Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pageattr.c
Go to the documentation of this file.
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32  unsigned long *vaddr;
35  int numpages;
36  int flags;
37  unsigned long pfn;
38  unsigned force_split : 1;
39  int curpage;
40  struct page **pages;
41 };
42 
43 /*
44  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
45  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
46  * entries change the page attribute in parallel to some other cpu
47  * splitting a large page entry along with changing the attribute.
48  */
49 static DEFINE_SPINLOCK(cpa_lock);
50 
51 #define CPA_FLUSHTLB 1
52 #define CPA_ARRAY 2
53 #define CPA_PAGES_ARRAY 4
54 
55 #ifdef CONFIG_PROC_FS
56 static unsigned long direct_pages_count[PG_LEVEL_NUM];
57 
58 void update_page_count(int level, unsigned long pages)
59 {
60  /* Protect against CPA */
61  spin_lock(&pgd_lock);
62  direct_pages_count[level] += pages;
63  spin_unlock(&pgd_lock);
64 }
65 
66 static void split_page_count(int level)
67 {
68  direct_pages_count[level]--;
69  direct_pages_count[level - 1] += PTRS_PER_PTE;
70 }
71 
72 void arch_report_meminfo(struct seq_file *m)
73 {
74  seq_printf(m, "DirectMap4k: %8lu kB\n",
75  direct_pages_count[PG_LEVEL_4K] << 2);
76 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
77  seq_printf(m, "DirectMap2M: %8lu kB\n",
78  direct_pages_count[PG_LEVEL_2M] << 11);
79 #else
80  seq_printf(m, "DirectMap4M: %8lu kB\n",
81  direct_pages_count[PG_LEVEL_2M] << 12);
82 #endif
83 #ifdef CONFIG_X86_64
84  if (direct_gbpages)
85  seq_printf(m, "DirectMap1G: %8lu kB\n",
86  direct_pages_count[PG_LEVEL_1G] << 20);
87 #endif
88 }
89 #else
90 static inline void split_page_count(int level) { }
91 #endif
92 
93 #ifdef CONFIG_X86_64
94 
95 static inline unsigned long highmap_start_pfn(void)
96 {
97  return __pa(_text) >> PAGE_SHIFT;
98 }
99 
100 static inline unsigned long highmap_end_pfn(void)
101 {
102  return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
103 }
104 
105 #endif
106 
107 #ifdef CONFIG_DEBUG_PAGEALLOC
108 # define debug_pagealloc 1
109 #else
110 # define debug_pagealloc 0
111 #endif
112 
113 static inline int
114 within(unsigned long addr, unsigned long start, unsigned long end)
115 {
116  return addr >= start && addr < end;
117 }
118 
119 /*
120  * Flushing functions
121  */
122 
131 void clflush_cache_range(void *vaddr, unsigned int size)
132 {
133  void *vend = vaddr + size - 1;
134 
135  mb();
136 
137  for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
138  clflush(vaddr);
139  /*
140  * Flush any possible final partial cacheline:
141  */
142  clflush(vend);
143 
144  mb();
145 }
147 
148 static void __cpa_flush_all(void *arg)
149 {
150  unsigned long cache = (unsigned long)arg;
151 
152  /*
153  * Flush all to work around Errata in early athlons regarding
154  * large page flushing.
155  */
156  __flush_tlb_all();
157 
158  if (cache && boot_cpu_data.x86 >= 4)
159  wbinvd();
160 }
161 
162 static void cpa_flush_all(unsigned long cache)
163 {
165 
166  on_each_cpu(__cpa_flush_all, (void *) cache, 1);
167 }
168 
169 static void __cpa_flush_range(void *arg)
170 {
171  /*
172  * We could optimize that further and do individual per page
173  * tlb invalidates for a low number of pages. Caveat: we must
174  * flush the high aliases on 64bit as well.
175  */
176  __flush_tlb_all();
177 }
178 
179 static void cpa_flush_range(unsigned long start, int numpages, int cache)
180 {
181  unsigned int i, level;
182  unsigned long addr;
183 
185  WARN_ON(PAGE_ALIGN(start) != start);
186 
187  on_each_cpu(__cpa_flush_range, NULL, 1);
188 
189  if (!cache)
190  return;
191 
192  /*
193  * We only need to flush on one CPU,
194  * clflush is a MESI-coherent instruction that
195  * will cause all other CPUs to flush the same
196  * cachelines:
197  */
198  for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
199  pte_t *pte = lookup_address(addr, &level);
200 
201  /*
202  * Only flush present addresses:
203  */
204  if (pte && (pte_val(*pte) & _PAGE_PRESENT))
205  clflush_cache_range((void *) addr, PAGE_SIZE);
206  }
207 }
208 
209 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
210  int in_flags, struct page **pages)
211 {
212  unsigned int i, level;
213  unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
214 
216 
217  on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
218 
219  if (!cache || do_wbinvd)
220  return;
221 
222  /*
223  * We only need to flush on one CPU,
224  * clflush is a MESI-coherent instruction that
225  * will cause all other CPUs to flush the same
226  * cachelines:
227  */
228  for (i = 0; i < numpages; i++) {
229  unsigned long addr;
230  pte_t *pte;
231 
232  if (in_flags & CPA_PAGES_ARRAY)
233  addr = (unsigned long)page_address(pages[i]);
234  else
235  addr = start[i];
236 
237  pte = lookup_address(addr, &level);
238 
239  /*
240  * Only flush present addresses:
241  */
242  if (pte && (pte_val(*pte) & _PAGE_PRESENT))
243  clflush_cache_range((void *)addr, PAGE_SIZE);
244  }
245 }
246 
247 /*
248  * Certain areas of memory on x86 require very specific protection flags,
249  * for example the BIOS area or kernel text. Callers don't always get this
250  * right (again, ioremap() on BIOS memory is not uncommon) so this function
251  * checks and fixes these known static required protection bits.
252  */
253 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
254  unsigned long pfn)
255 {
256  pgprot_t forbidden = __pgprot(0);
257 
258  /*
259  * The BIOS area between 640k and 1Mb needs to be executable for
260  * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
261  */
262 #ifdef CONFIG_PCI_BIOS
263  if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
264  pgprot_val(forbidden) |= _PAGE_NX;
265 #endif
266 
267  /*
268  * The kernel text needs to be executable for obvious reasons
269  * Does not cover __inittext since that is gone later on. On
270  * 64bit we do not enforce !NX on the low mapping
271  */
272  if (within(address, (unsigned long)_text, (unsigned long)_etext))
273  pgprot_val(forbidden) |= _PAGE_NX;
274 
275  /*
276  * The .rodata section needs to be read-only. Using the pfn
277  * catches all aliases.
278  */
279  if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
280  __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
281  pgprot_val(forbidden) |= _PAGE_RW;
282 
283 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
284  /*
285  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
286  * kernel text mappings for the large page aligned text, rodata sections
287  * will be always read-only. For the kernel identity mappings covering
288  * the holes caused by this alignment can be anything that user asks.
289  *
290  * This will preserve the large page mappings for kernel text/data
291  * at no extra cost.
292  */
293  if (kernel_set_to_readonly &&
294  within(address, (unsigned long)_text,
295  (unsigned long)__end_rodata_hpage_align)) {
296  unsigned int level;
297 
298  /*
299  * Don't enforce the !RW mapping for the kernel text mapping,
300  * if the current mapping is already using small page mapping.
301  * No need to work hard to preserve large page mappings in this
302  * case.
303  *
304  * This also fixes the Linux Xen paravirt guest boot failure
305  * (because of unexpected read-only mappings for kernel identity
306  * mappings). In this paravirt guest case, the kernel text
307  * mapping and the kernel identity mapping share the same
308  * page-table pages. Thus we can't really use different
309  * protections for the kernel text and identity mappings. Also,
310  * these shared mappings are made of small page mappings.
311  * Thus this don't enforce !RW mapping for small page kernel
312  * text mapping logic will help Linux Xen parvirt guest boot
313  * as well.
314  */
315  if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
316  pgprot_val(forbidden) |= _PAGE_RW;
317  }
318 #endif
319 
320  prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
321 
322  return prot;
323 }
324 
325 /*
326  * Lookup the page table entry for a virtual address. Return a pointer
327  * to the entry and the level of the mapping.
328  *
329  * Note: We return pud and pmd either when the entry is marked large
330  * or when the present bit is not set. Otherwise we would return a
331  * pointer to a nonexisting mapping.
332  */
333 pte_t *lookup_address(unsigned long address, unsigned int *level)
334 {
335  pgd_t *pgd = pgd_offset_k(address);
336  pud_t *pud;
337  pmd_t *pmd;
338 
339  *level = PG_LEVEL_NONE;
340 
341  if (pgd_none(*pgd))
342  return NULL;
343 
344  pud = pud_offset(pgd, address);
345  if (pud_none(*pud))
346  return NULL;
347 
348  *level = PG_LEVEL_1G;
349  if (pud_large(*pud) || !pud_present(*pud))
350  return (pte_t *)pud;
351 
352  pmd = pmd_offset(pud, address);
353  if (pmd_none(*pmd))
354  return NULL;
355 
356  *level = PG_LEVEL_2M;
357  if (pmd_large(*pmd) || !pmd_present(*pmd))
358  return (pte_t *)pmd;
359 
360  *level = PG_LEVEL_4K;
361 
362  return pte_offset_kernel(pmd, address);
363 }
364 EXPORT_SYMBOL_GPL(lookup_address);
365 
366 /*
367  * Set the new pmd in all the pgds we know about:
368  */
369 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
370 {
371  /* change init_mm */
372  set_pte_atomic(kpte, pte);
373 #ifdef CONFIG_X86_32
374  if (!SHARED_KERNEL_PMD) {
375  struct page *page;
376 
377  list_for_each_entry(page, &pgd_list, lru) {
378  pgd_t *pgd;
379  pud_t *pud;
380  pmd_t *pmd;
381 
382  pgd = (pgd_t *)page_address(page) + pgd_index(address);
383  pud = pud_offset(pgd, address);
384  pmd = pmd_offset(pud, address);
385  set_pte_atomic((pte_t *)pmd, pte);
386  }
387  }
388 #endif
389 }
390 
391 static int
392 try_preserve_large_page(pte_t *kpte, unsigned long address,
393  struct cpa_data *cpa)
394 {
395  unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
396  pte_t new_pte, old_pte, *tmp;
397  pgprot_t old_prot, new_prot, req_prot;
398  int i, do_split = 1;
399  unsigned int level;
400 
401  if (cpa->force_split)
402  return 1;
403 
404  spin_lock(&pgd_lock);
405  /*
406  * Check for races, another CPU might have split this page
407  * up already:
408  */
409  tmp = lookup_address(address, &level);
410  if (tmp != kpte)
411  goto out_unlock;
412 
413  switch (level) {
414  case PG_LEVEL_2M:
415  psize = PMD_PAGE_SIZE;
416  pmask = PMD_PAGE_MASK;
417  break;
418 #ifdef CONFIG_X86_64
419  case PG_LEVEL_1G:
420  psize = PUD_PAGE_SIZE;
421  pmask = PUD_PAGE_MASK;
422  break;
423 #endif
424  default:
425  do_split = -EINVAL;
426  goto out_unlock;
427  }
428 
429  /*
430  * Calculate the number of pages, which fit into this large
431  * page starting at address:
432  */
433  nextpage_addr = (address + psize) & pmask;
434  numpages = (nextpage_addr - address) >> PAGE_SHIFT;
435  if (numpages < cpa->numpages)
436  cpa->numpages = numpages;
437 
438  /*
439  * We are safe now. Check whether the new pgprot is the same:
440  */
441  old_pte = *kpte;
442  old_prot = new_prot = req_prot = pte_pgprot(old_pte);
443 
444  pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
445  pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
446 
447  /*
448  * old_pte points to the large page base address. So we need
449  * to add the offset of the virtual address:
450  */
451  pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
452  cpa->pfn = pfn;
453 
454  new_prot = static_protections(req_prot, address, pfn);
455 
456  /*
457  * We need to check the full range, whether
458  * static_protection() requires a different pgprot for one of
459  * the pages in the range we try to preserve:
460  */
461  addr = address & pmask;
462  pfn = pte_pfn(old_pte);
463  for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
464  pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
465 
466  if (pgprot_val(chk_prot) != pgprot_val(new_prot))
467  goto out_unlock;
468  }
469 
470  /*
471  * If there are no changes, return. maxpages has been updated
472  * above:
473  */
474  if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
475  do_split = 0;
476  goto out_unlock;
477  }
478 
479  /*
480  * We need to change the attributes. Check, whether we can
481  * change the large page in one go. We request a split, when
482  * the address is not aligned and the number of pages is
483  * smaller than the number of pages in the large page. Note
484  * that we limited the number of possible pages already to
485  * the number of pages in the large page.
486  */
487  if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
488  /*
489  * The address is aligned and the number of pages
490  * covers the full page.
491  */
492  new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
493  __set_pmd_pte(kpte, address, new_pte);
494  cpa->flags |= CPA_FLUSHTLB;
495  do_split = 0;
496  }
497 
498 out_unlock:
499  spin_unlock(&pgd_lock);
500 
501  return do_split;
502 }
503 
504 static int split_large_page(pte_t *kpte, unsigned long address)
505 {
506  unsigned long pfn, pfninc = 1;
507  unsigned int i, level;
508  pte_t *pbase, *tmp;
509  pgprot_t ref_prot;
510  struct page *base;
511 
512  if (!debug_pagealloc)
513  spin_unlock(&cpa_lock);
514  base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
515  if (!debug_pagealloc)
516  spin_lock(&cpa_lock);
517  if (!base)
518  return -ENOMEM;
519 
520  spin_lock(&pgd_lock);
521  /*
522  * Check for races, another CPU might have split this page
523  * up for us already:
524  */
525  tmp = lookup_address(address, &level);
526  if (tmp != kpte)
527  goto out_unlock;
528 
529  pbase = (pte_t *)page_address(base);
530  paravirt_alloc_pte(&init_mm, page_to_pfn(base));
531  ref_prot = pte_pgprot(pte_clrhuge(*kpte));
532  /*
533  * If we ever want to utilize the PAT bit, we need to
534  * update this function to make sure it's converted from
535  * bit 12 to bit 7 when we cross from the 2MB level to
536  * the 4K level:
537  */
539 
540 #ifdef CONFIG_X86_64
541  if (level == PG_LEVEL_1G) {
542  pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
543  pgprot_val(ref_prot) |= _PAGE_PSE;
544  }
545 #endif
546 
547  /*
548  * Get the target pfn from the original entry:
549  */
550  pfn = pte_pfn(*kpte);
551  for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
552  set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
553 
554  if (address >= (unsigned long)__va(0) &&
555  address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
556  split_page_count(level);
557 
558 #ifdef CONFIG_X86_64
559  if (address >= (unsigned long)__va(1UL<<32) &&
560  address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
561  split_page_count(level);
562 #endif
563 
564  /*
565  * Install the new, split up pagetable.
566  *
567  * We use the standard kernel pagetable protections for the new
568  * pagetable protections, the actual ptes set above control the
569  * primary protection behavior:
570  */
571  __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
572 
573  /*
574  * Intel Atom errata AAH41 workaround.
575  *
576  * The real fix should be in hw or in a microcode update, but
577  * we also probabilistically try to reduce the window of having
578  * a large TLB mixed with 4K TLBs while instruction fetches are
579  * going on.
580  */
581  __flush_tlb_all();
582 
583  base = NULL;
584 
585 out_unlock:
586  /*
587  * If we dropped out via the lookup_address check under
588  * pgd_lock then stick the page back into the pool:
589  */
590  if (base)
591  __free_page(base);
592  spin_unlock(&pgd_lock);
593 
594  return 0;
595 }
596 
597 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
598  int primary)
599 {
600  /*
601  * Ignore all non primary paths.
602  */
603  if (!primary)
604  return 0;
605 
606  /*
607  * Ignore the NULL PTE for kernel identity mapping, as it is expected
608  * to have holes.
609  * Also set numpages to '1' indicating that we processed cpa req for
610  * one virtual address page and its pfn. TBD: numpages can be set based
611  * on the initial value and the level returned by lookup_address().
612  */
613  if (within(vaddr, PAGE_OFFSET,
615  cpa->numpages = 1;
616  cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
617  return 0;
618  } else {
619  WARN(1, KERN_WARNING "CPA: called for zero pte. "
620  "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
621  *cpa->vaddr);
622 
623  return -EFAULT;
624  }
625 }
626 
627 static int __change_page_attr(struct cpa_data *cpa, int primary)
628 {
629  unsigned long address;
630  int do_split, err;
631  unsigned int level;
632  pte_t *kpte, old_pte;
633 
634  if (cpa->flags & CPA_PAGES_ARRAY) {
635  struct page *page = cpa->pages[cpa->curpage];
636  if (unlikely(PageHighMem(page)))
637  return 0;
638  address = (unsigned long)page_address(page);
639  } else if (cpa->flags & CPA_ARRAY)
640  address = cpa->vaddr[cpa->curpage];
641  else
642  address = *cpa->vaddr;
643 repeat:
644  kpte = lookup_address(address, &level);
645  if (!kpte)
646  return __cpa_process_fault(cpa, address, primary);
647 
648  old_pte = *kpte;
649  if (!pte_val(old_pte))
650  return __cpa_process_fault(cpa, address, primary);
651 
652  if (level == PG_LEVEL_4K) {
653  pte_t new_pte;
654  pgprot_t new_prot = pte_pgprot(old_pte);
655  unsigned long pfn = pte_pfn(old_pte);
656 
657  pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
658  pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
659 
660  new_prot = static_protections(new_prot, address, pfn);
661 
662  /*
663  * We need to keep the pfn from the existing PTE,
664  * after all we're only going to change it's attributes
665  * not the memory it points to
666  */
667  new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
668  cpa->pfn = pfn;
669  /*
670  * Do we really change anything ?
671  */
672  if (pte_val(old_pte) != pte_val(new_pte)) {
673  set_pte_atomic(kpte, new_pte);
674  cpa->flags |= CPA_FLUSHTLB;
675  }
676  cpa->numpages = 1;
677  return 0;
678  }
679 
680  /*
681  * Check, whether we can keep the large page intact
682  * and just change the pte:
683  */
684  do_split = try_preserve_large_page(kpte, address, cpa);
685  /*
686  * When the range fits into the existing large page,
687  * return. cp->numpages and cpa->tlbflush have been updated in
688  * try_large_page:
689  */
690  if (do_split <= 0)
691  return do_split;
692 
693  /*
694  * We have to split the large page:
695  */
696  err = split_large_page(kpte, address);
697  if (!err) {
698  /*
699  * Do a global flush tlb after splitting the large page
700  * and before we do the actual change page attribute in the PTE.
701  *
702  * With out this, we violate the TLB application note, that says
703  * "The TLBs may contain both ordinary and large-page
704  * translations for a 4-KByte range of linear addresses. This
705  * may occur if software modifies the paging structures so that
706  * the page size used for the address range changes. If the two
707  * translations differ with respect to page frame or attributes
708  * (e.g., permissions), processor behavior is undefined and may
709  * be implementation-specific."
710  *
711  * We do this global tlb flush inside the cpa_lock, so that we
712  * don't allow any other cpu, with stale tlb entries change the
713  * page attribute in parallel, that also falls into the
714  * just split large page entry.
715  */
716  flush_tlb_all();
717  goto repeat;
718  }
719 
720  return err;
721 }
722 
723 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
724 
725 static int cpa_process_alias(struct cpa_data *cpa)
726 {
727  struct cpa_data alias_cpa;
728  unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
729  unsigned long vaddr;
730  int ret;
731 
732  if (cpa->pfn >= max_pfn_mapped)
733  return 0;
734 
735 #ifdef CONFIG_X86_64
736  if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
737  return 0;
738 #endif
739  /*
740  * No need to redo, when the primary call touched the direct
741  * mapping already:
742  */
743  if (cpa->flags & CPA_PAGES_ARRAY) {
744  struct page *page = cpa->pages[cpa->curpage];
745  if (unlikely(PageHighMem(page)))
746  return 0;
747  vaddr = (unsigned long)page_address(page);
748  } else if (cpa->flags & CPA_ARRAY)
749  vaddr = cpa->vaddr[cpa->curpage];
750  else
751  vaddr = *cpa->vaddr;
752 
753  if (!(within(vaddr, PAGE_OFFSET,
755 
756  alias_cpa = *cpa;
757  alias_cpa.vaddr = &laddr;
758  alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
759 
760  ret = __change_page_attr_set_clr(&alias_cpa, 0);
761  if (ret)
762  return ret;
763  }
764 
765 #ifdef CONFIG_X86_64
766  /*
767  * If the primary call didn't touch the high mapping already
768  * and the physical address is inside the kernel map, we need
769  * to touch the high mapped kernel as well:
770  */
771  if (!within(vaddr, (unsigned long)_text, _brk_end) &&
772  within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
773  unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
774  __START_KERNEL_map - phys_base;
775  alias_cpa = *cpa;
776  alias_cpa.vaddr = &temp_cpa_vaddr;
777  alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
778 
779  /*
780  * The high mapping range is imprecise, so ignore the
781  * return value.
782  */
783  __change_page_attr_set_clr(&alias_cpa, 0);
784  }
785 #endif
786 
787  return 0;
788 }
789 
790 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
791 {
792  int ret, numpages = cpa->numpages;
793 
794  while (numpages) {
795  /*
796  * Store the remaining nr of pages for the large page
797  * preservation check.
798  */
799  cpa->numpages = numpages;
800  /* for array changes, we can't use large page */
801  if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
802  cpa->numpages = 1;
803 
804  if (!debug_pagealloc)
805  spin_lock(&cpa_lock);
806  ret = __change_page_attr(cpa, checkalias);
807  if (!debug_pagealloc)
808  spin_unlock(&cpa_lock);
809  if (ret)
810  return ret;
811 
812  if (checkalias) {
813  ret = cpa_process_alias(cpa);
814  if (ret)
815  return ret;
816  }
817 
818  /*
819  * Adjust the number of pages with the result of the
820  * CPA operation. Either a large page has been
821  * preserved or a single page update happened.
822  */
823  BUG_ON(cpa->numpages > numpages);
824  numpages -= cpa->numpages;
825  if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
826  cpa->curpage++;
827  else
828  *cpa->vaddr += cpa->numpages * PAGE_SIZE;
829 
830  }
831  return 0;
832 }
833 
834 static inline int cache_attr(pgprot_t attr)
835 {
836  return pgprot_val(attr) &
838 }
839 
840 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
841  pgprot_t mask_set, pgprot_t mask_clr,
842  int force_split, int in_flag,
843  struct page **pages)
844 {
845  struct cpa_data cpa;
846  int ret, cache, checkalias;
847  unsigned long baddr = 0;
848 
849  /*
850  * Check, if we are requested to change a not supported
851  * feature:
852  */
853  mask_set = canon_pgprot(mask_set);
854  mask_clr = canon_pgprot(mask_clr);
855  if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
856  return 0;
857 
858  /* Ensure we are PAGE_SIZE aligned */
859  if (in_flag & CPA_ARRAY) {
860  int i;
861  for (i = 0; i < numpages; i++) {
862  if (addr[i] & ~PAGE_MASK) {
863  addr[i] &= PAGE_MASK;
864  WARN_ON_ONCE(1);
865  }
866  }
867  } else if (!(in_flag & CPA_PAGES_ARRAY)) {
868  /*
869  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
870  * No need to cehck in that case
871  */
872  if (*addr & ~PAGE_MASK) {
873  *addr &= PAGE_MASK;
874  /*
875  * People should not be passing in unaligned addresses:
876  */
877  WARN_ON_ONCE(1);
878  }
879  /*
880  * Save address for cache flush. *addr is modified in the call
881  * to __change_page_attr_set_clr() below.
882  */
883  baddr = *addr;
884  }
885 
886  /* Must avoid aliasing mappings in the highmem code */
888 
890 
891  cpa.vaddr = addr;
892  cpa.pages = pages;
893  cpa.numpages = numpages;
894  cpa.mask_set = mask_set;
895  cpa.mask_clr = mask_clr;
896  cpa.flags = 0;
897  cpa.curpage = 0;
898  cpa.force_split = force_split;
899 
900  if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
901  cpa.flags |= in_flag;
902 
903  /* No alias checking for _NX bit modifications */
904  checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
905 
906  ret = __change_page_attr_set_clr(&cpa, checkalias);
907 
908  /*
909  * Check whether we really changed something:
910  */
911  if (!(cpa.flags & CPA_FLUSHTLB))
912  goto out;
913 
914  /*
915  * No need to flush, when we did not set any of the caching
916  * attributes:
917  */
918  cache = cache_attr(mask_set);
919 
920  /*
921  * On success we use clflush, when the CPU supports it to
922  * avoid the wbindv. If the CPU does not support it and in the
923  * error case we fall back to cpa_flush_all (which uses
924  * wbindv):
925  */
926  if (!ret && cpu_has_clflush) {
927  if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
928  cpa_flush_array(addr, numpages, cache,
929  cpa.flags, pages);
930  } else
931  cpa_flush_range(baddr, numpages, cache);
932  } else
933  cpa_flush_all(cache);
934 
935 out:
936  return ret;
937 }
938 
939 static inline int change_page_attr_set(unsigned long *addr, int numpages,
940  pgprot_t mask, int array)
941 {
942  return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
943  (array ? CPA_ARRAY : 0), NULL);
944 }
945 
946 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
947  pgprot_t mask, int array)
948 {
949  return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
950  (array ? CPA_ARRAY : 0), NULL);
951 }
952 
953 static inline int cpa_set_pages_array(struct page **pages, int numpages,
954  pgprot_t mask)
955 {
956  return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
957  CPA_PAGES_ARRAY, pages);
958 }
959 
960 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
961  pgprot_t mask)
962 {
963  return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
964  CPA_PAGES_ARRAY, pages);
965 }
966 
967 int _set_memory_uc(unsigned long addr, int numpages)
968 {
969  /*
970  * for now UC MINUS. see comments in ioremap_nocache()
971  */
972  return change_page_attr_set(&addr, numpages,
974 }
975 
976 int set_memory_uc(unsigned long addr, int numpages)
977 {
978  int ret;
979 
980  /*
981  * for now UC MINUS. see comments in ioremap_nocache()
982  */
983  ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
985  if (ret)
986  goto out_err;
987 
988  ret = _set_memory_uc(addr, numpages);
989  if (ret)
990  goto out_free;
991 
992  return 0;
993 
994 out_free:
995  free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
996 out_err:
997  return ret;
998 }
1000 
1001 static int _set_memory_array(unsigned long *addr, int addrinarray,
1002  unsigned long new_type)
1003 {
1004  int i, j;
1005  int ret;
1006 
1007  /*
1008  * for now UC MINUS. see comments in ioremap_nocache()
1009  */
1010  for (i = 0; i < addrinarray; i++) {
1011  ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1012  new_type, NULL);
1013  if (ret)
1014  goto out_free;
1015  }
1016 
1017  ret = change_page_attr_set(addr, addrinarray,
1019 
1020  if (!ret && new_type == _PAGE_CACHE_WC)
1021  ret = change_page_attr_set_clr(addr, addrinarray,
1024  0, CPA_ARRAY, NULL);
1025  if (ret)
1026  goto out_free;
1027 
1028  return 0;
1029 
1030 out_free:
1031  for (j = 0; j < i; j++)
1032  free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1033 
1034  return ret;
1035 }
1036 
1037 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1038 {
1039  return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1040 }
1042 
1043 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1044 {
1045  return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1046 }
1048 
1049 int _set_memory_wc(unsigned long addr, int numpages)
1050 {
1051  int ret;
1052  unsigned long addr_copy = addr;
1053 
1054  ret = change_page_attr_set(&addr, numpages,
1056  if (!ret) {
1057  ret = change_page_attr_set_clr(&addr_copy, numpages,
1060  0, 0, NULL);
1061  }
1062  return ret;
1063 }
1064 
1065 int set_memory_wc(unsigned long addr, int numpages)
1066 {
1067  int ret;
1068 
1069  if (!pat_enabled)
1070  return set_memory_uc(addr, numpages);
1071 
1072  ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1073  _PAGE_CACHE_WC, NULL);
1074  if (ret)
1075  goto out_err;
1076 
1077  ret = _set_memory_wc(addr, numpages);
1078  if (ret)
1079  goto out_free;
1080 
1081  return 0;
1082 
1083 out_free:
1084  free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1085 out_err:
1086  return ret;
1087 }
1089 
1090 int _set_memory_wb(unsigned long addr, int numpages)
1091 {
1092  return change_page_attr_clear(&addr, numpages,
1094 }
1095 
1096 int set_memory_wb(unsigned long addr, int numpages)
1097 {
1098  int ret;
1099 
1100  ret = _set_memory_wb(addr, numpages);
1101  if (ret)
1102  return ret;
1103 
1104  free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1105  return 0;
1106 }
1108 
1109 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1110 {
1111  int i;
1112  int ret;
1113 
1114  ret = change_page_attr_clear(addr, addrinarray,
1116  if (ret)
1117  return ret;
1118 
1119  for (i = 0; i < addrinarray; i++)
1120  free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1121 
1122  return 0;
1123 }
1125 
1126 int set_memory_x(unsigned long addr, int numpages)
1127 {
1128  if (!(__supported_pte_mask & _PAGE_NX))
1129  return 0;
1130 
1131  return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1132 }
1134 
1135 int set_memory_nx(unsigned long addr, int numpages)
1136 {
1137  if (!(__supported_pte_mask & _PAGE_NX))
1138  return 0;
1139 
1140  return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1141 }
1143 
1144 int set_memory_ro(unsigned long addr, int numpages)
1145 {
1146  return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1147 }
1149 
1150 int set_memory_rw(unsigned long addr, int numpages)
1151 {
1152  return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1153 }
1155 
1156 int set_memory_np(unsigned long addr, int numpages)
1157 {
1158  return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1159 }
1160 
1161 int set_memory_4k(unsigned long addr, int numpages)
1162 {
1163  return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1164  __pgprot(0), 1, 0, NULL);
1165 }
1166 
1167 int set_pages_uc(struct page *page, int numpages)
1168 {
1169  unsigned long addr = (unsigned long)page_address(page);
1170 
1171  return set_memory_uc(addr, numpages);
1172 }
1174 
1175 static int _set_pages_array(struct page **pages, int addrinarray,
1176  unsigned long new_type)
1177 {
1178  unsigned long start;
1179  unsigned long end;
1180  int i;
1181  int free_idx;
1182  int ret;
1183 
1184  for (i = 0; i < addrinarray; i++) {
1185  if (PageHighMem(pages[i]))
1186  continue;
1187  start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1188  end = start + PAGE_SIZE;
1189  if (reserve_memtype(start, end, new_type, NULL))
1190  goto err_out;
1191  }
1192 
1193  ret = cpa_set_pages_array(pages, addrinarray,
1195  if (!ret && new_type == _PAGE_CACHE_WC)
1196  ret = change_page_attr_set_clr(NULL, addrinarray,
1199  0, CPA_PAGES_ARRAY, pages);
1200  if (ret)
1201  goto err_out;
1202  return 0; /* Success */
1203 err_out:
1204  free_idx = i;
1205  for (i = 0; i < free_idx; i++) {
1206  if (PageHighMem(pages[i]))
1207  continue;
1208  start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1209  end = start + PAGE_SIZE;
1210  free_memtype(start, end);
1211  }
1212  return -EINVAL;
1213 }
1214 
1215 int set_pages_array_uc(struct page **pages, int addrinarray)
1216 {
1217  return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1218 }
1220 
1221 int set_pages_array_wc(struct page **pages, int addrinarray)
1222 {
1223  return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1224 }
1226 
1227 int set_pages_wb(struct page *page, int numpages)
1228 {
1229  unsigned long addr = (unsigned long)page_address(page);
1230 
1231  return set_memory_wb(addr, numpages);
1232 }
1234 
1235 int set_pages_array_wb(struct page **pages, int addrinarray)
1236 {
1237  int retval;
1238  unsigned long start;
1239  unsigned long end;
1240  int i;
1241 
1242  retval = cpa_clear_pages_array(pages, addrinarray,
1244  if (retval)
1245  return retval;
1246 
1247  for (i = 0; i < addrinarray; i++) {
1248  if (PageHighMem(pages[i]))
1249  continue;
1250  start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1251  end = start + PAGE_SIZE;
1252  free_memtype(start, end);
1253  }
1254 
1255  return 0;
1256 }
1258 
1259 int set_pages_x(struct page *page, int numpages)
1260 {
1261  unsigned long addr = (unsigned long)page_address(page);
1262 
1263  return set_memory_x(addr, numpages);
1264 }
1266 
1267 int set_pages_nx(struct page *page, int numpages)
1268 {
1269  unsigned long addr = (unsigned long)page_address(page);
1270 
1271  return set_memory_nx(addr, numpages);
1272 }
1274 
1275 int set_pages_ro(struct page *page, int numpages)
1276 {
1277  unsigned long addr = (unsigned long)page_address(page);
1278 
1279  return set_memory_ro(addr, numpages);
1280 }
1281 
1282 int set_pages_rw(struct page *page, int numpages)
1283 {
1284  unsigned long addr = (unsigned long)page_address(page);
1285 
1286  return set_memory_rw(addr, numpages);
1287 }
1288 
1289 #ifdef CONFIG_DEBUG_PAGEALLOC
1290 
1291 static int __set_pages_p(struct page *page, int numpages)
1292 {
1293  unsigned long tempaddr = (unsigned long) page_address(page);
1294  struct cpa_data cpa = { .vaddr = &tempaddr,
1295  .numpages = numpages,
1296  .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1297  .mask_clr = __pgprot(0),
1298  .flags = 0};
1299 
1300  /*
1301  * No alias checking needed for setting present flag. otherwise,
1302  * we may need to break large pages for 64-bit kernel text
1303  * mappings (this adds to complexity if we want to do this from
1304  * atomic context especially). Let's keep it simple!
1305  */
1306  return __change_page_attr_set_clr(&cpa, 0);
1307 }
1308 
1309 static int __set_pages_np(struct page *page, int numpages)
1310 {
1311  unsigned long tempaddr = (unsigned long) page_address(page);
1312  struct cpa_data cpa = { .vaddr = &tempaddr,
1313  .numpages = numpages,
1314  .mask_set = __pgprot(0),
1315  .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1316  .flags = 0};
1317 
1318  /*
1319  * No alias checking needed for setting not present flag. otherwise,
1320  * we may need to break large pages for 64-bit kernel text
1321  * mappings (this adds to complexity if we want to do this from
1322  * atomic context especially). Let's keep it simple!
1323  */
1324  return __change_page_attr_set_clr(&cpa, 0);
1325 }
1326 
1327 void kernel_map_pages(struct page *page, int numpages, int enable)
1328 {
1329  if (PageHighMem(page))
1330  return;
1331  if (!enable) {
1333  numpages * PAGE_SIZE);
1334  }
1335 
1336  /*
1337  * The return value is ignored as the calls cannot fail.
1338  * Large pages for identity mappings are not used at boot time
1339  * and hence no memory allocations during large page split.
1340  */
1341  if (enable)
1342  __set_pages_p(page, numpages);
1343  else
1344  __set_pages_np(page, numpages);
1345 
1346  /*
1347  * We should perform an IPI and flush all tlbs,
1348  * but that can deadlock->flush only current cpu:
1349  */
1350  __flush_tlb_all();
1351 }
1352 
1353 #ifdef CONFIG_HIBERNATION
1354 
1355 bool kernel_page_present(struct page *page)
1356 {
1357  unsigned int level;
1358  pte_t *pte;
1359 
1360  if (PageHighMem(page))
1361  return false;
1362 
1363  pte = lookup_address((unsigned long)page_address(page), &level);
1364  return (pte_val(*pte) & _PAGE_PRESENT);
1365 }
1366 
1367 #endif /* CONFIG_HIBERNATION */
1368 
1369 #endif /* CONFIG_DEBUG_PAGEALLOC */
1370 
1371 /*
1372  * The testcases use internal knowledge of the implementation that shouldn't
1373  * be exposed to the rest of the kernel. Include these directly here.
1374  */
1375 #ifdef CONFIG_CPA_DEBUG
1376 #include "pageattr-test.c"
1377 #endif