Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
xfs_inode_item.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_trans_priv.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_dinode.h"
29 #include "xfs_inode.h"
30 #include "xfs_inode_item.h"
31 #include "xfs_error.h"
32 #include "xfs_trace.h"
33 
34 
35 kmem_zone_t *xfs_ili_zone; /* inode log item zone */
36 
37 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
38 {
39  return container_of(lip, struct xfs_inode_log_item, ili_item);
40 }
41 
42 
43 /*
44  * This returns the number of iovecs needed to log the given inode item.
45  *
46  * We need one iovec for the inode log format structure, one for the
47  * inode core, and possibly one for the inode data/extents/b-tree root
48  * and one for the inode attribute data/extents/b-tree root.
49  */
52  struct xfs_log_item *lip)
53 {
54  struct xfs_inode_log_item *iip = INODE_ITEM(lip);
55  struct xfs_inode *ip = iip->ili_inode;
56  uint nvecs = 2;
57 
58  switch (ip->i_d.di_format) {
60  if ((iip->ili_fields & XFS_ILOG_DEXT) &&
61  ip->i_d.di_nextents > 0 &&
62  ip->i_df.if_bytes > 0)
63  nvecs++;
64  break;
65 
67  if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
68  ip->i_df.if_broot_bytes > 0)
69  nvecs++;
70  break;
71 
73  if ((iip->ili_fields & XFS_ILOG_DDATA) &&
74  ip->i_df.if_bytes > 0)
75  nvecs++;
76  break;
77 
78  case XFS_DINODE_FMT_DEV:
80  break;
81 
82  default:
83  ASSERT(0);
84  break;
85  }
86 
87  if (!XFS_IFORK_Q(ip))
88  return nvecs;
89 
90 
91  /*
92  * Log any necessary attribute data.
93  */
94  switch (ip->i_d.di_aformat) {
96  if ((iip->ili_fields & XFS_ILOG_AEXT) &&
97  ip->i_d.di_anextents > 0 &&
98  ip->i_afp->if_bytes > 0)
99  nvecs++;
100  break;
101 
103  if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
104  ip->i_afp->if_broot_bytes > 0)
105  nvecs++;
106  break;
107 
109  if ((iip->ili_fields & XFS_ILOG_ADATA) &&
110  ip->i_afp->if_bytes > 0)
111  nvecs++;
112  break;
113 
114  default:
115  ASSERT(0);
116  break;
117  }
118 
119  return nvecs;
120 }
121 
122 /*
123  * xfs_inode_item_format_extents - convert in-core extents to on-disk form
124  *
125  * For either the data or attr fork in extent format, we need to endian convert
126  * the in-core extent as we place them into the on-disk inode. In this case, we
127  * need to do this conversion before we write the extents into the log. Because
128  * we don't have the disk inode to write into here, we allocate a buffer and
129  * format the extents into it via xfs_iextents_copy(). We free the buffer in
130  * the unlock routine after the copy for the log has been made.
131  *
132  * In the case of the data fork, the in-core and on-disk fork sizes can be
133  * different due to delayed allocation extents. We only log on-disk extents
134  * here, so always use the physical fork size to determine the size of the
135  * buffer we need to allocate.
136  */
137 STATIC void
139  struct xfs_inode *ip,
140  struct xfs_log_iovec *vecp,
141  int whichfork,
142  int type)
143 {
144  xfs_bmbt_rec_t *ext_buffer;
145 
146  ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
147  if (whichfork == XFS_DATA_FORK)
148  ip->i_itemp->ili_extents_buf = ext_buffer;
149  else
150  ip->i_itemp->ili_aextents_buf = ext_buffer;
151 
152  vecp->i_addr = ext_buffer;
153  vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
154  vecp->i_type = type;
155 }
156 
157 /*
158  * This is called to fill in the vector of log iovecs for the
159  * given inode log item. It fills the first item with an inode
160  * log format structure, the second with the on-disk inode structure,
161  * and a possible third and/or fourth with the inode data/extents/b-tree
162  * root and inode attributes data/extents/b-tree root.
163  */
164 STATIC void
166  struct xfs_log_item *lip,
167  struct xfs_log_iovec *vecp)
168 {
169  struct xfs_inode_log_item *iip = INODE_ITEM(lip);
170  struct xfs_inode *ip = iip->ili_inode;
171  uint nvecs;
172  size_t data_bytes;
173  xfs_mount_t *mp;
174 
175  vecp->i_addr = &iip->ili_format;
176  vecp->i_len = sizeof(xfs_inode_log_format_t);
178  vecp++;
179  nvecs = 1;
180 
181  vecp->i_addr = &ip->i_d;
182  vecp->i_len = sizeof(struct xfs_icdinode);
183  vecp->i_type = XLOG_REG_TYPE_ICORE;
184  vecp++;
185  nvecs++;
186 
187  /*
188  * If this is really an old format inode, then we need to
189  * log it as such. This means that we have to copy the link
190  * count from the new field to the old. We don't have to worry
191  * about the new fields, because nothing trusts them as long as
192  * the old inode version number is there. If the superblock already
193  * has a new version number, then we don't bother converting back.
194  */
195  mp = ip->i_mount;
196  ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
197  if (ip->i_d.di_version == 1) {
198  if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
199  /*
200  * Convert it back.
201  */
202  ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
203  ip->i_d.di_onlink = ip->i_d.di_nlink;
204  } else {
205  /*
206  * The superblock version has already been bumped,
207  * so just make the conversion to the new inode
208  * format permanent.
209  */
210  ip->i_d.di_version = 2;
211  ip->i_d.di_onlink = 0;
212  memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
213  }
214  }
215 
216  switch (ip->i_d.di_format) {
218  iip->ili_fields &=
221 
222  if ((iip->ili_fields & XFS_ILOG_DEXT) &&
223  ip->i_d.di_nextents > 0 &&
224  ip->i_df.if_bytes > 0) {
225  ASSERT(ip->i_df.if_u1.if_extents != NULL);
226  ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
227  ASSERT(iip->ili_extents_buf == NULL);
228 
229 #ifdef XFS_NATIVE_HOST
230  if (ip->i_d.di_nextents == ip->i_df.if_bytes /
231  (uint)sizeof(xfs_bmbt_rec_t)) {
232  /*
233  * There are no delayed allocation
234  * extents, so just point to the
235  * real extents array.
236  */
237  vecp->i_addr = ip->i_df.if_u1.if_extents;
238  vecp->i_len = ip->i_df.if_bytes;
239  vecp->i_type = XLOG_REG_TYPE_IEXT;
240  } else
241 #endif
242  {
245  }
246  ASSERT(vecp->i_len <= ip->i_df.if_bytes);
247  iip->ili_format.ilf_dsize = vecp->i_len;
248  vecp++;
249  nvecs++;
250  } else {
251  iip->ili_fields &= ~XFS_ILOG_DEXT;
252  }
253  break;
254 
256  iip->ili_fields &=
259 
260  if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
261  ip->i_df.if_broot_bytes > 0) {
262  ASSERT(ip->i_df.if_broot != NULL);
263  vecp->i_addr = ip->i_df.if_broot;
264  vecp->i_len = ip->i_df.if_broot_bytes;
266  vecp++;
267  nvecs++;
268  iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
269  } else {
270  ASSERT(!(iip->ili_fields &
271  XFS_ILOG_DBROOT));
272 #ifdef XFS_TRANS_DEBUG
273  if (iip->ili_root_size > 0) {
274  ASSERT(iip->ili_root_size ==
275  ip->i_df.if_broot_bytes);
276  ASSERT(memcmp(iip->ili_orig_root,
277  ip->i_df.if_broot,
278  iip->ili_root_size) == 0);
279  } else {
280  ASSERT(ip->i_df.if_broot_bytes == 0);
281  }
282 #endif
283  iip->ili_fields &= ~XFS_ILOG_DBROOT;
284  }
285  break;
286 
288  iip->ili_fields &=
291  if ((iip->ili_fields & XFS_ILOG_DDATA) &&
292  ip->i_df.if_bytes > 0) {
293  ASSERT(ip->i_df.if_u1.if_data != NULL);
294  ASSERT(ip->i_d.di_size > 0);
295 
296  vecp->i_addr = ip->i_df.if_u1.if_data;
297  /*
298  * Round i_bytes up to a word boundary.
299  * The underlying memory is guaranteed to
300  * to be there by xfs_idata_realloc().
301  */
302  data_bytes = roundup(ip->i_df.if_bytes, 4);
303  ASSERT((ip->i_df.if_real_bytes == 0) ||
304  (ip->i_df.if_real_bytes == data_bytes));
305  vecp->i_len = (int)data_bytes;
307  vecp++;
308  nvecs++;
309  iip->ili_format.ilf_dsize = (unsigned)data_bytes;
310  } else {
311  iip->ili_fields &= ~XFS_ILOG_DDATA;
312  }
313  break;
314 
315  case XFS_DINODE_FMT_DEV:
316  iip->ili_fields &=
319  if (iip->ili_fields & XFS_ILOG_DEV) {
320  iip->ili_format.ilf_u.ilfu_rdev =
321  ip->i_df.if_u2.if_rdev;
322  }
323  break;
324 
325  case XFS_DINODE_FMT_UUID:
326  iip->ili_fields &=
329  if (iip->ili_fields & XFS_ILOG_UUID) {
330  iip->ili_format.ilf_u.ilfu_uuid =
331  ip->i_df.if_u2.if_uuid;
332  }
333  break;
334 
335  default:
336  ASSERT(0);
337  break;
338  }
339 
340  /*
341  * If there are no attributes associated with the file, then we're done.
342  */
343  if (!XFS_IFORK_Q(ip)) {
344  iip->ili_fields &=
346  goto out;
347  }
348 
349  switch (ip->i_d.di_aformat) {
351  iip->ili_fields &=
353 
354  if ((iip->ili_fields & XFS_ILOG_AEXT) &&
355  ip->i_d.di_anextents > 0 &&
356  ip->i_afp->if_bytes > 0) {
357  ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
358  ip->i_d.di_anextents);
359  ASSERT(ip->i_afp->if_u1.if_extents != NULL);
360 #ifdef XFS_NATIVE_HOST
361  /*
362  * There are not delayed allocation extents
363  * for attributes, so just point at the array.
364  */
365  vecp->i_addr = ip->i_afp->if_u1.if_extents;
366  vecp->i_len = ip->i_afp->if_bytes;
368 #else
369  ASSERT(iip->ili_aextents_buf == NULL);
372 #endif
373  iip->ili_format.ilf_asize = vecp->i_len;
374  vecp++;
375  nvecs++;
376  } else {
377  iip->ili_fields &= ~XFS_ILOG_AEXT;
378  }
379  break;
380 
382  iip->ili_fields &=
384 
385  if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
386  ip->i_afp->if_broot_bytes > 0) {
387  ASSERT(ip->i_afp->if_broot != NULL);
388 
389  vecp->i_addr = ip->i_afp->if_broot;
390  vecp->i_len = ip->i_afp->if_broot_bytes;
392  vecp++;
393  nvecs++;
394  iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
395  } else {
396  iip->ili_fields &= ~XFS_ILOG_ABROOT;
397  }
398  break;
399 
401  iip->ili_fields &=
403 
404  if ((iip->ili_fields & XFS_ILOG_ADATA) &&
405  ip->i_afp->if_bytes > 0) {
406  ASSERT(ip->i_afp->if_u1.if_data != NULL);
407 
408  vecp->i_addr = ip->i_afp->if_u1.if_data;
409  /*
410  * Round i_bytes up to a word boundary.
411  * The underlying memory is guaranteed to
412  * to be there by xfs_idata_realloc().
413  */
414  data_bytes = roundup(ip->i_afp->if_bytes, 4);
415  ASSERT((ip->i_afp->if_real_bytes == 0) ||
416  (ip->i_afp->if_real_bytes == data_bytes));
417  vecp->i_len = (int)data_bytes;
419  vecp++;
420  nvecs++;
421  iip->ili_format.ilf_asize = (unsigned)data_bytes;
422  } else {
423  iip->ili_fields &= ~XFS_ILOG_ADATA;
424  }
425  break;
426 
427  default:
428  ASSERT(0);
429  break;
430  }
431 
432 out:
433  /*
434  * Now update the log format that goes out to disk from the in-core
435  * values. We always write the inode core to make the arithmetic
436  * games in recovery easier, which isn't a big deal as just about any
437  * transaction would dirty it anyway.
438  */
439  iip->ili_format.ilf_fields = XFS_ILOG_CORE |
440  (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
441  iip->ili_format.ilf_size = nvecs;
442 }
443 
444 
445 /*
446  * This is called to pin the inode associated with the inode log
447  * item in memory so it cannot be written out.
448  */
449 STATIC void
451  struct xfs_log_item *lip)
452 {
453  struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
454 
455  ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
456 
457  trace_xfs_inode_pin(ip, _RET_IP_);
458  atomic_inc(&ip->i_pincount);
459 }
460 
461 
462 /*
463  * This is called to unpin the inode associated with the inode log
464  * item which was previously pinned with a call to xfs_inode_item_pin().
465  *
466  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
467  */
468 STATIC void
470  struct xfs_log_item *lip,
471  int remove)
472 {
473  struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
474 
475  trace_xfs_inode_unpin(ip, _RET_IP_);
476  ASSERT(atomic_read(&ip->i_pincount) > 0);
477  if (atomic_dec_and_test(&ip->i_pincount))
478  wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
479 }
480 
481 STATIC uint
483  struct xfs_log_item *lip,
484  struct list_head *buffer_list)
485 {
486  struct xfs_inode_log_item *iip = INODE_ITEM(lip);
487  struct xfs_inode *ip = iip->ili_inode;
488  struct xfs_buf *bp = NULL;
489  uint rval = XFS_ITEM_SUCCESS;
490  int error;
491 
492  if (xfs_ipincount(ip) > 0)
493  return XFS_ITEM_PINNED;
494 
495  if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
496  return XFS_ITEM_LOCKED;
497 
498  /*
499  * Re-check the pincount now that we stabilized the value by
500  * taking the ilock.
501  */
502  if (xfs_ipincount(ip) > 0) {
503  rval = XFS_ITEM_PINNED;
504  goto out_unlock;
505  }
506 
507  /*
508  * Stale inode items should force out the iclog.
509  */
510  if (ip->i_flags & XFS_ISTALE) {
511  rval = XFS_ITEM_PINNED;
512  goto out_unlock;
513  }
514 
515  /*
516  * Someone else is already flushing the inode. Nothing we can do
517  * here but wait for the flush to finish and remove the item from
518  * the AIL.
519  */
520  if (!xfs_iflock_nowait(ip)) {
521  rval = XFS_ITEM_FLUSHING;
522  goto out_unlock;
523  }
524 
525  ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
526  ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
527 
528  spin_unlock(&lip->li_ailp->xa_lock);
529 
530  error = xfs_iflush(ip, &bp);
531  if (!error) {
532  if (!xfs_buf_delwri_queue(bp, buffer_list))
533  rval = XFS_ITEM_FLUSHING;
534  xfs_buf_relse(bp);
535  }
536 
537  spin_lock(&lip->li_ailp->xa_lock);
538 out_unlock:
539  xfs_iunlock(ip, XFS_ILOCK_SHARED);
540  return rval;
541 }
542 
543 /*
544  * Unlock the inode associated with the inode log item.
545  * Clear the fields of the inode and inode log item that
546  * are specific to the current transaction. If the
547  * hold flags is set, do not unlock the inode.
548  */
549 STATIC void
551  struct xfs_log_item *lip)
552 {
553  struct xfs_inode_log_item *iip = INODE_ITEM(lip);
554  struct xfs_inode *ip = iip->ili_inode;
555  unsigned short lock_flags;
556 
557  ASSERT(ip->i_itemp != NULL);
558  ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
559 
560  /*
561  * If the inode needed a separate buffer with which to log
562  * its extents, then free it now.
563  */
564  if (iip->ili_extents_buf != NULL) {
565  ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
566  ASSERT(ip->i_d.di_nextents > 0);
567  ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
568  ASSERT(ip->i_df.if_bytes > 0);
569  kmem_free(iip->ili_extents_buf);
570  iip->ili_extents_buf = NULL;
571  }
572  if (iip->ili_aextents_buf != NULL) {
573  ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
574  ASSERT(ip->i_d.di_anextents > 0);
575  ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
576  ASSERT(ip->i_afp->if_bytes > 0);
577  kmem_free(iip->ili_aextents_buf);
578  iip->ili_aextents_buf = NULL;
579  }
580 
581  lock_flags = iip->ili_lock_flags;
582  iip->ili_lock_flags = 0;
583  if (lock_flags)
584  xfs_iunlock(ip, lock_flags);
585 }
586 
587 /*
588  * This is called to find out where the oldest active copy of the inode log
589  * item in the on disk log resides now that the last log write of it completed
590  * at the given lsn. Since we always re-log all dirty data in an inode, the
591  * latest copy in the on disk log is the only one that matters. Therefore,
592  * simply return the given lsn.
593  *
594  * If the inode has been marked stale because the cluster is being freed, we
595  * don't want to (re-)insert this inode into the AIL. There is a race condition
596  * where the cluster buffer may be unpinned before the inode is inserted into
597  * the AIL during transaction committed processing. If the buffer is unpinned
598  * before the inode item has been committed and inserted, then it is possible
599  * for the buffer to be written and IO completes before the inode is inserted
600  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
601  * AIL which will never get removed. It will, however, get reclaimed which
602  * triggers an assert in xfs_inode_free() complaining about freein an inode
603  * still in the AIL.
604  *
605  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
606  * transaction committed code knows that it does not need to do any further
607  * processing on the item.
608  */
611  struct xfs_log_item *lip,
612  xfs_lsn_t lsn)
613 {
614  struct xfs_inode_log_item *iip = INODE_ITEM(lip);
615  struct xfs_inode *ip = iip->ili_inode;
616 
617  if (xfs_iflags_test(ip, XFS_ISTALE)) {
618  xfs_inode_item_unpin(lip, 0);
619  return -1;
620  }
621  return lsn;
622 }
623 
624 /*
625  * XXX rcc - this one really has to do something. Probably needs
626  * to stamp in a new field in the incore inode.
627  */
628 STATIC void
630  struct xfs_log_item *lip,
631  xfs_lsn_t lsn)
632 {
633  INODE_ITEM(lip)->ili_last_lsn = lsn;
634 }
635 
636 /*
637  * This is the ops vector shared by all buf log items.
638  */
639 static const struct xfs_item_ops xfs_inode_item_ops = {
640  .iop_size = xfs_inode_item_size,
641  .iop_format = xfs_inode_item_format,
642  .iop_pin = xfs_inode_item_pin,
643  .iop_unpin = xfs_inode_item_unpin,
644  .iop_unlock = xfs_inode_item_unlock,
645  .iop_committed = xfs_inode_item_committed,
646  .iop_push = xfs_inode_item_push,
647  .iop_committing = xfs_inode_item_committing
648 };
649 
650 
651 /*
652  * Initialize the inode log item for a newly allocated (in-core) inode.
653  */
654 void
656  struct xfs_inode *ip,
657  struct xfs_mount *mp)
658 {
659  struct xfs_inode_log_item *iip;
660 
661  ASSERT(ip->i_itemp == NULL);
662  iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
663 
664  iip->ili_inode = ip;
665  xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
666  &xfs_inode_item_ops);
667  iip->ili_format.ilf_type = XFS_LI_INODE;
668  iip->ili_format.ilf_ino = ip->i_ino;
669  iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
670  iip->ili_format.ilf_len = ip->i_imap.im_len;
671  iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
672 }
673 
674 /*
675  * Free the inode log item and any memory hanging off of it.
676  */
677 void
679  xfs_inode_t *ip)
680 {
681 #ifdef XFS_TRANS_DEBUG
682  if (ip->i_itemp->ili_root_size != 0) {
683  kmem_free(ip->i_itemp->ili_orig_root);
684  }
685 #endif
686  kmem_zone_free(xfs_ili_zone, ip->i_itemp);
687 }
688 
689 
690 /*
691  * This is the inode flushing I/O completion routine. It is called
692  * from interrupt level when the buffer containing the inode is
693  * flushed to disk. It is responsible for removing the inode item
694  * from the AIL if it has not been re-logged, and unlocking the inode's
695  * flush lock.
696  *
697  * To reduce AIL lock traffic as much as possible, we scan the buffer log item
698  * list for other inodes that will run this function. We remove them from the
699  * buffer list so we can process all the inode IO completions in one AIL lock
700  * traversal.
701  */
702 void
704  struct xfs_buf *bp,
705  struct xfs_log_item *lip)
706 {
707  struct xfs_inode_log_item *iip;
708  struct xfs_log_item *blip;
709  struct xfs_log_item *next;
710  struct xfs_log_item *prev;
711  struct xfs_ail *ailp = lip->li_ailp;
712  int need_ail = 0;
713 
714  /*
715  * Scan the buffer IO completions for other inodes being completed and
716  * attach them to the current inode log item.
717  */
718  blip = bp->b_fspriv;
719  prev = NULL;
720  while (blip != NULL) {
721  if (lip->li_cb != xfs_iflush_done) {
722  prev = blip;
723  blip = blip->li_bio_list;
724  continue;
725  }
726 
727  /* remove from list */
728  next = blip->li_bio_list;
729  if (!prev) {
730  bp->b_fspriv = next;
731  } else {
732  prev->li_bio_list = next;
733  }
734 
735  /* add to current list */
736  blip->li_bio_list = lip->li_bio_list;
737  lip->li_bio_list = blip;
738 
739  /*
740  * while we have the item, do the unlocked check for needing
741  * the AIL lock.
742  */
743  iip = INODE_ITEM(blip);
744  if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
745  need_ail++;
746 
747  blip = next;
748  }
749 
750  /* make sure we capture the state of the initial inode. */
751  iip = INODE_ITEM(lip);
752  if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
753  need_ail++;
754 
755  /*
756  * We only want to pull the item from the AIL if it is
757  * actually there and its location in the log has not
758  * changed since we started the flush. Thus, we only bother
759  * if the ili_logged flag is set and the inode's lsn has not
760  * changed. First we check the lsn outside
761  * the lock since it's cheaper, and then we recheck while
762  * holding the lock before removing the inode from the AIL.
763  */
764  if (need_ail) {
765  struct xfs_log_item *log_items[need_ail];
766  int i = 0;
767  spin_lock(&ailp->xa_lock);
768  for (blip = lip; blip; blip = blip->li_bio_list) {
769  iip = INODE_ITEM(blip);
770  if (iip->ili_logged &&
771  blip->li_lsn == iip->ili_flush_lsn) {
772  log_items[i++] = blip;
773  }
774  ASSERT(i <= need_ail);
775  }
776  /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
777  xfs_trans_ail_delete_bulk(ailp, log_items, i,
778  SHUTDOWN_CORRUPT_INCORE);
779  }
780 
781 
782  /*
783  * clean up and unlock the flush lock now we are done. We can clear the
784  * ili_last_fields bits now that we know that the data corresponding to
785  * them is safely on disk.
786  */
787  for (blip = lip; blip; blip = next) {
788  next = blip->li_bio_list;
789  blip->li_bio_list = NULL;
790 
791  iip = INODE_ITEM(blip);
792  iip->ili_logged = 0;
793  iip->ili_last_fields = 0;
794  xfs_ifunlock(iip->ili_inode);
795  }
796 }
797 
798 /*
799  * This is the inode flushing abort routine. It is called from xfs_iflush when
800  * the filesystem is shutting down to clean up the inode state. It is
801  * responsible for removing the inode item from the AIL if it has not been
802  * re-logged, and unlocking the inode's flush lock.
803  */
804 void
806  xfs_inode_t *ip,
807  bool stale)
808 {
809  xfs_inode_log_item_t *iip = ip->i_itemp;
810 
811  if (iip) {
812  struct xfs_ail *ailp = iip->ili_item.li_ailp;
813  if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
814  spin_lock(&ailp->xa_lock);
815  if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
816  /* xfs_trans_ail_delete() drops the AIL lock. */
817  xfs_trans_ail_delete(ailp, &iip->ili_item,
818  stale ?
819  SHUTDOWN_LOG_IO_ERROR :
820  SHUTDOWN_CORRUPT_INCORE);
821  } else
822  spin_unlock(&ailp->xa_lock);
823  }
824  iip->ili_logged = 0;
825  /*
826  * Clear the ili_last_fields bits now that we know that the
827  * data corresponding to them is safely on disk.
828  */
829  iip->ili_last_fields = 0;
830  /*
831  * Clear the inode logging fields so no more flushes are
832  * attempted.
833  */
834  iip->ili_fields = 0;
835  }
836  /*
837  * Release the inode's flush lock since we're done with it.
838  */
839  xfs_ifunlock(ip);
840 }
841 
842 void
844  struct xfs_buf *bp,
845  struct xfs_log_item *lip)
846 {
847  xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
848 }
849 
850 /*
851  * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
852  * (which can have different field alignments) to the native version
853  */
854 int
858 {
859  if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
860  xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
861 
862  in_f->ilf_type = in_f32->ilf_type;
863  in_f->ilf_size = in_f32->ilf_size;
864  in_f->ilf_fields = in_f32->ilf_fields;
865  in_f->ilf_asize = in_f32->ilf_asize;
866  in_f->ilf_dsize = in_f32->ilf_dsize;
867  in_f->ilf_ino = in_f32->ilf_ino;
868  /* copy biggest field of ilf_u */
870  in_f32->ilf_u.ilfu_uuid.__u_bits,
871  sizeof(uuid_t));
872  in_f->ilf_blkno = in_f32->ilf_blkno;
873  in_f->ilf_len = in_f32->ilf_len;
874  in_f->ilf_boffset = in_f32->ilf_boffset;
875  return 0;
876  } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
877  xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
878 
879  in_f->ilf_type = in_f64->ilf_type;
880  in_f->ilf_size = in_f64->ilf_size;
881  in_f->ilf_fields = in_f64->ilf_fields;
882  in_f->ilf_asize = in_f64->ilf_asize;
883  in_f->ilf_dsize = in_f64->ilf_dsize;
884  in_f->ilf_ino = in_f64->ilf_ino;
885  /* copy biggest field of ilf_u */
887  in_f64->ilf_u.ilfu_uuid.__u_bits,
888  sizeof(uuid_t));
889  in_f->ilf_blkno = in_f64->ilf_blkno;
890  in_f->ilf_len = in_f64->ilf_len;
891  in_f->ilf_boffset = in_f64->ilf_boffset;
892  return 0;
893  }
894  return EFSCORRUPTED;
895 }