, acpi_ut_divide
262  *
263  * PARAMETERS: See function headers above
264  *
265  * DESCRIPTION: Native versions of the ut_divide functions. Use these if either
266  * 1) The target is a 64-bit platform and therefore 64-bit
267  * integer math is supported directly by the machine.
268  * 2) The target is a 32-bit or 16-bit platform, and the
269  * double-precision integer math library is available to
270  * perform the divide.
271  *
272  ******************************************************************************/
274 acpi_ut_short_divide(u64 in_dividend,
275  u32 divisor, u64 *out_quotient, u32 *out_remainder)
276 {
277 
278  ACPI_FUNCTION_TRACE(ut_short_divide);
279 
280  /* Always check for a zero divisor */
281 
282  if (divisor == 0) {
283  ACPI_ERROR((AE_INFO, "Divide by zero"));
285  }
286 
287  /* Return only what was requested */
288 
289  if (out_quotient) {
290  *out_quotient = in_dividend / divisor;
291  }
292  if (out_remainder) {
293  *out_remainder = (u32) (in_dividend % divisor);
294  }
295 
297 }
298 
300 acpi_ut_divide(u64 in_dividend,
301  u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
302 {
303  ACPI_FUNCTION_TRACE(ut_divide);
304 
305  /* Always check for a zero divisor */
306 
307  if (in_divisor == 0) {
308  ACPI_ERROR((AE_INFO, "Divide by zero"));
310  }
311 
312  /* Return only what was requested */
313 
314  if (out_quotient) {
315  *out_quotient = in_dividend / in_divisor;
316  }
317  if (out_remainder) {
318  *out_remainder = in_dividend % in_divisor;
319  }
320 
322 }
323 
324 #endif