Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
xfs_inode.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_sb.h"
28 #include "xfs_ag.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_btree.h"
39 #include "xfs_alloc.h"
40 #include "xfs_ialloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_utils.h"
44 #include "xfs_quota.h"
45 #include "xfs_filestream.h"
46 #include "xfs_vnodeops.h"
47 #include "xfs_trace.h"
48 
51 
52 /*
53  * Used in xfs_itruncate_extents(). This is the maximum number of extents
54  * freed from a file in a single transaction.
55  */
56 #define XFS_ITRUNC_MAX_EXTENTS 2
57 
58 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
59 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
60 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
61 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
62 
63 /*
64  * helper function to extract extent size hint from inode
65  */
68  struct xfs_inode *ip)
69 {
70  if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
71  return ip->i_d.di_extsize;
72  if (XFS_IS_REALTIME_INODE(ip))
73  return ip->i_mount->m_sb.sb_rextsize;
74  return 0;
75 }
76 
77 #ifdef DEBUG
78 /*
79  * Make sure that the extents in the given memory buffer
80  * are valid.
81  */
82 STATIC void
84  xfs_ifork_t *ifp,
85  int nrecs,
87 {
88  xfs_bmbt_irec_t irec;
90  int i;
91 
92  for (i = 0; i < nrecs; i++) {
94  rec.l0 = get_unaligned(&ep->l0);
95  rec.l1 = get_unaligned(&ep->l1);
96  xfs_bmbt_get_all(&rec, &irec);
97  if (fmt == XFS_EXTFMT_NOSTATE)
98  ASSERT(irec.br_state == XFS_EXT_NORM);
99  }
100 }
101 #else /* DEBUG */
102 #define xfs_validate_extents(ifp, nrecs, fmt)
103 #endif /* DEBUG */
104 
105 /*
106  * Check that none of the inode's in the buffer have a next
107  * unlinked field of 0.
108  */
109 #if defined(DEBUG)
110 void
112  xfs_mount_t *mp,
113  xfs_buf_t *bp)
114 {
115  int i;
116  int j;
117  xfs_dinode_t *dip;
118 
119  j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
120 
121  for (i = 0; i < j; i++) {
122  dip = (xfs_dinode_t *)xfs_buf_offset(bp,
123  i * mp->m_sb.sb_inodesize);
124  if (!dip->di_next_unlinked) {
125  xfs_alert(mp,
126  "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
127  bp);
128  ASSERT(dip->di_next_unlinked);
129  }
130  }
131 }
132 #endif
133 
134 /*
135  * This routine is called to map an inode to the buffer containing the on-disk
136  * version of the inode. It returns a pointer to the buffer containing the
137  * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
138  * pointer to the on-disk inode within that buffer.
139  *
140  * If a non-zero error is returned, then the contents of bpp and dipp are
141  * undefined.
142  */
143 int
145  struct xfs_mount *mp,
146  struct xfs_trans *tp,
147  struct xfs_imap *imap,
148  struct xfs_dinode **dipp,
149  struct xfs_buf **bpp,
150  uint buf_flags,
151  uint iget_flags)
152 {
153  struct xfs_buf *bp;
154  int error;
155  int i;
156  int ni;
157 
158  buf_flags |= XBF_UNMAPPED;
159  error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
160  (int)imap->im_len, buf_flags, &bp);
161  if (error) {
162  if (error != EAGAIN) {
163  xfs_warn(mp,
164  "%s: xfs_trans_read_buf() returned error %d.",
165  __func__, error);
166  } else {
167  ASSERT(buf_flags & XBF_TRYLOCK);
168  }
169  return error;
170  }
171 
172  /*
173  * Validate the magic number and version of every inode in the buffer
174  * (if DEBUG kernel) or the first inode in the buffer, otherwise.
175  */
176 #ifdef DEBUG
177  ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
178 #else /* usual case */
179  ni = 1;
180 #endif
181 
182  for (i = 0; i < ni; i++) {
183  int di_ok;
184  xfs_dinode_t *dip;
185 
186  dip = (xfs_dinode_t *)xfs_buf_offset(bp,
187  (i << mp->m_sb.sb_inodelog));
188  di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
189  XFS_DINODE_GOOD_VERSION(dip->di_version);
190  if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
193  if (iget_flags & XFS_IGET_UNTRUSTED) {
194  xfs_trans_brelse(tp, bp);
195  return XFS_ERROR(EINVAL);
196  }
198  mp, dip);
199 #ifdef DEBUG
200  xfs_emerg(mp,
201  "bad inode magic/vsn daddr %lld #%d (magic=%x)",
202  (unsigned long long)imap->im_blkno, i,
203  be16_to_cpu(dip->di_magic));
204  ASSERT(0);
205 #endif
206  xfs_trans_brelse(tp, bp);
207  return XFS_ERROR(EFSCORRUPTED);
208  }
209  }
210 
211  xfs_inobp_check(mp, bp);
212 
213  *bpp = bp;
214  *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
215  return 0;
216 }
217 
218 /*
219  * Move inode type and inode format specific information from the
220  * on-disk inode to the in-core inode. For fifos, devs, and sockets
221  * this means set if_rdev to the proper value. For files, directories,
222  * and symlinks this means to bring in the in-line data or extent
223  * pointers. For a file in B-tree format, only the root is immediately
224  * brought in-core. The rest will be in-lined in if_extents when it
225  * is first referenced (see xfs_iread_extents()).
226  */
227 STATIC int
229  xfs_inode_t *ip,
230  xfs_dinode_t *dip)
231 {
233  int size;
234  int error = 0;
236 
237  if (unlikely(be32_to_cpu(dip->di_nextents) +
238  be16_to_cpu(dip->di_anextents) >
239  be64_to_cpu(dip->di_nblocks))) {
240  xfs_warn(ip->i_mount,
241  "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
242  (unsigned long long)ip->i_ino,
243  (int)(be32_to_cpu(dip->di_nextents) +
244  be16_to_cpu(dip->di_anextents)),
245  (unsigned long long)
246  be64_to_cpu(dip->di_nblocks));
247  XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
248  ip->i_mount, dip);
249  return XFS_ERROR(EFSCORRUPTED);
250  }
251 
252  if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
253  xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
254  (unsigned long long)ip->i_ino,
255  dip->di_forkoff);
256  XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
257  ip->i_mount, dip);
258  return XFS_ERROR(EFSCORRUPTED);
259  }
260 
261  if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
262  !ip->i_mount->m_rtdev_targp)) {
263  xfs_warn(ip->i_mount,
264  "corrupt dinode %Lu, has realtime flag set.",
265  ip->i_ino);
266  XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
267  XFS_ERRLEVEL_LOW, ip->i_mount, dip);
268  return XFS_ERROR(EFSCORRUPTED);
269  }
270 
271  switch (ip->i_d.di_mode & S_IFMT) {
272  case S_IFIFO:
273  case S_IFCHR:
274  case S_IFBLK:
275  case S_IFSOCK:
276  if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
277  XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
278  ip->i_mount, dip);
279  return XFS_ERROR(EFSCORRUPTED);
280  }
281  ip->i_d.di_size = 0;
282  ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
283  break;
284 
285  case S_IFREG:
286  case S_IFLNK:
287  case S_IFDIR:
288  switch (dip->di_format) {
290  /*
291  * no local regular files yet
292  */
293  if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
294  xfs_warn(ip->i_mount,
295  "corrupt inode %Lu (local format for regular file).",
296  (unsigned long long) ip->i_ino);
297  XFS_CORRUPTION_ERROR("xfs_iformat(4)",
299  ip->i_mount, dip);
300  return XFS_ERROR(EFSCORRUPTED);
301  }
302 
303  di_size = be64_to_cpu(dip->di_size);
304  if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
305  xfs_warn(ip->i_mount,
306  "corrupt inode %Lu (bad size %Ld for local inode).",
307  (unsigned long long) ip->i_ino,
308  (long long) di_size);
309  XFS_CORRUPTION_ERROR("xfs_iformat(5)",
311  ip->i_mount, dip);
312  return XFS_ERROR(EFSCORRUPTED);
313  }
314 
315  size = (int)di_size;
316  error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
317  break;
319  error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
320  break;
322  error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
323  break;
324  default:
325  XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
326  ip->i_mount);
327  return XFS_ERROR(EFSCORRUPTED);
328  }
329  break;
330 
331  default:
332  XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
333  return XFS_ERROR(EFSCORRUPTED);
334  }
335  if (error) {
336  return error;
337  }
338  if (!XFS_DFORK_Q(dip))
339  return 0;
340 
341  ASSERT(ip->i_afp == NULL);
343 
344  switch (dip->di_aformat) {
346  atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
347  size = be16_to_cpu(atp->hdr.totsize);
348 
349  if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
350  xfs_warn(ip->i_mount,
351  "corrupt inode %Lu (bad attr fork size %Ld).",
352  (unsigned long long) ip->i_ino,
353  (long long) size);
354  XFS_CORRUPTION_ERROR("xfs_iformat(8)",
356  ip->i_mount, dip);
357  return XFS_ERROR(EFSCORRUPTED);
358  }
359 
360  error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
361  break;
363  error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
364  break;
366  error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
367  break;
368  default:
369  error = XFS_ERROR(EFSCORRUPTED);
370  break;
371  }
372  if (error) {
373  kmem_zone_free(xfs_ifork_zone, ip->i_afp);
374  ip->i_afp = NULL;
376  }
377  return error;
378 }
379 
380 /*
381  * The file is in-lined in the on-disk inode.
382  * If it fits into if_inline_data, then copy
383  * it there, otherwise allocate a buffer for it
384  * and copy the data there. Either way, set
385  * if_data to point at the data.
386  * If we allocate a buffer for the data, make
387  * sure that its size is a multiple of 4 and
388  * record the real size in i_real_bytes.
389  */
390 STATIC int
392  xfs_inode_t *ip,
393  xfs_dinode_t *dip,
394  int whichfork,
395  int size)
396 {
397  xfs_ifork_t *ifp;
398  int real_size;
399 
400  /*
401  * If the size is unreasonable, then something
402  * is wrong and we just bail out rather than crash in
403  * kmem_alloc() or memcpy() below.
404  */
405  if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
406  xfs_warn(ip->i_mount,
407  "corrupt inode %Lu (bad size %d for local fork, size = %d).",
408  (unsigned long long) ip->i_ino, size,
409  XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
410  XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
411  ip->i_mount, dip);
412  return XFS_ERROR(EFSCORRUPTED);
413  }
414  ifp = XFS_IFORK_PTR(ip, whichfork);
415  real_size = 0;
416  if (size == 0)
417  ifp->if_u1.if_data = NULL;
418  else if (size <= sizeof(ifp->if_u2.if_inline_data))
419  ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
420  else {
421  real_size = roundup(size, 4);
422  ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
423  }
424  ifp->if_bytes = size;
425  ifp->if_real_bytes = real_size;
426  if (size)
427  memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
428  ifp->if_flags &= ~XFS_IFEXTENTS;
429  ifp->if_flags |= XFS_IFINLINE;
430  return 0;
431 }
432 
433 /*
434  * The file consists of a set of extents all
435  * of which fit into the on-disk inode.
436  * If there are few enough extents to fit into
437  * the if_inline_ext, then copy them there.
438  * Otherwise allocate a buffer for them and copy
439  * them into it. Either way, set if_extents
440  * to point at the extents.
441  */
442 STATIC int
444  xfs_inode_t *ip,
445  xfs_dinode_t *dip,
446  int whichfork)
447 {
449  xfs_ifork_t *ifp;
450  int nex;
451  int size;
452  int i;
453 
454  ifp = XFS_IFORK_PTR(ip, whichfork);
455  nex = XFS_DFORK_NEXTENTS(dip, whichfork);
456  size = nex * (uint)sizeof(xfs_bmbt_rec_t);
457 
458  /*
459  * If the number of extents is unreasonable, then something
460  * is wrong and we just bail out rather than crash in
461  * kmem_alloc() or memcpy() below.
462  */
463  if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
464  xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
465  (unsigned long long) ip->i_ino, nex);
466  XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
467  ip->i_mount, dip);
468  return XFS_ERROR(EFSCORRUPTED);
469  }
470 
471  ifp->if_real_bytes = 0;
472  if (nex == 0)
473  ifp->if_u1.if_extents = NULL;
474  else if (nex <= XFS_INLINE_EXTS)
475  ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
476  else
477  xfs_iext_add(ifp, 0, nex);
478 
479  ifp->if_bytes = size;
480  if (size) {
481  dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
482  xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
483  for (i = 0; i < nex; i++, dp++) {
485  ep->l0 = get_unaligned_be64(&dp->l0);
486  ep->l1 = get_unaligned_be64(&dp->l1);
487  }
488  XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
489  if (whichfork != XFS_DATA_FORK ||
492  ifp, 0, nex))) {
493  XFS_ERROR_REPORT("xfs_iformat_extents(2)",
495  ip->i_mount);
496  return XFS_ERROR(EFSCORRUPTED);
497  }
498  }
499  ifp->if_flags |= XFS_IFEXTENTS;
500  return 0;
501 }
502 
503 /*
504  * The file has too many extents to fit into
505  * the inode, so they are in B-tree format.
506  * Allocate a buffer for the root of the B-tree
507  * and copy the root into it. The i_extents
508  * field will remain NULL until all of the
509  * extents are read in (when they are needed).
510  */
511 STATIC int
513  xfs_inode_t *ip,
514  xfs_dinode_t *dip,
515  int whichfork)
516 {
517  xfs_bmdr_block_t *dfp;
518  xfs_ifork_t *ifp;
519  /* REFERENCED */
520  int nrecs;
521  int size;
522 
523  ifp = XFS_IFORK_PTR(ip, whichfork);
524  dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
525  size = XFS_BMAP_BROOT_SPACE(dfp);
526  nrecs = be16_to_cpu(dfp->bb_numrecs);
527 
528  /*
529  * blow out if -- fork has less extents than can fit in
530  * fork (fork shouldn't be a btree format), root btree
531  * block has more records than can fit into the fork,
532  * or the number of extents is greater than the number of
533  * blocks.
534  */
535  if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
536  XFS_IFORK_MAXEXT(ip, whichfork) ||
537  XFS_BMDR_SPACE_CALC(nrecs) >
538  XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
539  XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
540  xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
541  (unsigned long long) ip->i_ino);
542  XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
543  ip->i_mount, dip);
544  return XFS_ERROR(EFSCORRUPTED);
545  }
546 
547  ifp->if_broot_bytes = size;
548  ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
549  ASSERT(ifp->if_broot != NULL);
550  /*
551  * Copy and convert from the on-disk structure
552  * to the in-memory structure.
553  */
554  xfs_bmdr_to_bmbt(ip->i_mount, dfp,
555  XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
556  ifp->if_broot, size);
557  ifp->if_flags &= ~XFS_IFEXTENTS;
558  ifp->if_flags |= XFS_IFBROOT;
559 
560  return 0;
561 }
562 
563 STATIC void
565  xfs_icdinode_t *to,
566  xfs_dinode_t *from)
567 {
568  to->di_magic = be16_to_cpu(from->di_magic);
569  to->di_mode = be16_to_cpu(from->di_mode);
570  to->di_version = from ->di_version;
571  to->di_format = from->di_format;
572  to->di_onlink = be16_to_cpu(from->di_onlink);
573  to->di_uid = be32_to_cpu(from->di_uid);
574  to->di_gid = be32_to_cpu(from->di_gid);
575  to->di_nlink = be32_to_cpu(from->di_nlink);
576  to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
577  to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
578  memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
579  to->di_flushiter = be16_to_cpu(from->di_flushiter);
580  to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
581  to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
582  to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
583  to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
584  to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
585  to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
586  to->di_size = be64_to_cpu(from->di_size);
587  to->di_nblocks = be64_to_cpu(from->di_nblocks);
588  to->di_extsize = be32_to_cpu(from->di_extsize);
589  to->di_nextents = be32_to_cpu(from->di_nextents);
590  to->di_anextents = be16_to_cpu(from->di_anextents);
591  to->di_forkoff = from->di_forkoff;
592  to->di_aformat = from->di_aformat;
593  to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
594  to->di_dmstate = be16_to_cpu(from->di_dmstate);
595  to->di_flags = be16_to_cpu(from->di_flags);
596  to->di_gen = be32_to_cpu(from->di_gen);
597 }
598 
599 void
601  xfs_dinode_t *to,
603 {
604  to->di_magic = cpu_to_be16(from->di_magic);
605  to->di_mode = cpu_to_be16(from->di_mode);
606  to->di_version = from ->di_version;
607  to->di_format = from->di_format;
608  to->di_onlink = cpu_to_be16(from->di_onlink);
609  to->di_uid = cpu_to_be32(from->di_uid);
610  to->di_gid = cpu_to_be32(from->di_gid);
611  to->di_nlink = cpu_to_be32(from->di_nlink);
612  to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
613  to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
614  memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
615  to->di_flushiter = cpu_to_be16(from->di_flushiter);
616  to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
617  to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
618  to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
619  to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
620  to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
621  to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
622  to->di_size = cpu_to_be64(from->di_size);
623  to->di_nblocks = cpu_to_be64(from->di_nblocks);
624  to->di_extsize = cpu_to_be32(from->di_extsize);
625  to->di_nextents = cpu_to_be32(from->di_nextents);
626  to->di_anextents = cpu_to_be16(from->di_anextents);
627  to->di_forkoff = from->di_forkoff;
628  to->di_aformat = from->di_aformat;
629  to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
630  to->di_dmstate = cpu_to_be16(from->di_dmstate);
631  to->di_flags = cpu_to_be16(from->di_flags);
632  to->di_gen = cpu_to_be32(from->di_gen);
633 }
634 
635 STATIC uint
637  __uint16_t di_flags)
638 {
639  uint flags = 0;
640 
641  if (di_flags & XFS_DIFLAG_ANY) {
642  if (di_flags & XFS_DIFLAG_REALTIME)
643  flags |= XFS_XFLAG_REALTIME;
644  if (di_flags & XFS_DIFLAG_PREALLOC)
645  flags |= XFS_XFLAG_PREALLOC;
646  if (di_flags & XFS_DIFLAG_IMMUTABLE)
647  flags |= XFS_XFLAG_IMMUTABLE;
648  if (di_flags & XFS_DIFLAG_APPEND)
649  flags |= XFS_XFLAG_APPEND;
650  if (di_flags & XFS_DIFLAG_SYNC)
651  flags |= XFS_XFLAG_SYNC;
652  if (di_flags & XFS_DIFLAG_NOATIME)
653  flags |= XFS_XFLAG_NOATIME;
654  if (di_flags & XFS_DIFLAG_NODUMP)
655  flags |= XFS_XFLAG_NODUMP;
656  if (di_flags & XFS_DIFLAG_RTINHERIT)
657  flags |= XFS_XFLAG_RTINHERIT;
658  if (di_flags & XFS_DIFLAG_PROJINHERIT)
659  flags |= XFS_XFLAG_PROJINHERIT;
660  if (di_flags & XFS_DIFLAG_NOSYMLINKS)
661  flags |= XFS_XFLAG_NOSYMLINKS;
662  if (di_flags & XFS_DIFLAG_EXTSIZE)
663  flags |= XFS_XFLAG_EXTSIZE;
664  if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
665  flags |= XFS_XFLAG_EXTSZINHERIT;
666  if (di_flags & XFS_DIFLAG_NODEFRAG)
667  flags |= XFS_XFLAG_NODEFRAG;
668  if (di_flags & XFS_DIFLAG_FILESTREAM)
669  flags |= XFS_XFLAG_FILESTREAM;
670  }
671 
672  return flags;
673 }
674 
675 uint
677  xfs_inode_t *ip)
678 {
679  xfs_icdinode_t *dic = &ip->i_d;
680 
681  return _xfs_dic2xflags(dic->di_flags) |
682  (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
683 }
684 
685 uint
687  xfs_dinode_t *dip)
688 {
689  return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
690  (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
691 }
692 
693 /*
694  * Read the disk inode attributes into the in-core inode structure.
695  */
696 int
698  xfs_mount_t *mp,
699  xfs_trans_t *tp,
700  xfs_inode_t *ip,
701  uint iget_flags)
702 {
703  xfs_buf_t *bp;
704  xfs_dinode_t *dip;
705  int error;
706 
707  /*
708  * Fill in the location information in the in-core inode.
709  */
710  error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
711  if (error)
712  return error;
713 
714  /*
715  * Get pointers to the on-disk inode and the buffer containing it.
716  */
717  error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
718  if (error)
719  return error;
720 
721  /*
722  * If we got something that isn't an inode it means someone
723  * (nfs or dmi) has a stale handle.
724  */
725  if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
726 #ifdef DEBUG
727  xfs_alert(mp,
728  "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
729  __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
730 #endif /* DEBUG */
731  error = XFS_ERROR(EINVAL);
732  goto out_brelse;
733  }
734 
735  /*
736  * If the on-disk inode is already linked to a directory
737  * entry, copy all of the inode into the in-core inode.
738  * xfs_iformat() handles copying in the inode format
739  * specific information.
740  * Otherwise, just get the truly permanent information.
741  */
742  if (dip->di_mode) {
743  xfs_dinode_from_disk(&ip->i_d, dip);
744  error = xfs_iformat(ip, dip);
745  if (error) {
746 #ifdef DEBUG
747  xfs_alert(mp, "%s: xfs_iformat() returned error %d",
748  __func__, error);
749 #endif /* DEBUG */
750  goto out_brelse;
751  }
752  } else {
753  ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
754  ip->i_d.di_version = dip->di_version;
755  ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
756  ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
757  /*
758  * Make sure to pull in the mode here as well in
759  * case the inode is released without being used.
760  * This ensures that xfs_inactive() will see that
761  * the inode is already free and not try to mess
762  * with the uninitialized part of it.
763  */
764  ip->i_d.di_mode = 0;
765  }
766 
767  /*
768  * The inode format changed when we moved the link count and
769  * made it 32 bits long. If this is an old format inode,
770  * convert it in memory to look like a new one. If it gets
771  * flushed to disk we will convert back before flushing or
772  * logging it. We zero out the new projid field and the old link
773  * count field. We'll handle clearing the pad field (the remains
774  * of the old uuid field) when we actually convert the inode to
775  * the new format. We don't change the version number so that we
776  * can distinguish this from a real new format inode.
777  */
778  if (ip->i_d.di_version == 1) {
779  ip->i_d.di_nlink = ip->i_d.di_onlink;
780  ip->i_d.di_onlink = 0;
781  xfs_set_projid(ip, 0);
782  }
783 
784  ip->i_delayed_blks = 0;
785 
786  /*
787  * Mark the buffer containing the inode as something to keep
788  * around for a while. This helps to keep recently accessed
789  * meta-data in-core longer.
790  */
791  xfs_buf_set_ref(bp, XFS_INO_REF);
792 
793  /*
794  * Use xfs_trans_brelse() to release the buffer containing the
795  * on-disk inode, because it was acquired with xfs_trans_read_buf()
796  * in xfs_imap_to_bp() above. If tp is NULL, this is just a normal
797  * brelse(). If we're within a transaction, then xfs_trans_brelse()
798  * will only release the buffer if it is not dirty within the
799  * transaction. It will be OK to release the buffer in this case,
800  * because inodes on disk are never destroyed and we will be
801  * locking the new in-core inode before putting it in the hash
802  * table where other processes can find it. Thus we don't have
803  * to worry about the inode being changed just because we released
804  * the buffer.
805  */
806  out_brelse:
807  xfs_trans_brelse(tp, bp);
808  return error;
809 }
810 
811 /*
812  * Read in extents from a btree-format inode.
813  * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
814  */
815 int
817  xfs_trans_t *tp,
818  xfs_inode_t *ip,
819  int whichfork)
820 {
821  int error;
822  xfs_ifork_t *ifp;
823  xfs_extnum_t nextents;
824 
825  if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
826  XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
827  ip->i_mount);
828  return XFS_ERROR(EFSCORRUPTED);
829  }
830  nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
831  ifp = XFS_IFORK_PTR(ip, whichfork);
832 
833  /*
834  * We know that the size is valid (it's checked in iformat_btree)
835  */
836  ifp->if_bytes = ifp->if_real_bytes = 0;
837  ifp->if_flags |= XFS_IFEXTENTS;
838  xfs_iext_add(ifp, 0, nextents);
839  error = xfs_bmap_read_extents(tp, ip, whichfork);
840  if (error) {
841  xfs_iext_destroy(ifp);
842  ifp->if_flags &= ~XFS_IFEXTENTS;
843  return error;
844  }
845  xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
846  return 0;
847 }
848 
849 /*
850  * Allocate an inode on disk and return a copy of its in-core version.
851  * The in-core inode is locked exclusively. Set mode, nlink, and rdev
852  * appropriately within the inode. The uid and gid for the inode are
853  * set according to the contents of the given cred structure.
854  *
855  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
856  * has a free inode available, call xfs_iget()
857  * to obtain the in-core version of the allocated inode. Finally,
858  * fill in the inode and log its initial contents. In this case,
859  * ialloc_context would be set to NULL and call_again set to false.
860  *
861  * If xfs_dialloc() does not have an available inode,
862  * it will replenish its supply by doing an allocation. Since we can
863  * only do one allocation within a transaction without deadlocks, we
864  * must commit the current transaction before returning the inode itself.
865  * In this case, therefore, we will set call_again to true and return.
866  * The caller should then commit the current transaction, start a new
867  * transaction, and call xfs_ialloc() again to actually get the inode.
868  *
869  * To ensure that some other process does not grab the inode that
870  * was allocated during the first call to xfs_ialloc(), this routine
871  * also returns the [locked] bp pointing to the head of the freelist
872  * as ialloc_context. The caller should hold this buffer across
873  * the commit and pass it back into this routine on the second call.
874  *
875  * If we are allocating quota inodes, we do not have a parent inode
876  * to attach to or associate with (i.e. pip == NULL) because they
877  * are not linked into the directory structure - they are attached
878  * directly to the superblock - and so have no parent.
879  */
880 int
882  xfs_trans_t *tp,
883  xfs_inode_t *pip,
884  umode_t mode,
885  xfs_nlink_t nlink,
886  xfs_dev_t rdev,
887  prid_t prid,
888  int okalloc,
889  xfs_buf_t **ialloc_context,
890  xfs_inode_t **ipp)
891 {
892  xfs_ino_t ino;
893  xfs_inode_t *ip;
894  uint flags;
895  int error;
896  timespec_t tv;
897  int filestreams = 0;
898 
899  /*
900  * Call the space management code to pick
901  * the on-disk inode to be allocated.
902  */
903  error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
904  ialloc_context, &ino);
905  if (error)
906  return error;
907  if (*ialloc_context || ino == NULLFSINO) {
908  *ipp = NULL;
909  return 0;
910  }
911  ASSERT(*ialloc_context == NULL);
912 
913  /*
914  * Get the in-core inode with the lock held exclusively.
915  * This is because we're setting fields here we need
916  * to prevent others from looking at until we're done.
917  */
918  error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
919  XFS_ILOCK_EXCL, &ip);
920  if (error)
921  return error;
922  ASSERT(ip != NULL);
923 
924  ip->i_d.di_mode = mode;
925  ip->i_d.di_onlink = 0;
926  ip->i_d.di_nlink = nlink;
927  ASSERT(ip->i_d.di_nlink == nlink);
928  ip->i_d.di_uid = current_fsuid();
929  ip->i_d.di_gid = current_fsgid();
930  xfs_set_projid(ip, prid);
931  memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
932 
933  /*
934  * If the superblock version is up to where we support new format
935  * inodes and this is currently an old format inode, then change
936  * the inode version number now. This way we only do the conversion
937  * here rather than here and in the flush/logging code.
938  */
939  if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
940  ip->i_d.di_version == 1) {
941  ip->i_d.di_version = 2;
942  /*
943  * We've already zeroed the old link count, the projid field,
944  * and the pad field.
945  */
946  }
947 
948  /*
949  * Project ids won't be stored on disk if we are using a version 1 inode.
950  */
951  if ((prid != 0) && (ip->i_d.di_version == 1))
952  xfs_bump_ino_vers2(tp, ip);
953 
954  if (pip && XFS_INHERIT_GID(pip)) {
955  ip->i_d.di_gid = pip->i_d.di_gid;
956  if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
957  ip->i_d.di_mode |= S_ISGID;
958  }
959  }
960 
961  /*
962  * If the group ID of the new file does not match the effective group
963  * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
964  * (and only if the irix_sgid_inherit compatibility variable is set).
965  */
966  if ((irix_sgid_inherit) &&
967  (ip->i_d.di_mode & S_ISGID) &&
968  (!in_group_p((gid_t)ip->i_d.di_gid))) {
969  ip->i_d.di_mode &= ~S_ISGID;
970  }
971 
972  ip->i_d.di_size = 0;
973  ip->i_d.di_nextents = 0;
974  ASSERT(ip->i_d.di_nblocks == 0);
975 
976  nanotime(&tv);
977  ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
978  ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
979  ip->i_d.di_atime = ip->i_d.di_mtime;
980  ip->i_d.di_ctime = ip->i_d.di_mtime;
981 
982  /*
983  * di_gen will have been taken care of in xfs_iread.
984  */
985  ip->i_d.di_extsize = 0;
986  ip->i_d.di_dmevmask = 0;
987  ip->i_d.di_dmstate = 0;
988  ip->i_d.di_flags = 0;
989  flags = XFS_ILOG_CORE;
990  switch (mode & S_IFMT) {
991  case S_IFIFO:
992  case S_IFCHR:
993  case S_IFBLK:
994  case S_IFSOCK:
995  ip->i_d.di_format = XFS_DINODE_FMT_DEV;
996  ip->i_df.if_u2.if_rdev = rdev;
997  ip->i_df.if_flags = 0;
998  flags |= XFS_ILOG_DEV;
999  break;
1000  case S_IFREG:
1001  /*
1002  * we can't set up filestreams until after the VFS inode
1003  * is set up properly.
1004  */
1005  if (pip && xfs_inode_is_filestream(pip))
1006  filestreams = 1;
1007  /* fall through */
1008  case S_IFDIR:
1009  if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1010  uint di_flags = 0;
1011 
1012  if (S_ISDIR(mode)) {
1013  if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1014  di_flags |= XFS_DIFLAG_RTINHERIT;
1015  if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1016  di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1017  ip->i_d.di_extsize = pip->i_d.di_extsize;
1018  }
1019  } else if (S_ISREG(mode)) {
1020  if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1021  di_flags |= XFS_DIFLAG_REALTIME;
1022  if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1023  di_flags |= XFS_DIFLAG_EXTSIZE;
1024  ip->i_d.di_extsize = pip->i_d.di_extsize;
1025  }
1026  }
1027  if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1029  di_flags |= XFS_DIFLAG_NOATIME;
1030  if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1032  di_flags |= XFS_DIFLAG_NODUMP;
1033  if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1035  di_flags |= XFS_DIFLAG_SYNC;
1036  if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1038  di_flags |= XFS_DIFLAG_NOSYMLINKS;
1039  if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1040  di_flags |= XFS_DIFLAG_PROJINHERIT;
1041  if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1043  di_flags |= XFS_DIFLAG_NODEFRAG;
1044  if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1045  di_flags |= XFS_DIFLAG_FILESTREAM;
1046  ip->i_d.di_flags |= di_flags;
1047  }
1048  /* FALLTHROUGH */
1049  case S_IFLNK:
1050  ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1051  ip->i_df.if_flags = XFS_IFEXTENTS;
1052  ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1053  ip->i_df.if_u1.if_extents = NULL;
1054  break;
1055  default:
1056  ASSERT(0);
1057  }
1058  /*
1059  * Attribute fork settings for new inode.
1060  */
1061  ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1062  ip->i_d.di_anextents = 0;
1063 
1064  /*
1065  * Log the new values stuffed into the inode.
1066  */
1067  xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1068  xfs_trans_log_inode(tp, ip, flags);
1069 
1070  /* now that we have an i_mode we can setup inode ops and unlock */
1071  xfs_setup_inode(ip);
1072 
1073  /* now we have set up the vfs inode we can associate the filestream */
1074  if (filestreams) {
1075  error = xfs_filestream_associate(pip, ip);
1076  if (error < 0)
1077  return -error;
1078  if (!error)
1079  xfs_iflags_set(ip, XFS_IFILESTREAM);
1080  }
1081 
1082  *ipp = ip;
1083  return 0;
1084 }
1085 
1086 /*
1087  * Free up the underlying blocks past new_size. The new size must be smaller
1088  * than the current size. This routine can be used both for the attribute and
1089  * data fork, and does not modify the inode size, which is left to the caller.
1090  *
1091  * The transaction passed to this routine must have made a permanent log
1092  * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1093  * given transaction and start new ones, so make sure everything involved in
1094  * the transaction is tidy before calling here. Some transaction will be
1095  * returned to the caller to be committed. The incoming transaction must
1096  * already include the inode, and both inode locks must be held exclusively.
1097  * The inode must also be "held" within the transaction. On return the inode
1098  * will be "held" within the returned transaction. This routine does NOT
1099  * require any disk space to be reserved for it within the transaction.
1100  *
1101  * If we get an error, we must return with the inode locked and linked into the
1102  * current transaction. This keeps things simple for the higher level code,
1103  * because it always knows that the inode is locked and held in the transaction
1104  * that returns to it whether errors occur or not. We don't mark the inode
1105  * dirty on error so that transactions can be easily aborted if possible.
1106  */
1107 int
1109  struct xfs_trans **tpp,
1110  struct xfs_inode *ip,
1111  int whichfork,
1112  xfs_fsize_t new_size)
1113 {
1114  struct xfs_mount *mp = ip->i_mount;
1115  struct xfs_trans *tp = *tpp;
1116  struct xfs_trans *ntp;
1118  xfs_fsblock_t first_block;
1119  xfs_fileoff_t first_unmap_block;
1120  xfs_fileoff_t last_block;
1121  xfs_filblks_t unmap_len;
1122  int committed;
1123  int error = 0;
1124  int done = 0;
1125 
1126  ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1127  ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1128  xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1129  ASSERT(new_size <= XFS_ISIZE(ip));
1130  ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1131  ASSERT(ip->i_itemp != NULL);
1132  ASSERT(ip->i_itemp->ili_lock_flags == 0);
1133  ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1134 
1135  trace_xfs_itruncate_extents_start(ip, new_size);
1136 
1137  /*
1138  * Since it is possible for space to become allocated beyond
1139  * the end of the file (in a crash where the space is allocated
1140  * but the inode size is not yet updated), simply remove any
1141  * blocks which show up between the new EOF and the maximum
1142  * possible file size. If the first block to be removed is
1143  * beyond the maximum file size (ie it is the same as last_block),
1144  * then there is nothing to do.
1145  */
1146  first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1147  last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1148  if (first_unmap_block == last_block)
1149  return 0;
1150 
1151  ASSERT(first_unmap_block < last_block);
1152  unmap_len = last_block - first_unmap_block + 1;
1153  while (!done) {
1154  xfs_bmap_init(&free_list, &first_block);
1155  error = xfs_bunmapi(tp, ip,
1156  first_unmap_block, unmap_len,
1157  xfs_bmapi_aflag(whichfork),
1159  &first_block, &free_list,
1160  &done);
1161  if (error)
1162  goto out_bmap_cancel;
1163 
1164  /*
1165  * Duplicate the transaction that has the permanent
1166  * reservation and commit the old transaction.
1167  */
1168  error = xfs_bmap_finish(&tp, &free_list, &committed);
1169  if (committed)
1170  xfs_trans_ijoin(tp, ip, 0);
1171  if (error)
1172  goto out_bmap_cancel;
1173 
1174  if (committed) {
1175  /*
1176  * Mark the inode dirty so it will be logged and
1177  * moved forward in the log as part of every commit.
1178  */
1180  }
1181 
1182  ntp = xfs_trans_dup(tp);
1183  error = xfs_trans_commit(tp, 0);
1184  tp = ntp;
1185 
1186  xfs_trans_ijoin(tp, ip, 0);
1187 
1188  if (error)
1189  goto out;
1190 
1191  /*
1192  * Transaction commit worked ok so we can drop the extra ticket
1193  * reference that we gained in xfs_trans_dup()
1194  */
1195  xfs_log_ticket_put(tp->t_ticket);
1196  error = xfs_trans_reserve(tp, 0,
1197  XFS_ITRUNCATE_LOG_RES(mp), 0,
1200  if (error)
1201  goto out;
1202  }
1203 
1204  /*
1205  * Always re-log the inode so that our permanent transaction can keep
1206  * on rolling it forward in the log.
1207  */
1209 
1210  trace_xfs_itruncate_extents_end(ip, new_size);
1211 
1212 out:
1213  *tpp = tp;
1214  return error;
1215 out_bmap_cancel:
1216  /*
1217  * If the bunmapi call encounters an error, return to the caller where
1218  * the transaction can be properly aborted. We just need to make sure
1219  * we're not holding any resources that we were not when we came in.
1220  */
1221  xfs_bmap_cancel(&free_list);
1222  goto out;
1223 }
1224 
1225 /*
1226  * This is called when the inode's link count goes to 0.
1227  * We place the on-disk inode on a list in the AGI. It
1228  * will be pulled from this list when the inode is freed.
1229  */
1230 int
1232  xfs_trans_t *tp,
1233  xfs_inode_t *ip)
1234 {
1235  xfs_mount_t *mp;
1236  xfs_agi_t *agi;
1237  xfs_dinode_t *dip;
1238  xfs_buf_t *agibp;
1239  xfs_buf_t *ibp;
1240  xfs_agino_t agino;
1241  short bucket_index;
1242  int offset;
1243  int error;
1244 
1245  ASSERT(ip->i_d.di_nlink == 0);
1246  ASSERT(ip->i_d.di_mode != 0);
1247 
1248  mp = tp->t_mountp;
1249 
1250  /*
1251  * Get the agi buffer first. It ensures lock ordering
1252  * on the list.
1253  */
1254  error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1255  if (error)
1256  return error;
1257  agi = XFS_BUF_TO_AGI(agibp);
1258 
1259  /*
1260  * Get the index into the agi hash table for the
1261  * list this inode will go on.
1262  */
1263  agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1264  ASSERT(agino != 0);
1265  bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1266  ASSERT(agi->agi_unlinked[bucket_index]);
1267  ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1268 
1269  if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1270  /*
1271  * There is already another inode in the bucket we need
1272  * to add ourselves to. Add us at the front of the list.
1273  * Here we put the head pointer into our next pointer,
1274  * and then we fall through to point the head at us.
1275  */
1276  error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1277  0, 0);
1278  if (error)
1279  return error;
1280 
1281  ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1282  dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1283  offset = ip->i_imap.im_boffset +
1284  offsetof(xfs_dinode_t, di_next_unlinked);
1285  xfs_trans_inode_buf(tp, ibp);
1286  xfs_trans_log_buf(tp, ibp, offset,
1287  (offset + sizeof(xfs_agino_t) - 1));
1288  xfs_inobp_check(mp, ibp);
1289  }
1290 
1291  /*
1292  * Point the bucket head pointer at the inode being inserted.
1293  */
1294  ASSERT(agino != 0);
1295  agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1296  offset = offsetof(xfs_agi_t, agi_unlinked) +
1297  (sizeof(xfs_agino_t) * bucket_index);
1298  xfs_trans_log_buf(tp, agibp, offset,
1299  (offset + sizeof(xfs_agino_t) - 1));
1300  return 0;
1301 }
1302 
1303 /*
1304  * Pull the on-disk inode from the AGI unlinked list.
1305  */
1306 STATIC int
1308  xfs_trans_t *tp,
1309  xfs_inode_t *ip)
1310 {
1311  xfs_ino_t next_ino;
1312  xfs_mount_t *mp;
1313  xfs_agi_t *agi;
1314  xfs_dinode_t *dip;
1315  xfs_buf_t *agibp;
1316  xfs_buf_t *ibp;
1317  xfs_agnumber_t agno;
1318  xfs_agino_t agino;
1319  xfs_agino_t next_agino;
1320  xfs_buf_t *last_ibp;
1321  xfs_dinode_t *last_dip = NULL;
1322  short bucket_index;
1323  int offset, last_offset = 0;
1324  int error;
1325 
1326  mp = tp->t_mountp;
1327  agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1328 
1329  /*
1330  * Get the agi buffer first. It ensures lock ordering
1331  * on the list.
1332  */
1333  error = xfs_read_agi(mp, tp, agno, &agibp);
1334  if (error)
1335  return error;
1336 
1337  agi = XFS_BUF_TO_AGI(agibp);
1338 
1339  /*
1340  * Get the index into the agi hash table for the
1341  * list this inode will go on.
1342  */
1343  agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1344  ASSERT(agino != 0);
1345  bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1346  ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1347  ASSERT(agi->agi_unlinked[bucket_index]);
1348 
1349  if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1350  /*
1351  * We're at the head of the list. Get the inode's on-disk
1352  * buffer to see if there is anyone after us on the list.
1353  * Only modify our next pointer if it is not already NULLAGINO.
1354  * This saves us the overhead of dealing with the buffer when
1355  * there is no need to change it.
1356  */
1357  error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1358  0, 0);
1359  if (error) {
1360  xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
1361  __func__, error);
1362  return error;
1363  }
1364  next_agino = be32_to_cpu(dip->di_next_unlinked);
1365  ASSERT(next_agino != 0);
1366  if (next_agino != NULLAGINO) {
1367  dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1368  offset = ip->i_imap.im_boffset +
1369  offsetof(xfs_dinode_t, di_next_unlinked);
1370  xfs_trans_inode_buf(tp, ibp);
1371  xfs_trans_log_buf(tp, ibp, offset,
1372  (offset + sizeof(xfs_agino_t) - 1));
1373  xfs_inobp_check(mp, ibp);
1374  } else {
1375  xfs_trans_brelse(tp, ibp);
1376  }
1377  /*
1378  * Point the bucket head pointer at the next inode.
1379  */
1380  ASSERT(next_agino != 0);
1381  ASSERT(next_agino != agino);
1382  agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1383  offset = offsetof(xfs_agi_t, agi_unlinked) +
1384  (sizeof(xfs_agino_t) * bucket_index);
1385  xfs_trans_log_buf(tp, agibp, offset,
1386  (offset + sizeof(xfs_agino_t) - 1));
1387  } else {
1388  /*
1389  * We need to search the list for the inode being freed.
1390  */
1391  next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1392  last_ibp = NULL;
1393  while (next_agino != agino) {
1394  struct xfs_imap imap;
1395 
1396  if (last_ibp)
1397  xfs_trans_brelse(tp, last_ibp);
1398 
1399  imap.im_blkno = 0;
1400  next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1401 
1402  error = xfs_imap(mp, tp, next_ino, &imap, 0);
1403  if (error) {
1404  xfs_warn(mp,
1405  "%s: xfs_imap returned error %d.",
1406  __func__, error);
1407  return error;
1408  }
1409 
1410  error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
1411  &last_ibp, 0, 0);
1412  if (error) {
1413  xfs_warn(mp,
1414  "%s: xfs_imap_to_bp returned error %d.",
1415  __func__, error);
1416  return error;
1417  }
1418 
1419  last_offset = imap.im_boffset;
1420  next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1421  ASSERT(next_agino != NULLAGINO);
1422  ASSERT(next_agino != 0);
1423  }
1424 
1425  /*
1426  * Now last_ibp points to the buffer previous to us on the
1427  * unlinked list. Pull us from the list.
1428  */
1429  error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1430  0, 0);
1431  if (error) {
1432  xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
1433  __func__, error);
1434  return error;
1435  }
1436  next_agino = be32_to_cpu(dip->di_next_unlinked);
1437  ASSERT(next_agino != 0);
1438  ASSERT(next_agino != agino);
1439  if (next_agino != NULLAGINO) {
1440  dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1441  offset = ip->i_imap.im_boffset +
1442  offsetof(xfs_dinode_t, di_next_unlinked);
1443  xfs_trans_inode_buf(tp, ibp);
1444  xfs_trans_log_buf(tp, ibp, offset,
1445  (offset + sizeof(xfs_agino_t) - 1));
1446  xfs_inobp_check(mp, ibp);
1447  } else {
1448  xfs_trans_brelse(tp, ibp);
1449  }
1450  /*
1451  * Point the previous inode on the list to the next inode.
1452  */
1453  last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1454  ASSERT(next_agino != 0);
1455  offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1456  xfs_trans_inode_buf(tp, last_ibp);
1457  xfs_trans_log_buf(tp, last_ibp, offset,
1458  (offset + sizeof(xfs_agino_t) - 1));
1459  xfs_inobp_check(mp, last_ibp);
1460  }
1461  return 0;
1462 }
1463 
1464 /*
1465  * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1466  * inodes that are in memory - they all must be marked stale and attached to
1467  * the cluster buffer.
1468  */
1469 STATIC int
1471  xfs_inode_t *free_ip,
1472  xfs_trans_t *tp,
1473  xfs_ino_t inum)
1474 {
1475  xfs_mount_t *mp = free_ip->i_mount;
1476  int blks_per_cluster;
1477  int nbufs;
1478  int ninodes;
1479  int i, j;
1480  xfs_daddr_t blkno;
1481  xfs_buf_t *bp;
1482  xfs_inode_t *ip;
1483  xfs_inode_log_item_t *iip;
1484  xfs_log_item_t *lip;
1485  struct xfs_perag *pag;
1486 
1487  pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1488  if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1489  blks_per_cluster = 1;
1490  ninodes = mp->m_sb.sb_inopblock;
1491  nbufs = XFS_IALLOC_BLOCKS(mp);
1492  } else {
1493  blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1494  mp->m_sb.sb_blocksize;
1495  ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1496  nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1497  }
1498 
1499  for (j = 0; j < nbufs; j++, inum += ninodes) {
1500  blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1501  XFS_INO_TO_AGBNO(mp, inum));
1502 
1503  /*
1504  * We obtain and lock the backing buffer first in the process
1505  * here, as we have to ensure that any dirty inode that we
1506  * can't get the flush lock on is attached to the buffer.
1507  * If we scan the in-memory inodes first, then buffer IO can
1508  * complete before we get a lock on it, and hence we may fail
1509  * to mark all the active inodes on the buffer stale.
1510  */
1511  bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1512  mp->m_bsize * blks_per_cluster,
1513  XBF_UNMAPPED);
1514 
1515  if (!bp)
1516  return ENOMEM;
1517  /*
1518  * Walk the inodes already attached to the buffer and mark them
1519  * stale. These will all have the flush locks held, so an
1520  * in-memory inode walk can't lock them. By marking them all
1521  * stale first, we will not attempt to lock them in the loop
1522  * below as the XFS_ISTALE flag will be set.
1523  */
1524  lip = bp->b_fspriv;
1525  while (lip) {
1526  if (lip->li_type == XFS_LI_INODE) {
1527  iip = (xfs_inode_log_item_t *)lip;
1528  ASSERT(iip->ili_logged == 1);
1529  lip->li_cb = xfs_istale_done;
1530  xfs_trans_ail_copy_lsn(mp->m_ail,
1531  &iip->ili_flush_lsn,
1532  &iip->ili_item.li_lsn);
1533  xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1534  }
1535  lip = lip->li_bio_list;
1536  }
1537 
1538 
1539  /*
1540  * For each inode in memory attempt to add it to the inode
1541  * buffer and set it up for being staled on buffer IO
1542  * completion. This is safe as we've locked out tail pushing
1543  * and flushing by locking the buffer.
1544  *
1545  * We have already marked every inode that was part of a
1546  * transaction stale above, which means there is no point in
1547  * even trying to lock them.
1548  */
1549  for (i = 0; i < ninodes; i++) {
1550 retry:
1551  rcu_read_lock();
1552  ip = radix_tree_lookup(&pag->pag_ici_root,
1553  XFS_INO_TO_AGINO(mp, (inum + i)));
1554 
1555  /* Inode not in memory, nothing to do */
1556  if (!ip) {
1557  rcu_read_unlock();
1558  continue;
1559  }
1560 
1561  /*
1562  * because this is an RCU protected lookup, we could
1563  * find a recently freed or even reallocated inode
1564  * during the lookup. We need to check under the
1565  * i_flags_lock for a valid inode here. Skip it if it
1566  * is not valid, the wrong inode or stale.
1567  */
1568  spin_lock(&ip->i_flags_lock);
1569  if (ip->i_ino != inum + i ||
1570  __xfs_iflags_test(ip, XFS_ISTALE)) {
1571  spin_unlock(&ip->i_flags_lock);
1572  rcu_read_unlock();
1573  continue;
1574  }
1575  spin_unlock(&ip->i_flags_lock);
1576 
1577  /*
1578  * Don't try to lock/unlock the current inode, but we
1579  * _cannot_ skip the other inodes that we did not find
1580  * in the list attached to the buffer and are not
1581  * already marked stale. If we can't lock it, back off
1582  * and retry.
1583  */
1584  if (ip != free_ip &&
1585  !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1586  rcu_read_unlock();
1587  delay(1);
1588  goto retry;
1589  }
1590  rcu_read_unlock();
1591 
1592  xfs_iflock(ip);
1593  xfs_iflags_set(ip, XFS_ISTALE);
1594 
1595  /*
1596  * we don't need to attach clean inodes or those only
1597  * with unlogged changes (which we throw away, anyway).
1598  */
1599  iip = ip->i_itemp;
1600  if (!iip || xfs_inode_clean(ip)) {
1601  ASSERT(ip != free_ip);
1602  xfs_ifunlock(ip);
1603  xfs_iunlock(ip, XFS_ILOCK_EXCL);
1604  continue;
1605  }
1606 
1607  iip->ili_last_fields = iip->ili_fields;
1608  iip->ili_fields = 0;
1609  iip->ili_logged = 1;
1610  xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1611  &iip->ili_item.li_lsn);
1612 
1614  &iip->ili_item);
1615 
1616  if (ip != free_ip)
1617  xfs_iunlock(ip, XFS_ILOCK_EXCL);
1618  }
1619 
1620  xfs_trans_stale_inode_buf(tp, bp);
1621  xfs_trans_binval(tp, bp);
1622  }
1623 
1624  xfs_perag_put(pag);
1625  return 0;
1626 }
1627 
1628 /*
1629  * This is called to return an inode to the inode free list.
1630  * The inode should already be truncated to 0 length and have
1631  * no pages associated with it. This routine also assumes that
1632  * the inode is already a part of the transaction.
1633  *
1634  * The on-disk copy of the inode will have been added to the list
1635  * of unlinked inodes in the AGI. We need to remove the inode from
1636  * that list atomically with respect to freeing it here.
1637  */
1638 int
1640  xfs_trans_t *tp,
1641  xfs_inode_t *ip,
1642  xfs_bmap_free_t *flist)
1643 {
1644  int error;
1645  int delete;
1646  xfs_ino_t first_ino;
1647  xfs_dinode_t *dip;
1648  xfs_buf_t *ibp;
1649 
1650  ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1651  ASSERT(ip->i_d.di_nlink == 0);
1652  ASSERT(ip->i_d.di_nextents == 0);
1653  ASSERT(ip->i_d.di_anextents == 0);
1654  ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1655  ASSERT(ip->i_d.di_nblocks == 0);
1656 
1657  /*
1658  * Pull the on-disk inode from the AGI unlinked list.
1659  */
1660  error = xfs_iunlink_remove(tp, ip);
1661  if (error != 0) {
1662  return error;
1663  }
1664 
1665  error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1666  if (error != 0) {
1667  return error;
1668  }
1669  ip->i_d.di_mode = 0; /* mark incore inode as free */
1670  ip->i_d.di_flags = 0;
1671  ip->i_d.di_dmevmask = 0;
1672  ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1673  ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1674  ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1675  /*
1676  * Bump the generation count so no one will be confused
1677  * by reincarnations of this inode.
1678  */
1679  ip->i_d.di_gen++;
1680 
1682 
1683  error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &dip, &ibp,
1684  0, 0);
1685  if (error)
1686  return error;
1687 
1688  /*
1689  * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1690  * from picking up this inode when it is reclaimed (its incore state
1691  * initialzed but not flushed to disk yet). The in-core di_mode is
1692  * already cleared and a corresponding transaction logged.
1693  * The hack here just synchronizes the in-core to on-disk
1694  * di_mode value in advance before the actual inode sync to disk.
1695  * This is OK because the inode is already unlinked and would never
1696  * change its di_mode again for this inode generation.
1697  * This is a temporary hack that would require a proper fix
1698  * in the future.
1699  */
1700  dip->di_mode = 0;
1701 
1702  if (delete) {
1703  error = xfs_ifree_cluster(ip, tp, first_ino);
1704  }
1705 
1706  return error;
1707 }
1708 
1709 /*
1710  * Reallocate the space for if_broot based on the number of records
1711  * being added or deleted as indicated in rec_diff. Move the records
1712  * and pointers in if_broot to fit the new size. When shrinking this
1713  * will eliminate holes between the records and pointers created by
1714  * the caller. When growing this will create holes to be filled in
1715  * by the caller.
1716  *
1717  * The caller must not request to add more records than would fit in
1718  * the on-disk inode root. If the if_broot is currently NULL, then
1719  * if we adding records one will be allocated. The caller must also
1720  * not request that the number of records go below zero, although
1721  * it can go to zero.
1722  *
1723  * ip -- the inode whose if_broot area is changing
1724  * ext_diff -- the change in the number of records, positive or negative,
1725  * requested for the if_broot array.
1726  */
1727 void
1729  xfs_inode_t *ip,
1730  int rec_diff,
1731  int whichfork)
1732 {
1733  struct xfs_mount *mp = ip->i_mount;
1734  int cur_max;
1735  xfs_ifork_t *ifp;
1736  struct xfs_btree_block *new_broot;
1737  int new_max;
1738  size_t new_size;
1739  char *np;
1740  char *op;
1741 
1742  /*
1743  * Handle the degenerate case quietly.
1744  */
1745  if (rec_diff == 0) {
1746  return;
1747  }
1748 
1749  ifp = XFS_IFORK_PTR(ip, whichfork);
1750  if (rec_diff > 0) {
1751  /*
1752  * If there wasn't any memory allocated before, just
1753  * allocate it now and get out.
1754  */
1755  if (ifp->if_broot_bytes == 0) {
1756  new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
1757  ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1758  ifp->if_broot_bytes = (int)new_size;
1759  return;
1760  }
1761 
1762  /*
1763  * If there is already an existing if_broot, then we need
1764  * to realloc() it and shift the pointers to their new
1765  * location. The records don't change location because
1766  * they are kept butted up against the btree block header.
1767  */
1768  cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1769  new_max = cur_max + rec_diff;
1770  new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1771  ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1772  (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
1773  KM_SLEEP | KM_NOFS);
1774  op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1775  ifp->if_broot_bytes);
1776  np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1777  (int)new_size);
1778  ifp->if_broot_bytes = (int)new_size;
1779  ASSERT(ifp->if_broot_bytes <=
1780  XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1781  memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1782  return;
1783  }
1784 
1785  /*
1786  * rec_diff is less than 0. In this case, we are shrinking the
1787  * if_broot buffer. It must already exist. If we go to zero
1788  * records, just get rid of the root and clear the status bit.
1789  */
1790  ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
1791  cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1792  new_max = cur_max + rec_diff;
1793  ASSERT(new_max >= 0);
1794  if (new_max > 0)
1795  new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1796  else
1797  new_size = 0;
1798  if (new_size > 0) {
1799  new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1800  /*
1801  * First copy over the btree block header.
1802  */
1803  memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1804  } else {
1805  new_broot = NULL;
1806  ifp->if_flags &= ~XFS_IFBROOT;
1807  }
1808 
1809  /*
1810  * Only copy the records and pointers if there are any.
1811  */
1812  if (new_max > 0) {
1813  /*
1814  * First copy the records.
1815  */
1816  op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1817  np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1818  memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1819 
1820  /*
1821  * Then copy the pointers.
1822  */
1823  op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1824  ifp->if_broot_bytes);
1825  np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1826  (int)new_size);
1827  memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
1828  }
1829  kmem_free(ifp->if_broot);
1830  ifp->if_broot = new_broot;
1831  ifp->if_broot_bytes = (int)new_size;
1832  ASSERT(ifp->if_broot_bytes <=
1833  XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1834  return;
1835 }
1836 
1837 
1838 /*
1839  * This is called when the amount of space needed for if_data
1840  * is increased or decreased. The change in size is indicated by
1841  * the number of bytes that need to be added or deleted in the
1842  * byte_diff parameter.
1843  *
1844  * If the amount of space needed has decreased below the size of the
1845  * inline buffer, then switch to using the inline buffer. Otherwise,
1846  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
1847  * to what is needed.
1848  *
1849  * ip -- the inode whose if_data area is changing
1850  * byte_diff -- the change in the number of bytes, positive or negative,
1851  * requested for the if_data array.
1852  */
1853 void
1855  xfs_inode_t *ip,
1856  int byte_diff,
1857  int whichfork)
1858 {
1859  xfs_ifork_t *ifp;
1860  int new_size;
1861  int real_size;
1862 
1863  if (byte_diff == 0) {
1864  return;
1865  }
1866 
1867  ifp = XFS_IFORK_PTR(ip, whichfork);
1868  new_size = (int)ifp->if_bytes + byte_diff;
1869  ASSERT(new_size >= 0);
1870 
1871  if (new_size == 0) {
1872  if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1873  kmem_free(ifp->if_u1.if_data);
1874  }
1875  ifp->if_u1.if_data = NULL;
1876  real_size = 0;
1877  } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
1878  /*
1879  * If the valid extents/data can fit in if_inline_ext/data,
1880  * copy them from the malloc'd vector and free it.
1881  */
1882  if (ifp->if_u1.if_data == NULL) {
1883  ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1884  } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1885  ASSERT(ifp->if_real_bytes != 0);
1887  new_size);
1888  kmem_free(ifp->if_u1.if_data);
1889  ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1890  }
1891  real_size = 0;
1892  } else {
1893  /*
1894  * Stuck with malloc/realloc.
1895  * For inline data, the underlying buffer must be
1896  * a multiple of 4 bytes in size so that it can be
1897  * logged and stay on word boundaries. We enforce
1898  * that here.
1899  */
1900  real_size = roundup(new_size, 4);
1901  if (ifp->if_u1.if_data == NULL) {
1902  ASSERT(ifp->if_real_bytes == 0);
1903  ifp->if_u1.if_data = kmem_alloc(real_size,
1904  KM_SLEEP | KM_NOFS);
1905  } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1906  /*
1907  * Only do the realloc if the underlying size
1908  * is really changing.
1909  */
1910  if (ifp->if_real_bytes != real_size) {
1911  ifp->if_u1.if_data =
1912  kmem_realloc(ifp->if_u1.if_data,
1913  real_size,
1914  ifp->if_real_bytes,
1915  KM_SLEEP | KM_NOFS);
1916  }
1917  } else {
1918  ASSERT(ifp->if_real_bytes == 0);
1919  ifp->if_u1.if_data = kmem_alloc(real_size,
1920  KM_SLEEP | KM_NOFS);
1922  ifp->if_bytes);
1923  }
1924  }
1925  ifp->if_real_bytes = real_size;
1926  ifp->if_bytes = new_size;
1927  ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
1928 }
1929 
1930 void
1932  xfs_inode_t *ip,
1933  int whichfork)
1934 {
1935  xfs_ifork_t *ifp;
1936 
1937  ifp = XFS_IFORK_PTR(ip, whichfork);
1938  if (ifp->if_broot != NULL) {
1939  kmem_free(ifp->if_broot);
1940  ifp->if_broot = NULL;
1941  }
1942 
1943  /*
1944  * If the format is local, then we can't have an extents
1945  * array so just look for an inline data array. If we're
1946  * not local then we may or may not have an extents list,
1947  * so check and free it up if we do.
1948  */
1949  if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
1950  if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
1951  (ifp->if_u1.if_data != NULL)) {
1952  ASSERT(ifp->if_real_bytes != 0);
1953  kmem_free(ifp->if_u1.if_data);
1954  ifp->if_u1.if_data = NULL;
1955  ifp->if_real_bytes = 0;
1956  }
1957  } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
1958  ((ifp->if_flags & XFS_IFEXTIREC) ||
1959  ((ifp->if_u1.if_extents != NULL) &&
1960  (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1961  ASSERT(ifp->if_real_bytes != 0);
1962  xfs_iext_destroy(ifp);
1963  }
1964  ASSERT(ifp->if_u1.if_extents == NULL ||
1965  ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
1966  ASSERT(ifp->if_real_bytes == 0);
1967  if (whichfork == XFS_ATTR_FORK) {
1968  kmem_zone_free(xfs_ifork_zone, ip->i_afp);
1969  ip->i_afp = NULL;
1970  }
1971 }
1972 
1973 /*
1974  * This is called to unpin an inode. The caller must have the inode locked
1975  * in at least shared mode so that the buffer cannot be subsequently pinned
1976  * once someone is waiting for it to be unpinned.
1977  */
1978 static void
1979 xfs_iunpin(
1980  struct xfs_inode *ip)
1981 {
1982  ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1983 
1984  trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
1985 
1986  /* Give the log a push to start the unpinning I/O */
1987  xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
1988 
1989 }
1990 
1991 static void
1992 __xfs_iunpin_wait(
1993  struct xfs_inode *ip)
1994 {
1995  wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
1996  DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
1997 
1998  xfs_iunpin(ip);
1999 
2000  do {
2002  if (xfs_ipincount(ip))
2003  io_schedule();
2004  } while (xfs_ipincount(ip));
2005  finish_wait(wq, &wait.wait);
2006 }
2007 
2008 void
2010  struct xfs_inode *ip)
2011 {
2012  if (xfs_ipincount(ip))
2013  __xfs_iunpin_wait(ip);
2014 }
2015 
2016 /*
2017  * xfs_iextents_copy()
2018  *
2019  * This is called to copy the REAL extents (as opposed to the delayed
2020  * allocation extents) from the inode into the given buffer. It
2021  * returns the number of bytes copied into the buffer.
2022  *
2023  * If there are no delayed allocation extents, then we can just
2024  * memcpy() the extents into the buffer. Otherwise, we need to
2025  * examine each extent in turn and skip those which are delayed.
2026  */
2027 int
2029  xfs_inode_t *ip,
2030  xfs_bmbt_rec_t *dp,
2031  int whichfork)
2032 {
2033  int copied;
2034  int i;
2035  xfs_ifork_t *ifp;
2036  int nrecs;
2038 
2039  ifp = XFS_IFORK_PTR(ip, whichfork);
2040  ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2041  ASSERT(ifp->if_bytes > 0);
2042 
2043  nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2044  XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2045  ASSERT(nrecs > 0);
2046 
2047  /*
2048  * There are some delayed allocation extents in the
2049  * inode, so copy the extents one at a time and skip
2050  * the delayed ones. There must be at least one
2051  * non-delayed extent.
2052  */
2053  copied = 0;
2054  for (i = 0; i < nrecs; i++) {
2055  xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2056  start_block = xfs_bmbt_get_startblock(ep);
2057  if (isnullstartblock(start_block)) {
2058  /*
2059  * It's a delayed allocation extent, so skip it.
2060  */
2061  continue;
2062  }
2063 
2064  /* Translate to on disk format */
2065  put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2066  put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2067  dp++;
2068  copied++;
2069  }
2070  ASSERT(copied != 0);
2071  xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2072 
2073  return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2074 }
2075 
2076 /*
2077  * Each of the following cases stores data into the same region
2078  * of the on-disk inode, so only one of them can be valid at
2079  * any given time. While it is possible to have conflicting formats
2080  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2081  * in EXTENTS format, this can only happen when the fork has
2082  * changed formats after being modified but before being flushed.
2083  * In these cases, the format always takes precedence, because the
2084  * format indicates the current state of the fork.
2085  */
2086 /*ARGSUSED*/
2087 STATIC void
2089  xfs_inode_t *ip,
2090  xfs_dinode_t *dip,
2091  xfs_inode_log_item_t *iip,
2092  int whichfork,
2093  xfs_buf_t *bp)
2094 {
2095  char *cp;
2096  xfs_ifork_t *ifp;
2097  xfs_mount_t *mp;
2098 #ifdef XFS_TRANS_DEBUG
2099  int first;
2100 #endif
2101  static const short brootflag[2] =
2103  static const short dataflag[2] =
2105  static const short extflag[2] =
2107 
2108  if (!iip)
2109  return;
2110  ifp = XFS_IFORK_PTR(ip, whichfork);
2111  /*
2112  * This can happen if we gave up in iformat in an error path,
2113  * for the attribute fork.
2114  */
2115  if (!ifp) {
2116  ASSERT(whichfork == XFS_ATTR_FORK);
2117  return;
2118  }
2119  cp = XFS_DFORK_PTR(dip, whichfork);
2120  mp = ip->i_mount;
2121  switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2122  case XFS_DINODE_FMT_LOCAL:
2123  if ((iip->ili_fields & dataflag[whichfork]) &&
2124  (ifp->if_bytes > 0)) {
2125  ASSERT(ifp->if_u1.if_data != NULL);
2126  ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2127  memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2128  }
2129  break;
2130 
2132  ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2133  !(iip->ili_fields & extflag[whichfork]));
2134  if ((iip->ili_fields & extflag[whichfork]) &&
2135  (ifp->if_bytes > 0)) {
2136  ASSERT(xfs_iext_get_ext(ifp, 0));
2137  ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2139  whichfork);
2140  }
2141  break;
2142 
2143  case XFS_DINODE_FMT_BTREE:
2144  if ((iip->ili_fields & brootflag[whichfork]) &&
2145  (ifp->if_broot_bytes > 0)) {
2146  ASSERT(ifp->if_broot != NULL);
2147  ASSERT(ifp->if_broot_bytes <=
2148  (XFS_IFORK_SIZE(ip, whichfork) +
2150  xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2151  (xfs_bmdr_block_t *)cp,
2152  XFS_DFORK_SIZE(dip, mp, whichfork));
2153  }
2154  break;
2155 
2156  case XFS_DINODE_FMT_DEV:
2157  if (iip->ili_fields & XFS_ILOG_DEV) {
2158  ASSERT(whichfork == XFS_DATA_FORK);
2159  xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2160  }
2161  break;
2162 
2163  case XFS_DINODE_FMT_UUID:
2164  if (iip->ili_fields & XFS_ILOG_UUID) {
2165  ASSERT(whichfork == XFS_DATA_FORK);
2166  memcpy(XFS_DFORK_DPTR(dip),
2167  &ip->i_df.if_u2.if_uuid,
2168  sizeof(uuid_t));
2169  }
2170  break;
2171 
2172  default:
2173  ASSERT(0);
2174  break;
2175  }
2176 }
2177 
2178 STATIC int
2180  xfs_inode_t *ip,
2181  xfs_buf_t *bp)
2182 {
2183  xfs_mount_t *mp = ip->i_mount;
2184  struct xfs_perag *pag;
2185  unsigned long first_index, mask;
2186  unsigned long inodes_per_cluster;
2187  int ilist_size;
2188  xfs_inode_t **ilist;
2189  xfs_inode_t *iq;
2190  int nr_found;
2191  int clcount = 0;
2192  int bufwasdelwri;
2193  int i;
2194 
2195  pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2196 
2197  inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2198  ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2199  ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2200  if (!ilist)
2201  goto out_put;
2202 
2203  mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2204  first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2205  rcu_read_lock();
2206  /* really need a gang lookup range call here */
2207  nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2208  first_index, inodes_per_cluster);
2209  if (nr_found == 0)
2210  goto out_free;
2211 
2212  for (i = 0; i < nr_found; i++) {
2213  iq = ilist[i];
2214  if (iq == ip)
2215  continue;
2216 
2217  /*
2218  * because this is an RCU protected lookup, we could find a
2219  * recently freed or even reallocated inode during the lookup.
2220  * We need to check under the i_flags_lock for a valid inode
2221  * here. Skip it if it is not valid or the wrong inode.
2222  */
2223  spin_lock(&ip->i_flags_lock);
2224  if (!ip->i_ino ||
2225  (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2226  spin_unlock(&ip->i_flags_lock);
2227  continue;
2228  }
2229  spin_unlock(&ip->i_flags_lock);
2230 
2231  /*
2232  * Do an un-protected check to see if the inode is dirty and
2233  * is a candidate for flushing. These checks will be repeated
2234  * later after the appropriate locks are acquired.
2235  */
2236  if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2237  continue;
2238 
2239  /*
2240  * Try to get locks. If any are unavailable or it is pinned,
2241  * then this inode cannot be flushed and is skipped.
2242  */
2243 
2244  if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2245  continue;
2246  if (!xfs_iflock_nowait(iq)) {
2247  xfs_iunlock(iq, XFS_ILOCK_SHARED);
2248  continue;
2249  }
2250  if (xfs_ipincount(iq)) {
2251  xfs_ifunlock(iq);
2252  xfs_iunlock(iq, XFS_ILOCK_SHARED);
2253  continue;
2254  }
2255 
2256  /*
2257  * arriving here means that this inode can be flushed. First
2258  * re-check that it's dirty before flushing.
2259  */
2260  if (!xfs_inode_clean(iq)) {
2261  int error;
2262  error = xfs_iflush_int(iq, bp);
2263  if (error) {
2264  xfs_iunlock(iq, XFS_ILOCK_SHARED);
2265  goto cluster_corrupt_out;
2266  }
2267  clcount++;
2268  } else {
2269  xfs_ifunlock(iq);
2270  }
2271  xfs_iunlock(iq, XFS_ILOCK_SHARED);
2272  }
2273 
2274  if (clcount) {
2275  XFS_STATS_INC(xs_icluster_flushcnt);
2276  XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2277  }
2278 
2279 out_free:
2280  rcu_read_unlock();
2281  kmem_free(ilist);
2282 out_put:
2283  xfs_perag_put(pag);
2284  return 0;
2285 
2286 
2287 cluster_corrupt_out:
2288  /*
2289  * Corruption detected in the clustering loop. Invalidate the
2290  * inode buffer and shut down the filesystem.
2291  */
2292  rcu_read_unlock();
2293  /*
2294  * Clean up the buffer. If it was delwri, just release it --
2295  * brelse can handle it with no problems. If not, shut down the
2296  * filesystem before releasing the buffer.
2297  */
2298  bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
2299  if (bufwasdelwri)
2300  xfs_buf_relse(bp);
2301 
2302  xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2303 
2304  if (!bufwasdelwri) {
2305  /*
2306  * Just like incore_relse: if we have b_iodone functions,
2307  * mark the buffer as an error and call them. Otherwise
2308  * mark it as stale and brelse.
2309  */
2310  if (bp->b_iodone) {
2311  XFS_BUF_UNDONE(bp);
2312  xfs_buf_stale(bp);
2313  xfs_buf_ioerror(bp, EIO);
2314  xfs_buf_ioend(bp, 0);
2315  } else {
2316  xfs_buf_stale(bp);
2317  xfs_buf_relse(bp);
2318  }
2319  }
2320 
2321  /*
2322  * Unlocks the flush lock
2323  */
2324  xfs_iflush_abort(iq, false);
2325  kmem_free(ilist);
2326  xfs_perag_put(pag);
2327  return XFS_ERROR(EFSCORRUPTED);
2328 }
2329 
2330 /*
2331  * Flush dirty inode metadata into the backing buffer.
2332  *
2333  * The caller must have the inode lock and the inode flush lock held. The
2334  * inode lock will still be held upon return to the caller, and the inode
2335  * flush lock will be released after the inode has reached the disk.
2336  *
2337  * The caller must write out the buffer returned in *bpp and release it.
2338  */
2339 int
2341  struct xfs_inode *ip,
2342  struct xfs_buf **bpp)
2343 {
2344  struct xfs_mount *mp = ip->i_mount;
2345  struct xfs_buf *bp;
2346  struct xfs_dinode *dip;
2347  int error;
2348 
2349  XFS_STATS_INC(xs_iflush_count);
2350 
2351  ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2352  ASSERT(xfs_isiflocked(ip));
2353  ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2354  ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2355 
2356  *bpp = NULL;
2357 
2358  xfs_iunpin_wait(ip);
2359 
2360  /*
2361  * For stale inodes we cannot rely on the backing buffer remaining
2362  * stale in cache for the remaining life of the stale inode and so
2363  * xfs_imap_to_bp() below may give us a buffer that no longer contains
2364  * inodes below. We have to check this after ensuring the inode is
2365  * unpinned so that it is safe to reclaim the stale inode after the
2366  * flush call.
2367  */
2368  if (xfs_iflags_test(ip, XFS_ISTALE)) {
2369  xfs_ifunlock(ip);
2370  return 0;
2371  }
2372 
2373  /*
2374  * This may have been unpinned because the filesystem is shutting
2375  * down forcibly. If that's the case we must not write this inode
2376  * to disk, because the log record didn't make it to disk.
2377  *
2378  * We also have to remove the log item from the AIL in this case,
2379  * as we wait for an empty AIL as part of the unmount process.
2380  */
2381  if (XFS_FORCED_SHUTDOWN(mp)) {
2382  error = XFS_ERROR(EIO);
2383  goto abort_out;
2384  }
2385 
2386  /*
2387  * Get the buffer containing the on-disk inode.
2388  */
2389  error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
2390  0);
2391  if (error || !bp) {
2392  xfs_ifunlock(ip);
2393  return error;
2394  }
2395 
2396  /*
2397  * First flush out the inode that xfs_iflush was called with.
2398  */
2399  error = xfs_iflush_int(ip, bp);
2400  if (error)
2401  goto corrupt_out;
2402 
2403  /*
2404  * If the buffer is pinned then push on the log now so we won't
2405  * get stuck waiting in the write for too long.
2406  */
2407  if (xfs_buf_ispinned(bp))
2408  xfs_log_force(mp, 0);
2409 
2410  /*
2411  * inode clustering:
2412  * see if other inodes can be gathered into this write
2413  */
2414  error = xfs_iflush_cluster(ip, bp);
2415  if (error)
2416  goto cluster_corrupt_out;
2417 
2418  *bpp = bp;
2419  return 0;
2420 
2421 corrupt_out:
2422  xfs_buf_relse(bp);
2423  xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2424 cluster_corrupt_out:
2425  error = XFS_ERROR(EFSCORRUPTED);
2426 abort_out:
2427  /*
2428  * Unlocks the flush lock
2429  */
2430  xfs_iflush_abort(ip, false);
2431  return error;
2432 }
2433 
2434 
2435 STATIC int
2437  xfs_inode_t *ip,
2438  xfs_buf_t *bp)
2439 {
2440  xfs_inode_log_item_t *iip;
2441  xfs_dinode_t *dip;
2442  xfs_mount_t *mp;
2443 #ifdef XFS_TRANS_DEBUG
2444  int first;
2445 #endif
2446 
2447  ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2448  ASSERT(xfs_isiflocked(ip));
2449  ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2450  ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2451 
2452  iip = ip->i_itemp;
2453  mp = ip->i_mount;
2454 
2455  /* set *dip = inode's place in the buffer */
2456  dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2457 
2458  if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2461  "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2462  __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2463  goto corrupt_out;
2464  }
2465  if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2468  "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2469  __func__, ip->i_ino, ip, ip->i_d.di_magic);
2470  goto corrupt_out;
2471  }
2472  if (S_ISREG(ip->i_d.di_mode)) {
2473  if (XFS_TEST_ERROR(
2474  (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2475  (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2478  "%s: Bad regular inode %Lu, ptr 0x%p",
2479  __func__, ip->i_ino, ip);
2480  goto corrupt_out;
2481  }
2482  } else if (S_ISDIR(ip->i_d.di_mode)) {
2483  if (XFS_TEST_ERROR(
2484  (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2485  (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2486  (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2489  "%s: Bad directory inode %Lu, ptr 0x%p",
2490  __func__, ip->i_ino, ip);
2491  goto corrupt_out;
2492  }
2493  }
2494  if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2495  ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2498  "%s: detected corrupt incore inode %Lu, "
2499  "total extents = %d, nblocks = %Ld, ptr 0x%p",
2500  __func__, ip->i_ino,
2501  ip->i_d.di_nextents + ip->i_d.di_anextents,
2502  ip->i_d.di_nblocks, ip);
2503  goto corrupt_out;
2504  }
2505  if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2508  "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2509  __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2510  goto corrupt_out;
2511  }
2512  /*
2513  * bump the flush iteration count, used to detect flushes which
2514  * postdate a log record during recovery.
2515  */
2516 
2517  ip->i_d.di_flushiter++;
2518 
2519  /*
2520  * Copy the dirty parts of the inode into the on-disk
2521  * inode. We always copy out the core of the inode,
2522  * because if the inode is dirty at all the core must
2523  * be.
2524  */
2525  xfs_dinode_to_disk(dip, &ip->i_d);
2526 
2527  /* Wrap, we never let the log put out DI_MAX_FLUSH */
2528  if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2529  ip->i_d.di_flushiter = 0;
2530 
2531  /*
2532  * If this is really an old format inode and the superblock version
2533  * has not been updated to support only new format inodes, then
2534  * convert back to the old inode format. If the superblock version
2535  * has been updated, then make the conversion permanent.
2536  */
2537  ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2538  if (ip->i_d.di_version == 1) {
2539  if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2540  /*
2541  * Convert it back.
2542  */
2543  ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2544  dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2545  } else {
2546  /*
2547  * The superblock version has already been bumped,
2548  * so just make the conversion to the new inode
2549  * format permanent.
2550  */
2551  ip->i_d.di_version = 2;
2552  dip->di_version = 2;
2553  ip->i_d.di_onlink = 0;
2554  dip->di_onlink = 0;
2555  memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2556  memset(&(dip->di_pad[0]), 0,
2557  sizeof(dip->di_pad));
2558  ASSERT(xfs_get_projid(ip) == 0);
2559  }
2560  }
2561 
2562  xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2563  if (XFS_IFORK_Q(ip))
2564  xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2565  xfs_inobp_check(mp, bp);
2566 
2567  /*
2568  * We've recorded everything logged in the inode, so we'd like to clear
2569  * the ili_fields bits so we don't log and flush things unnecessarily.
2570  * However, we can't stop logging all this information until the data
2571  * we've copied into the disk buffer is written to disk. If we did we
2572  * might overwrite the copy of the inode in the log with all the data
2573  * after re-logging only part of it, and in the face of a crash we
2574  * wouldn't have all the data we need to recover.
2575  *
2576  * What we do is move the bits to the ili_last_fields field. When
2577  * logging the inode, these bits are moved back to the ili_fields field.
2578  * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2579  * know that the information those bits represent is permanently on
2580  * disk. As long as the flush completes before the inode is logged
2581  * again, then both ili_fields and ili_last_fields will be cleared.
2582  *
2583  * We can play with the ili_fields bits here, because the inode lock
2584  * must be held exclusively in order to set bits there and the flush
2585  * lock protects the ili_last_fields bits. Set ili_logged so the flush
2586  * done routine can tell whether or not to look in the AIL. Also, store
2587  * the current LSN of the inode so that we can tell whether the item has
2588  * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
2589  * need the AIL lock, because it is a 64 bit value that cannot be read
2590  * atomically.
2591  */
2592  if (iip != NULL && iip->ili_fields != 0) {
2593  iip->ili_last_fields = iip->ili_fields;
2594  iip->ili_fields = 0;
2595  iip->ili_logged = 1;
2596 
2597  xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2598  &iip->ili_item.li_lsn);
2599 
2600  /*
2601  * Attach the function xfs_iflush_done to the inode's
2602  * buffer. This will remove the inode from the AIL
2603  * and unlock the inode's flush lock when the inode is
2604  * completely written to disk.
2605  */
2606  xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2607 
2608  ASSERT(bp->b_fspriv != NULL);
2609  ASSERT(bp->b_iodone != NULL);
2610  } else {
2611  /*
2612  * We're flushing an inode which is not in the AIL and has
2613  * not been logged. For this case we can immediately drop
2614  * the inode flush lock because we can avoid the whole
2615  * AIL state thing. It's OK to drop the flush lock now,
2616  * because we've already locked the buffer and to do anything
2617  * you really need both.
2618  */
2619  if (iip != NULL) {
2620  ASSERT(iip->ili_logged == 0);
2621  ASSERT(iip->ili_last_fields == 0);
2622  ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2623  }
2624  xfs_ifunlock(ip);
2625  }
2626 
2627  return 0;
2628 
2629 corrupt_out:
2630  return XFS_ERROR(EFSCORRUPTED);
2631 }
2632 
2633 /*
2634  * Return a pointer to the extent record at file index idx.
2635  */
2638  xfs_ifork_t *ifp, /* inode fork pointer */
2639  xfs_extnum_t idx) /* index of target extent */
2640 {
2641  ASSERT(idx >= 0);
2642  ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2643 
2644  if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2645  return ifp->if_u1.if_ext_irec->er_extbuf;
2646  } else if (ifp->if_flags & XFS_IFEXTIREC) {
2647  xfs_ext_irec_t *erp; /* irec pointer */
2648  int erp_idx = 0; /* irec index */
2649  xfs_extnum_t page_idx = idx; /* ext index in target list */
2650 
2651  erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2652  return &erp->er_extbuf[page_idx];
2653  } else if (ifp->if_bytes) {
2654  return &ifp->if_u1.if_extents[idx];
2655  } else {
2656  return NULL;
2657  }
2658 }
2659 
2660 /*
2661  * Insert new item(s) into the extent records for incore inode
2662  * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2663  */
2664 void
2666  xfs_inode_t *ip, /* incore inode pointer */
2667  xfs_extnum_t idx, /* starting index of new items */
2668  xfs_extnum_t count, /* number of inserted items */
2669  xfs_bmbt_irec_t *new, /* items to insert */
2670  int state) /* type of extent conversion */
2671 {
2672  xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2673  xfs_extnum_t i; /* extent record index */
2674 
2675  trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2676 
2677  ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2678  xfs_iext_add(ifp, idx, count);
2679  for (i = idx; i < idx + count; i++, new++)
2680  xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2681 }
2682 
2683 /*
2684  * This is called when the amount of space required for incore file
2685  * extents needs to be increased. The ext_diff parameter stores the
2686  * number of new extents being added and the idx parameter contains
2687  * the extent index where the new extents will be added. If the new
2688  * extents are being appended, then we just need to (re)allocate and
2689  * initialize the space. Otherwise, if the new extents are being
2690  * inserted into the middle of the existing entries, a bit more work
2691  * is required to make room for the new extents to be inserted. The
2692  * caller is responsible for filling in the new extent entries upon
2693  * return.
2694  */
2695 void
2697  xfs_ifork_t *ifp, /* inode fork pointer */
2698  xfs_extnum_t idx, /* index to begin adding exts */
2699  int ext_diff) /* number of extents to add */
2700 {
2701  int byte_diff; /* new bytes being added */
2702  int new_size; /* size of extents after adding */
2703  xfs_extnum_t nextents; /* number of extents in file */
2704 
2705  nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2706  ASSERT((idx >= 0) && (idx <= nextents));
2707  byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2708  new_size = ifp->if_bytes + byte_diff;
2709  /*
2710  * If the new number of extents (nextents + ext_diff)
2711  * fits inside the inode, then continue to use the inline
2712  * extent buffer.
2713  */
2714  if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2715  if (idx < nextents) {
2716  memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2717  &ifp->if_u2.if_inline_ext[idx],
2718  (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2719  memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2720  }
2721  ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2722  ifp->if_real_bytes = 0;
2723  }
2724  /*
2725  * Otherwise use a linear (direct) extent list.
2726  * If the extents are currently inside the inode,
2727  * xfs_iext_realloc_direct will switch us from
2728  * inline to direct extent allocation mode.
2729  */
2730  else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
2731  xfs_iext_realloc_direct(ifp, new_size);
2732  if (idx < nextents) {
2733  memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2734  &ifp->if_u1.if_extents[idx],
2735  (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2736  memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2737  }
2738  }
2739  /* Indirection array */
2740  else {
2741  xfs_ext_irec_t *erp;
2742  int erp_idx = 0;
2743  int page_idx = idx;
2744 
2745  ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2746  if (ifp->if_flags & XFS_IFEXTIREC) {
2747  erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2748  } else {
2749  xfs_iext_irec_init(ifp);
2750  ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2751  erp = ifp->if_u1.if_ext_irec;
2752  }
2753  /* Extents fit in target extent page */
2754  if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2755  if (page_idx < erp->er_extcount) {
2756  memmove(&erp->er_extbuf[page_idx + ext_diff],
2757  &erp->er_extbuf[page_idx],
2758  (erp->er_extcount - page_idx) *
2759  sizeof(xfs_bmbt_rec_t));
2760  memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2761  }
2762  erp->er_extcount += ext_diff;
2763  xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2764  }
2765  /* Insert a new extent page */
2766  else if (erp) {
2768  erp_idx, page_idx, ext_diff);
2769  }
2770  /*
2771  * If extent(s) are being appended to the last page in
2772  * the indirection array and the new extent(s) don't fit
2773  * in the page, then erp is NULL and erp_idx is set to
2774  * the next index needed in the indirection array.
2775  */
2776  else {
2777  int count = ext_diff;
2778 
2779  while (count) {
2780  erp = xfs_iext_irec_new(ifp, erp_idx);
2781  erp->er_extcount = count;
2782  count -= MIN(count, (int)XFS_LINEAR_EXTS);
2783  if (count) {
2784  erp_idx++;
2785  }
2786  }
2787  }
2788  }
2789  ifp->if_bytes = new_size;
2790 }
2791 
2792 /*
2793  * This is called when incore extents are being added to the indirection
2794  * array and the new extents do not fit in the target extent list. The
2795  * erp_idx parameter contains the irec index for the target extent list
2796  * in the indirection array, and the idx parameter contains the extent
2797  * index within the list. The number of extents being added is stored
2798  * in the count parameter.
2799  *
2800  * |-------| |-------|
2801  * | | | | idx - number of extents before idx
2802  * | idx | | count |
2803  * | | | | count - number of extents being inserted at idx
2804  * |-------| |-------|
2805  * | count | | nex2 | nex2 - number of extents after idx + count
2806  * |-------| |-------|
2807  */
2808 void
2810  xfs_ifork_t *ifp, /* inode fork pointer */
2811  int erp_idx, /* target extent irec index */
2812  xfs_extnum_t idx, /* index within target list */
2813  int count) /* new extents being added */
2814 {
2815  int byte_diff; /* new bytes being added */
2816  xfs_ext_irec_t *erp; /* pointer to irec entry */
2817  xfs_extnum_t ext_diff; /* number of extents to add */
2818  xfs_extnum_t ext_cnt; /* new extents still needed */
2819  xfs_extnum_t nex2; /* extents after idx + count */
2820  xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
2821  int nlists; /* number of irec's (lists) */
2822 
2823  ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2824  erp = &ifp->if_u1.if_ext_irec[erp_idx];
2825  nex2 = erp->er_extcount - idx;
2826  nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
2827 
2828  /*
2829  * Save second part of target extent list
2830  * (all extents past */
2831  if (nex2) {
2832  byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2833  nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
2834  memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
2835  erp->er_extcount -= nex2;
2836  xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
2837  memset(&erp->er_extbuf[idx], 0, byte_diff);
2838  }
2839 
2840  /*
2841  * Add the new extents to the end of the target
2842  * list, then allocate new irec record(s) and
2843  * extent buffer(s) as needed to store the rest
2844  * of the new extents.
2845  */
2846  ext_cnt = count;
2847  ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
2848  if (ext_diff) {
2849  erp->er_extcount += ext_diff;
2850  xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2851  ext_cnt -= ext_diff;
2852  }
2853  while (ext_cnt) {
2854  erp_idx++;
2855  erp = xfs_iext_irec_new(ifp, erp_idx);
2856  ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
2857  erp->er_extcount = ext_diff;
2858  xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2859  ext_cnt -= ext_diff;
2860  }
2861 
2862  /* Add nex2 extents back to indirection array */
2863  if (nex2) {
2864  xfs_extnum_t ext_avail;
2865  int i;
2866 
2867  byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2868  ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
2869  i = 0;
2870  /*
2871  * If nex2 extents fit in the current page, append
2872  * nex2_ep after the new extents.
2873  */
2874  if (nex2 <= ext_avail) {
2875  i = erp->er_extcount;
2876  }
2877  /*
2878  * Otherwise, check if space is available in the
2879  * next page.
2880  */
2881  else if ((erp_idx < nlists - 1) &&
2882  (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
2883  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
2884  erp_idx++;
2885  erp++;
2886  /* Create a hole for nex2 extents */
2887  memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
2888  erp->er_extcount * sizeof(xfs_bmbt_rec_t));
2889  }
2890  /*
2891  * Final choice, create a new extent page for
2892  * nex2 extents.
2893  */
2894  else {
2895  erp_idx++;
2896  erp = xfs_iext_irec_new(ifp, erp_idx);
2897  }
2898  memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
2899  kmem_free(nex2_ep);
2900  erp->er_extcount += nex2;
2901  xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
2902  }
2903 }
2904 
2905 /*
2906  * This is called when the amount of space required for incore file
2907  * extents needs to be decreased. The ext_diff parameter stores the
2908  * number of extents to be removed and the idx parameter contains
2909  * the extent index where the extents will be removed from.
2910  *
2911  * If the amount of space needed has decreased below the linear
2912  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
2913  * extent array. Otherwise, use kmem_realloc() to adjust the
2914  * size to what is needed.
2915  */
2916 void
2918  xfs_inode_t *ip, /* incore inode pointer */
2919  xfs_extnum_t idx, /* index to begin removing exts */
2920  int ext_diff, /* number of extents to remove */
2921  int state) /* type of extent conversion */
2922 {
2923  xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2924  xfs_extnum_t nextents; /* number of extents in file */
2925  int new_size; /* size of extents after removal */
2926 
2927  trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
2928 
2929  ASSERT(ext_diff > 0);
2930  nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2931  new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
2932 
2933  if (new_size == 0) {
2934  xfs_iext_destroy(ifp);
2935  } else if (ifp->if_flags & XFS_IFEXTIREC) {
2936  xfs_iext_remove_indirect(ifp, idx, ext_diff);
2937  } else if (ifp->if_real_bytes) {
2938  xfs_iext_remove_direct(ifp, idx, ext_diff);
2939  } else {
2940  xfs_iext_remove_inline(ifp, idx, ext_diff);
2941  }
2942  ifp->if_bytes = new_size;
2943 }
2944 
2945 /*
2946  * This removes ext_diff extents from the inline buffer, beginning
2947  * at extent index idx.
2948  */
2949 void
2951  xfs_ifork_t *ifp, /* inode fork pointer */
2952  xfs_extnum_t idx, /* index to begin removing exts */
2953  int ext_diff) /* number of extents to remove */
2954 {
2955  int nextents; /* number of extents in file */
2956 
2957  ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
2958  ASSERT(idx < XFS_INLINE_EXTS);
2959  nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2960  ASSERT(((nextents - ext_diff) > 0) &&
2961  (nextents - ext_diff) < XFS_INLINE_EXTS);
2962 
2963  if (idx + ext_diff < nextents) {
2964  memmove(&ifp->if_u2.if_inline_ext[idx],
2965  &ifp->if_u2.if_inline_ext[idx + ext_diff],
2966  (nextents - (idx + ext_diff)) *
2967  sizeof(xfs_bmbt_rec_t));
2968  memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
2969  0, ext_diff * sizeof(xfs_bmbt_rec_t));
2970  } else {
2971  memset(&ifp->if_u2.if_inline_ext[idx], 0,
2972  ext_diff * sizeof(xfs_bmbt_rec_t));
2973  }
2974 }
2975 
2976 /*
2977  * This removes ext_diff extents from a linear (direct) extent list,
2978  * beginning at extent index idx. If the extents are being removed
2979  * from the end of the list (ie. truncate) then we just need to re-
2980  * allocate the list to remove the extra space. Otherwise, if the
2981  * extents are being removed from the middle of the existing extent
2982  * entries, then we first need to move the extent records beginning
2983  * at idx + ext_diff up in the list to overwrite the records being
2984  * removed, then remove the extra space via kmem_realloc.
2985  */
2986 void
2988  xfs_ifork_t *ifp, /* inode fork pointer */
2989  xfs_extnum_t idx, /* index to begin removing exts */
2990  int ext_diff) /* number of extents to remove */
2991 {
2992  xfs_extnum_t nextents; /* number of extents in file */
2993  int new_size; /* size of extents after removal */
2994 
2995  ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
2996  new_size = ifp->if_bytes -
2997  (ext_diff * sizeof(xfs_bmbt_rec_t));
2998  nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2999 
3000  if (new_size == 0) {
3001  xfs_iext_destroy(ifp);
3002  return;
3003  }
3004  /* Move extents up in the list (if needed) */
3005  if (idx + ext_diff < nextents) {
3006  memmove(&ifp->if_u1.if_extents[idx],
3007  &ifp->if_u1.if_extents[idx + ext_diff],
3008  (nextents - (idx + ext_diff)) *
3009  sizeof(xfs_bmbt_rec_t));
3010  }
3011  memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3012  0, ext_diff * sizeof(xfs_bmbt_rec_t));
3013  /*
3014  * Reallocate the direct extent list. If the extents
3015  * will fit inside the inode then xfs_iext_realloc_direct
3016  * will switch from direct to inline extent allocation
3017  * mode for us.
3018  */
3019  xfs_iext_realloc_direct(ifp, new_size);
3020  ifp->if_bytes = new_size;
3021 }
3022 
3023 /*
3024  * This is called when incore extents are being removed from the
3025  * indirection array and the extents being removed span multiple extent
3026  * buffers. The idx parameter contains the file extent index where we
3027  * want to begin removing extents, and the count parameter contains
3028  * how many extents need to be removed.
3029  *
3030  * |-------| |-------|
3031  * | nex1 | | | nex1 - number of extents before idx
3032  * |-------| | count |
3033  * | | | | count - number of extents being removed at idx
3034  * | count | |-------|
3035  * | | | nex2 | nex2 - number of extents after idx + count
3036  * |-------| |-------|
3037  */
3038 void
3040  xfs_ifork_t *ifp, /* inode fork pointer */
3041  xfs_extnum_t idx, /* index to begin removing extents */
3042  int count) /* number of extents to remove */
3043 {
3044  xfs_ext_irec_t *erp; /* indirection array pointer */
3045  int erp_idx = 0; /* indirection array index */
3046  xfs_extnum_t ext_cnt; /* extents left to remove */
3047  xfs_extnum_t ext_diff; /* extents to remove in current list */
3048  xfs_extnum_t nex1; /* number of extents before idx */
3049  xfs_extnum_t nex2; /* extents after idx + count */
3050  int page_idx = idx; /* index in target extent list */
3051 
3052  ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3053  erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3054  ASSERT(erp != NULL);
3055  nex1 = page_idx;
3056  ext_cnt = count;
3057  while (ext_cnt) {
3058  nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3059  ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3060  /*
3061  * Check for deletion of entire list;
3062  * xfs_iext_irec_remove() updates extent offsets.
3063  */
3064  if (ext_diff == erp->er_extcount) {
3065  xfs_iext_irec_remove(ifp, erp_idx);
3066  ext_cnt -= ext_diff;
3067  nex1 = 0;
3068  if (ext_cnt) {
3069  ASSERT(erp_idx < ifp->if_real_bytes /
3070  XFS_IEXT_BUFSZ);
3071  erp = &ifp->if_u1.if_ext_irec[erp_idx];
3072  nex1 = 0;
3073  continue;
3074  } else {
3075  break;
3076  }
3077  }
3078  /* Move extents up (if needed) */
3079  if (nex2) {
3080  memmove(&erp->er_extbuf[nex1],
3081  &erp->er_extbuf[nex1 + ext_diff],
3082  nex2 * sizeof(xfs_bmbt_rec_t));
3083  }
3084  /* Zero out rest of page */
3085  memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3086  ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3087  /* Update remaining counters */
3088  erp->er_extcount -= ext_diff;
3089  xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3090  ext_cnt -= ext_diff;
3091  nex1 = 0;
3092  erp_idx++;
3093  erp++;
3094  }
3095  ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3096  xfs_iext_irec_compact(ifp);
3097 }
3098 
3099 /*
3100  * Create, destroy, or resize a linear (direct) block of extents.
3101  */
3102 void
3104  xfs_ifork_t *ifp, /* inode fork pointer */
3105  int new_size) /* new size of extents */
3106 {
3107  int rnew_size; /* real new size of extents */
3108 
3109  rnew_size = new_size;
3110 
3111  ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3112  ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3113  (new_size != ifp->if_real_bytes)));
3114 
3115  /* Free extent records */
3116  if (new_size == 0) {
3117  xfs_iext_destroy(ifp);
3118  }
3119  /* Resize direct extent list and zero any new bytes */
3120  else if (ifp->if_real_bytes) {
3121  /* Check if extents will fit inside the inode */
3122  if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3123  xfs_iext_direct_to_inline(ifp, new_size /
3124  (uint)sizeof(xfs_bmbt_rec_t));
3125  ifp->if_bytes = new_size;
3126  return;
3127  }
3128  if (!is_power_of_2(new_size)){
3129  rnew_size = roundup_pow_of_two(new_size);
3130  }
3131  if (rnew_size != ifp->if_real_bytes) {
3132  ifp->if_u1.if_extents =
3134  rnew_size,
3135  ifp->if_real_bytes, KM_NOFS);
3136  }
3137  if (rnew_size > ifp->if_real_bytes) {
3138  memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3139  (uint)sizeof(xfs_bmbt_rec_t)], 0,
3140  rnew_size - ifp->if_real_bytes);
3141  }
3142  }
3143  /*
3144  * Switch from the inline extent buffer to a direct
3145  * extent list. Be sure to include the inline extent
3146  * bytes in new_size.
3147  */
3148  else {
3149  new_size += ifp->if_bytes;
3150  if (!is_power_of_2(new_size)) {
3151  rnew_size = roundup_pow_of_two(new_size);
3152  }
3153  xfs_iext_inline_to_direct(ifp, rnew_size);
3154  }
3155  ifp->if_real_bytes = rnew_size;
3156  ifp->if_bytes = new_size;
3157 }
3158 
3159 /*
3160  * Switch from linear (direct) extent records to inline buffer.
3161  */
3162 void
3164  xfs_ifork_t *ifp, /* inode fork pointer */
3165  xfs_extnum_t nextents) /* number of extents in file */
3166 {
3167  ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3168  ASSERT(nextents <= XFS_INLINE_EXTS);
3169  /*
3170  * The inline buffer was zeroed when we switched
3171  * from inline to direct extent allocation mode,
3172  * so we don't need to clear it here.
3173  */
3175  nextents * sizeof(xfs_bmbt_rec_t));
3176  kmem_free(ifp->if_u1.if_extents);
3177  ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3178  ifp->if_real_bytes = 0;
3179 }
3180 
3181 /*
3182  * Switch from inline buffer to linear (direct) extent records.
3183  * new_size should already be rounded up to the next power of 2
3184  * by the caller (when appropriate), so use new_size as it is.
3185  * However, since new_size may be rounded up, we can't update
3186  * if_bytes here. It is the caller's responsibility to update
3187  * if_bytes upon return.
3188  */
3189 void
3191  xfs_ifork_t *ifp, /* inode fork pointer */
3192  int new_size) /* number of extents in file */
3193 {
3194  ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3195  memset(ifp->if_u1.if_extents, 0, new_size);
3196  if (ifp->if_bytes) {
3198  ifp->if_bytes);
3200  sizeof(xfs_bmbt_rec_t));
3201  }
3202  ifp->if_real_bytes = new_size;
3203 }
3204 
3205 /*
3206  * Resize an extent indirection array to new_size bytes.
3207  */
3208 STATIC void
3210  xfs_ifork_t *ifp, /* inode fork pointer */
3211  int new_size) /* new indirection array size */
3212 {
3213  int nlists; /* number of irec's (ex lists) */
3214  int size; /* current indirection array size */
3215 
3216  ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3217  nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3218  size = nlists * sizeof(xfs_ext_irec_t);
3219  ASSERT(ifp->if_real_bytes);
3220  ASSERT((new_size >= 0) && (new_size != size));
3221  if (new_size == 0) {
3222  xfs_iext_destroy(ifp);
3223  } else {
3224  ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3226  new_size, size, KM_NOFS);
3227  }
3228 }
3229 
3230 /*
3231  * Switch from indirection array to linear (direct) extent allocations.
3232  */
3233 STATIC void
3235  xfs_ifork_t *ifp) /* inode fork pointer */
3236 {
3237  xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3238  xfs_extnum_t nextents; /* number of extents in file */
3239  int size; /* size of file extents */
3240 
3241  ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3242  nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3243  ASSERT(nextents <= XFS_LINEAR_EXTS);
3244  size = nextents * sizeof(xfs_bmbt_rec_t);
3245 
3248 
3249  ep = ifp->if_u1.if_ext_irec->er_extbuf;
3250  kmem_free(ifp->if_u1.if_ext_irec);
3251  ifp->if_flags &= ~XFS_IFEXTIREC;
3252  ifp->if_u1.if_extents = ep;
3253  ifp->if_bytes = size;
3254  if (nextents < XFS_LINEAR_EXTS) {
3255  xfs_iext_realloc_direct(ifp, size);
3256  }
3257 }
3258 
3259 /*
3260  * Free incore file extents.
3261  */
3262 void
3264  xfs_ifork_t *ifp) /* inode fork pointer */
3265 {
3266  if (ifp->if_flags & XFS_IFEXTIREC) {
3267  int erp_idx;
3268  int nlists;
3269 
3270  nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3271  for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3272  xfs_iext_irec_remove(ifp, erp_idx);
3273  }
3274  ifp->if_flags &= ~XFS_IFEXTIREC;
3275  } else if (ifp->if_real_bytes) {
3276  kmem_free(ifp->if_u1.if_extents);
3277  } else if (ifp->if_bytes) {
3279  sizeof(xfs_bmbt_rec_t));
3280  }
3281  ifp->if_u1.if_extents = NULL;
3282  ifp->if_real_bytes = 0;
3283  ifp->if_bytes = 0;
3284 }
3285 
3286 /*
3287  * Return a pointer to the extent record for file system block bno.
3288  */
3289 xfs_bmbt_rec_host_t * /* pointer to found extent record */
3291  xfs_ifork_t *ifp, /* inode fork pointer */
3292  xfs_fileoff_t bno, /* block number to search for */
3293  xfs_extnum_t *idxp) /* index of target extent */
3294 {
3295  xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3296  xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3297  xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3298  xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3299  int high; /* upper boundary in search */
3300  xfs_extnum_t idx = 0; /* index of target extent */
3301  int low; /* lower boundary in search */
3302  xfs_extnum_t nextents; /* number of file extents */
3303  xfs_fileoff_t startoff = 0; /* start offset of extent */
3304 
3305  nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3306  if (nextents == 0) {
3307  *idxp = 0;
3308  return NULL;
3309  }
3310  low = 0;
3311  if (ifp->if_flags & XFS_IFEXTIREC) {
3312  /* Find target extent list */
3313  int erp_idx = 0;
3314  erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3315  base = erp->er_extbuf;
3316  high = erp->er_extcount - 1;
3317  } else {
3318  base = ifp->if_u1.if_extents;
3319  high = nextents - 1;
3320  }
3321  /* Binary search extent records */
3322  while (low <= high) {
3323  idx = (low + high) >> 1;
3324  ep = base + idx;
3325  startoff = xfs_bmbt_get_startoff(ep);
3326  blockcount = xfs_bmbt_get_blockcount(ep);
3327  if (bno < startoff) {
3328  high = idx - 1;
3329  } else if (bno >= startoff + blockcount) {
3330  low = idx + 1;
3331  } else {
3332  /* Convert back to file-based extent index */
3333  if (ifp->if_flags & XFS_IFEXTIREC) {
3334  idx += erp->er_extoff;
3335  }
3336  *idxp = idx;
3337  return ep;
3338  }
3339  }
3340  /* Convert back to file-based extent index */
3341  if (ifp->if_flags & XFS_IFEXTIREC) {
3342  idx += erp->er_extoff;
3343  }
3344  if (bno >= startoff + blockcount) {
3345  if (++idx == nextents) {
3346  ep = NULL;
3347  } else {
3348  ep = xfs_iext_get_ext(ifp, idx);
3349  }
3350  }
3351  *idxp = idx;
3352  return ep;
3353 }
3354 
3355 /*
3356  * Return a pointer to the indirection array entry containing the
3357  * extent record for filesystem block bno. Store the index of the
3358  * target irec in *erp_idxp.
3359  */
3360 xfs_ext_irec_t * /* pointer to found extent record */
3362  xfs_ifork_t *ifp, /* inode fork pointer */
3363  xfs_fileoff_t bno, /* block number to search for */
3364  int *erp_idxp) /* irec index of target ext list */
3365 {
3366  xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3367  xfs_ext_irec_t *erp_next; /* next indirection array entry */
3368  int erp_idx; /* indirection array index */
3369  int nlists; /* number of extent irec's (lists) */
3370  int high; /* binary search upper limit */
3371  int low; /* binary search lower limit */
3372 
3373  ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3374  nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3375  erp_idx = 0;
3376  low = 0;
3377  high = nlists - 1;
3378  while (low <= high) {
3379  erp_idx = (low + high) >> 1;
3380  erp = &ifp->if_u1.if_ext_irec[erp_idx];
3381  erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3382  if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3383  high = erp_idx - 1;
3384  } else if (erp_next && bno >=
3385  xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3386  low = erp_idx + 1;
3387  } else {
3388  break;
3389  }
3390  }
3391  *erp_idxp = erp_idx;
3392  return erp;
3393 }
3394 
3395 /*
3396  * Return a pointer to the indirection array entry containing the
3397  * extent record at file extent index *idxp. Store the index of the
3398  * target irec in *erp_idxp and store the page index of the target
3399  * extent record in *idxp.
3400  */
3403  xfs_ifork_t *ifp, /* inode fork pointer */
3404  xfs_extnum_t *idxp, /* extent index (file -> page) */
3405  int *erp_idxp, /* pointer to target irec */
3406  int realloc) /* new bytes were just added */
3407 {
3408  xfs_ext_irec_t *prev; /* pointer to previous irec */
3409  xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3410  int erp_idx; /* indirection array index */
3411  int nlists; /* number of irec's (ex lists) */
3412  int high; /* binary search upper limit */
3413  int low; /* binary search lower limit */
3414  xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3415 
3416  ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3417  ASSERT(page_idx >= 0);
3418  ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3419  ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3420 
3421  nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3422  erp_idx = 0;
3423  low = 0;
3424  high = nlists - 1;
3425 
3426  /* Binary search extent irec's */
3427  while (low <= high) {
3428  erp_idx = (low + high) >> 1;
3429  erp = &ifp->if_u1.if_ext_irec[erp_idx];
3430  prev = erp_idx > 0 ? erp - 1 : NULL;
3431  if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3432  realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3433  high = erp_idx - 1;
3434  } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3435  (page_idx == erp->er_extoff + erp->er_extcount &&
3436  !realloc)) {
3437  low = erp_idx + 1;
3438  } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3439  erp->er_extcount == XFS_LINEAR_EXTS) {
3440  ASSERT(realloc);
3441  page_idx = 0;
3442  erp_idx++;
3443  erp = erp_idx < nlists ? erp + 1 : NULL;
3444  break;
3445  } else {
3446  page_idx -= erp->er_extoff;
3447  break;
3448  }
3449  }
3450  *idxp = page_idx;
3451  *erp_idxp = erp_idx;
3452  return(erp);
3453 }
3454 
3455 /*
3456  * Allocate and initialize an indirection array once the space needed
3457  * for incore extents increases above XFS_IEXT_BUFSZ.
3458  */
3459 void
3461  xfs_ifork_t *ifp) /* inode fork pointer */
3462 {
3463  xfs_ext_irec_t *erp; /* indirection array pointer */
3464  xfs_extnum_t nextents; /* number of extents in file */
3465 
3466  ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3467  nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3468  ASSERT(nextents <= XFS_LINEAR_EXTS);
3469 
3470  erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3471 
3472  if (nextents == 0) {
3474  } else if (!ifp->if_real_bytes) {
3476  } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3478  }
3479  erp->er_extbuf = ifp->if_u1.if_extents;
3480  erp->er_extcount = nextents;
3481  erp->er_extoff = 0;
3482 
3483  ifp->if_flags |= XFS_IFEXTIREC;
3485  ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3486  ifp->if_u1.if_ext_irec = erp;
3487 
3488  return;
3489 }
3490 
3491 /*
3492  * Allocate and initialize a new entry in the indirection array.
3493  */
3496  xfs_ifork_t *ifp, /* inode fork pointer */
3497  int erp_idx) /* index for new irec */
3498 {
3499  xfs_ext_irec_t *erp; /* indirection array pointer */
3500  int i; /* loop counter */
3501  int nlists; /* number of irec's (ex lists) */
3502 
3503  ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3504  nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3505 
3506  /* Resize indirection array */
3507  xfs_iext_realloc_indirect(ifp, ++nlists *
3508  sizeof(xfs_ext_irec_t));
3509  /*
3510  * Move records down in the array so the
3511  * new page can use erp_idx.
3512  */
3513  erp = ifp->if_u1.if_ext_irec;
3514  for (i = nlists - 1; i > erp_idx; i--) {
3515  memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3516  }
3517  ASSERT(i == erp_idx);
3518 
3519  /* Initialize new extent record */
3520  erp = ifp->if_u1.if_ext_irec;
3521  erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3522  ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3523  memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3524  erp[erp_idx].er_extcount = 0;
3525  erp[erp_idx].er_extoff = erp_idx > 0 ?
3526  erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3527  return (&erp[erp_idx]);
3528 }
3529 
3530 /*
3531  * Remove a record from the indirection array.
3532  */
3533 void
3535  xfs_ifork_t *ifp, /* inode fork pointer */
3536  int erp_idx) /* irec index to remove */
3537 {
3538  xfs_ext_irec_t *erp; /* indirection array pointer */
3539  int i; /* loop counter */
3540  int nlists; /* number of irec's (ex lists) */
3541 
3542  ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3543  nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3544  erp = &ifp->if_u1.if_ext_irec[erp_idx];
3545  if (erp->er_extbuf) {
3546  xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3547  -erp->er_extcount);
3548  kmem_free(erp->er_extbuf);
3549  }
3550  /* Compact extent records */
3551  erp = ifp->if_u1.if_ext_irec;
3552  for (i = erp_idx; i < nlists - 1; i++) {
3553  memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3554  }
3555  /*
3556  * Manually free the last extent record from the indirection
3557  * array. A call to xfs_iext_realloc_indirect() with a size
3558  * of zero would result in a call to xfs_iext_destroy() which
3559  * would in turn call this function again, creating a nasty
3560  * infinite loop.
3561  */
3562  if (--nlists) {
3564  nlists * sizeof(xfs_ext_irec_t));
3565  } else {
3566  kmem_free(ifp->if_u1.if_ext_irec);
3567  }
3568  ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3569 }
3570 
3571 /*
3572  * This is called to clean up large amounts of unused memory allocated
3573  * by the indirection array. Before compacting anything though, verify
3574  * that the indirection array is still needed and switch back to the
3575  * linear extent list (or even the inline buffer) if possible. The
3576  * compaction policy is as follows:
3577  *
3578  * Full Compaction: Extents fit into a single page (or inline buffer)
3579  * Partial Compaction: Extents occupy less than 50% of allocated space
3580  * No Compaction: Extents occupy at least 50% of allocated space
3581  */
3582 void
3584  xfs_ifork_t *ifp) /* inode fork pointer */
3585 {
3586  xfs_extnum_t nextents; /* number of extents in file */
3587  int nlists; /* number of irec's (ex lists) */
3588 
3589  ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3590  nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3591  nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3592 
3593  if (nextents == 0) {
3594  xfs_iext_destroy(ifp);
3595  } else if (nextents <= XFS_INLINE_EXTS) {
3597  xfs_iext_direct_to_inline(ifp, nextents);
3598  } else if (nextents <= XFS_LINEAR_EXTS) {
3600  } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3602  }
3603 }
3604 
3605 /*
3606  * Combine extents from neighboring extent pages.
3607  */
3608 void
3610  xfs_ifork_t *ifp) /* inode fork pointer */
3611 {
3612  xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
3613  int erp_idx = 0; /* indirection array index */
3614  int nlists; /* number of irec's (ex lists) */
3615 
3616  ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3617  nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3618  while (erp_idx < nlists - 1) {
3619  erp = &ifp->if_u1.if_ext_irec[erp_idx];
3620  erp_next = erp + 1;
3621  if (erp_next->er_extcount <=
3622  (XFS_LINEAR_EXTS - erp->er_extcount)) {
3623  memcpy(&erp->er_extbuf[erp->er_extcount],
3624  erp_next->er_extbuf, erp_next->er_extcount *
3625  sizeof(xfs_bmbt_rec_t));
3626  erp->er_extcount += erp_next->er_extcount;
3627  /*
3628  * Free page before removing extent record
3629  * so er_extoffs don't get modified in
3630  * xfs_iext_irec_remove.
3631  */
3632  kmem_free(erp_next->er_extbuf);
3633  erp_next->er_extbuf = NULL;
3634  xfs_iext_irec_remove(ifp, erp_idx + 1);
3635  nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3636  } else {
3637  erp_idx++;
3638  }
3639  }
3640 }
3641 
3642 /*
3643  * This is called to update the er_extoff field in the indirection
3644  * array when extents have been added or removed from one of the
3645  * extent lists. erp_idx contains the irec index to begin updating
3646  * at and ext_diff contains the number of extents that were added
3647  * or removed.
3648  */
3649 void
3651  xfs_ifork_t *ifp, /* inode fork pointer */
3652  int erp_idx, /* irec index to update */
3653  int ext_diff) /* number of new extents */
3654 {
3655  int i; /* loop counter */
3656  int nlists; /* number of irec's (ex lists */
3657 
3658  ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3659  nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3660  for (i = erp_idx; i < nlists; i++) {
3661  ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3662  }
3663 }