Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
xfs_extfree_item.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_buf_item.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_extfree_item.h"
29 
30 
33 
34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35 {
36  return container_of(lip, struct xfs_efi_log_item, efi_item);
37 }
38 
39 void
41  struct xfs_efi_log_item *efip)
42 {
43  if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
44  kmem_free(efip);
45  else
46  kmem_zone_free(xfs_efi_zone, efip);
47 }
48 
49 /*
50  * Freeing the efi requires that we remove it from the AIL if it has already
51  * been placed there. However, the EFI may not yet have been placed in the AIL
52  * when called by xfs_efi_release() from EFD processing due to the ordering of
53  * committed vs unpin operations in bulk insert operations. Hence the
54  * test_and_clear_bit(XFS_EFI_COMMITTED) to ensure only the last caller frees
55  * the EFI.
56  */
57 STATIC void
59  struct xfs_efi_log_item *efip)
60 {
61  struct xfs_ail *ailp = efip->efi_item.li_ailp;
62 
63  if (!test_and_clear_bit(XFS_EFI_COMMITTED, &efip->efi_flags)) {
64  spin_lock(&ailp->xa_lock);
65  /* xfs_trans_ail_delete() drops the AIL lock. */
66  xfs_trans_ail_delete(ailp, &efip->efi_item,
67  SHUTDOWN_LOG_IO_ERROR);
68  xfs_efi_item_free(efip);
69  }
70 }
71 
72 /*
73  * This returns the number of iovecs needed to log the given efi item.
74  * We only need 1 iovec for an efi item. It just logs the efi_log_format
75  * structure.
76  */
79  struct xfs_log_item *lip)
80 {
81  return 1;
82 }
83 
84 /*
85  * This is called to fill in the vector of log iovecs for the
86  * given efi log item. We use only 1 iovec, and we point that
87  * at the efi_log_format structure embedded in the efi item.
88  * It is at this point that we assert that all of the extent
89  * slots in the efi item have been filled.
90  */
91 STATIC void
93  struct xfs_log_item *lip,
94  struct xfs_log_iovec *log_vector)
95 {
96  struct xfs_efi_log_item *efip = EFI_ITEM(lip);
97  uint size;
98 
99  ASSERT(atomic_read(&efip->efi_next_extent) ==
100  efip->efi_format.efi_nextents);
101 
102  efip->efi_format.efi_type = XFS_LI_EFI;
103 
104  size = sizeof(xfs_efi_log_format_t);
105  size += (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
106  efip->efi_format.efi_size = 1;
107 
108  log_vector->i_addr = &efip->efi_format;
109  log_vector->i_len = size;
110  log_vector->i_type = XLOG_REG_TYPE_EFI_FORMAT;
111  ASSERT(size >= sizeof(xfs_efi_log_format_t));
112 }
113 
114 
115 /*
116  * Pinning has no meaning for an efi item, so just return.
117  */
118 STATIC void
120  struct xfs_log_item *lip)
121 {
122 }
123 
124 /*
125  * While EFIs cannot really be pinned, the unpin operation is the last place at
126  * which the EFI is manipulated during a transaction. If we are being asked to
127  * remove the EFI it's because the transaction has been cancelled and by
128  * definition that means the EFI cannot be in the AIL so remove it from the
129  * transaction and free it. Otherwise coordinate with xfs_efi_release() (via
130  * XFS_EFI_COMMITTED) to determine who gets to free the EFI.
131  */
132 STATIC void
134  struct xfs_log_item *lip,
135  int remove)
136 {
137  struct xfs_efi_log_item *efip = EFI_ITEM(lip);
138 
139  if (remove) {
140  ASSERT(!(lip->li_flags & XFS_LI_IN_AIL));
141  if (lip->li_desc)
142  xfs_trans_del_item(lip);
143  xfs_efi_item_free(efip);
144  return;
145  }
146  __xfs_efi_release(efip);
147 }
148 
149 /*
150  * Efi items have no locking or pushing. However, since EFIs are pulled from
151  * the AIL when their corresponding EFDs are committed to disk, their situation
152  * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
153  * will eventually flush the log. This should help in getting the EFI out of
154  * the AIL.
155  */
156 STATIC uint
158  struct xfs_log_item *lip,
159  struct list_head *buffer_list)
160 {
161  return XFS_ITEM_PINNED;
162 }
163 
164 STATIC void
166  struct xfs_log_item *lip)
167 {
168  if (lip->li_flags & XFS_LI_ABORTED)
169  xfs_efi_item_free(EFI_ITEM(lip));
170 }
171 
172 /*
173  * The EFI is logged only once and cannot be moved in the log, so simply return
174  * the lsn at which it's been logged. For bulk transaction committed
175  * processing, the EFI may be processed but not yet unpinned prior to the EFD
176  * being processed. Set the XFS_EFI_COMMITTED flag so this case can be detected
177  * when processing the EFD.
178  */
181  struct xfs_log_item *lip,
182  xfs_lsn_t lsn)
183 {
184  struct xfs_efi_log_item *efip = EFI_ITEM(lip);
185 
186  set_bit(XFS_EFI_COMMITTED, &efip->efi_flags);
187  return lsn;
188 }
189 
190 /*
191  * The EFI dependency tracking op doesn't do squat. It can't because
192  * it doesn't know where the free extent is coming from. The dependency
193  * tracking has to be handled by the "enclosing" metadata object. For
194  * example, for inodes, the inode is locked throughout the extent freeing
195  * so the dependency should be recorded there.
196  */
197 STATIC void
199  struct xfs_log_item *lip,
200  xfs_lsn_t lsn)
201 {
202 }
203 
204 /*
205  * This is the ops vector shared by all efi log items.
206  */
207 static const struct xfs_item_ops xfs_efi_item_ops = {
208  .iop_size = xfs_efi_item_size,
209  .iop_format = xfs_efi_item_format,
210  .iop_pin = xfs_efi_item_pin,
211  .iop_unpin = xfs_efi_item_unpin,
212  .iop_unlock = xfs_efi_item_unlock,
213  .iop_committed = xfs_efi_item_committed,
214  .iop_push = xfs_efi_item_push,
215  .iop_committing = xfs_efi_item_committing
216 };
217 
218 
219 /*
220  * Allocate and initialize an efi item with the given number of extents.
221  */
222 struct xfs_efi_log_item *
224  struct xfs_mount *mp,
225  uint nextents)
226 
227 {
228  struct xfs_efi_log_item *efip;
229  uint size;
230 
231  ASSERT(nextents > 0);
232  if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
233  size = (uint)(sizeof(xfs_efi_log_item_t) +
234  ((nextents - 1) * sizeof(xfs_extent_t)));
235  efip = kmem_zalloc(size, KM_SLEEP);
236  } else {
238  }
239 
240  xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
241  efip->efi_format.efi_nextents = nextents;
242  efip->efi_format.efi_id = (__psint_t)(void*)efip;
243  atomic_set(&efip->efi_next_extent, 0);
244 
245  return efip;
246 }
247 
248 /*
249  * Copy an EFI format buffer from the given buf, and into the destination
250  * EFI format structure.
251  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
252  * one of which will be the native format for this kernel.
253  * It will handle the conversion of formats if necessary.
254  */
255 int
257 {
258  xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
259  uint i;
260  uint len = sizeof(xfs_efi_log_format_t) +
261  (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
262  uint len32 = sizeof(xfs_efi_log_format_32_t) +
263  (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
264  uint len64 = sizeof(xfs_efi_log_format_64_t) +
265  (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
266 
267  if (buf->i_len == len) {
268  memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
269  return 0;
270  } else if (buf->i_len == len32) {
271  xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
272 
273  dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
274  dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
275  dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
276  dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
277  for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
278  dst_efi_fmt->efi_extents[i].ext_start =
279  src_efi_fmt_32->efi_extents[i].ext_start;
280  dst_efi_fmt->efi_extents[i].ext_len =
281  src_efi_fmt_32->efi_extents[i].ext_len;
282  }
283  return 0;
284  } else if (buf->i_len == len64) {
285  xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
286 
287  dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
288  dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
289  dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
290  dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
291  for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
292  dst_efi_fmt->efi_extents[i].ext_start =
293  src_efi_fmt_64->efi_extents[i].ext_start;
294  dst_efi_fmt->efi_extents[i].ext_len =
295  src_efi_fmt_64->efi_extents[i].ext_len;
296  }
297  return 0;
298  }
299  return EFSCORRUPTED;
300 }
301 
302 /*
303  * This is called by the efd item code below to release references to the given
304  * efi item. Each efd calls this with the number of extents that it has
305  * logged, and when the sum of these reaches the total number of extents logged
306  * by this efi item we can free the efi item.
307  */
308 void
309 xfs_efi_release(xfs_efi_log_item_t *efip,
310  uint nextents)
311 {
312  ASSERT(atomic_read(&efip->efi_next_extent) >= nextents);
313  if (atomic_sub_and_test(nextents, &efip->efi_next_extent))
314  __xfs_efi_release(efip);
315 }
316 
317 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
318 {
319  return container_of(lip, struct xfs_efd_log_item, efd_item);
320 }
321 
322 STATIC void
323 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
324 {
325  if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
326  kmem_free(efdp);
327  else
328  kmem_zone_free(xfs_efd_zone, efdp);
329 }
330 
331 /*
332  * This returns the number of iovecs needed to log the given efd item.
333  * We only need 1 iovec for an efd item. It just logs the efd_log_format
334  * structure.
335  */
336 STATIC uint
338  struct xfs_log_item *lip)
339 {
340  return 1;
341 }
342 
343 /*
344  * This is called to fill in the vector of log iovecs for the
345  * given efd log item. We use only 1 iovec, and we point that
346  * at the efd_log_format structure embedded in the efd item.
347  * It is at this point that we assert that all of the extent
348  * slots in the efd item have been filled.
349  */
350 STATIC void
352  struct xfs_log_item *lip,
353  struct xfs_log_iovec *log_vector)
354 {
355  struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
356  uint size;
357 
358  ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
359 
360  efdp->efd_format.efd_type = XFS_LI_EFD;
361 
362  size = sizeof(xfs_efd_log_format_t);
363  size += (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
364  efdp->efd_format.efd_size = 1;
365 
366  log_vector->i_addr = &efdp->efd_format;
367  log_vector->i_len = size;
368  log_vector->i_type = XLOG_REG_TYPE_EFD_FORMAT;
369  ASSERT(size >= sizeof(xfs_efd_log_format_t));
370 }
371 
372 /*
373  * Pinning has no meaning for an efd item, so just return.
374  */
375 STATIC void
377  struct xfs_log_item *lip)
378 {
379 }
380 
381 /*
382  * Since pinning has no meaning for an efd item, unpinning does
383  * not either.
384  */
385 STATIC void
387  struct xfs_log_item *lip,
388  int remove)
389 {
390 }
391 
392 /*
393  * There isn't much you can do to push on an efd item. It is simply stuck
394  * waiting for the log to be flushed to disk.
395  */
396 STATIC uint
398  struct xfs_log_item *lip,
399  struct list_head *buffer_list)
400 {
401  return XFS_ITEM_PINNED;
402 }
403 
404 STATIC void
406  struct xfs_log_item *lip)
407 {
408  if (lip->li_flags & XFS_LI_ABORTED)
409  xfs_efd_item_free(EFD_ITEM(lip));
410 }
411 
412 /*
413  * When the efd item is committed to disk, all we need to do
414  * is delete our reference to our partner efi item and then
415  * free ourselves. Since we're freeing ourselves we must
416  * return -1 to keep the transaction code from further referencing
417  * this item.
418  */
421  struct xfs_log_item *lip,
422  xfs_lsn_t lsn)
423 {
424  struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
425 
426  /*
427  * If we got a log I/O error, it's always the case that the LR with the
428  * EFI got unpinned and freed before the EFD got aborted.
429  */
430  if (!(lip->li_flags & XFS_LI_ABORTED))
431  xfs_efi_release(efdp->efd_efip, efdp->efd_format.efd_nextents);
432 
433  xfs_efd_item_free(efdp);
434  return (xfs_lsn_t)-1;
435 }
436 
437 /*
438  * The EFD dependency tracking op doesn't do squat. It can't because
439  * it doesn't know where the free extent is coming from. The dependency
440  * tracking has to be handled by the "enclosing" metadata object. For
441  * example, for inodes, the inode is locked throughout the extent freeing
442  * so the dependency should be recorded there.
443  */
444 STATIC void
446  struct xfs_log_item *lip,
447  xfs_lsn_t lsn)
448 {
449 }
450 
451 /*
452  * This is the ops vector shared by all efd log items.
453  */
454 static const struct xfs_item_ops xfs_efd_item_ops = {
455  .iop_size = xfs_efd_item_size,
456  .iop_format = xfs_efd_item_format,
457  .iop_pin = xfs_efd_item_pin,
458  .iop_unpin = xfs_efd_item_unpin,
459  .iop_unlock = xfs_efd_item_unlock,
460  .iop_committed = xfs_efd_item_committed,
461  .iop_push = xfs_efd_item_push,
462  .iop_committing = xfs_efd_item_committing
463 };
464 
465 /*
466  * Allocate and initialize an efd item with the given number of extents.
467  */
468 struct xfs_efd_log_item *
470  struct xfs_mount *mp,
471  struct xfs_efi_log_item *efip,
472  uint nextents)
473 
474 {
475  struct xfs_efd_log_item *efdp;
476  uint size;
477 
478  ASSERT(nextents > 0);
479  if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
480  size = (uint)(sizeof(xfs_efd_log_item_t) +
481  ((nextents - 1) * sizeof(xfs_extent_t)));
482  efdp = kmem_zalloc(size, KM_SLEEP);
483  } else {
485  }
486 
487  xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
488  efdp->efd_efip = efip;
489  efdp->efd_format.efd_nextents = nextents;
490  efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
491 
492  return efdp;
493 }