Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
xfs_log.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_error.h"
27 #include "xfs_log_priv.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_log_recover.h"
33 #include "xfs_trans_priv.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_trace.h"
37 
39 
40 /* Local miscellaneous function prototypes */
41 STATIC int
43  struct xlog *log,
44  struct xlog_ticket *ticket,
45  struct xlog_in_core **iclog,
46  xfs_lsn_t *commitlsnp);
47 
48 STATIC struct xlog *
50  struct xfs_mount *mp,
51  struct xfs_buftarg *log_target,
52  xfs_daddr_t blk_offset,
53  int num_bblks);
54 STATIC int
56  struct xlog *log,
57  atomic64_t *head);
58 STATIC int
59 xlog_sync(
60  struct xlog *log,
61  struct xlog_in_core *iclog);
62 STATIC void
64  struct xlog *log);
65 
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
70  struct xlog *log,
71  int aborted,
72  struct xlog_in_core *iclog);
73 STATIC int
75  struct xlog *log,
76  int len,
77  struct xlog_in_core **iclog,
78  struct xlog_ticket *ticket,
79  int *continued_write,
80  int *logoffsetp);
81 STATIC int
83  struct xlog *log,
84  struct xlog_in_core *iclog);
85 STATIC void
87  struct xlog *log,
88  struct xlog_in_core *iclog,
89  int eventual_size);
90 STATIC void
92  struct xlog *log,
93  struct xlog_in_core *iclog);
94 
95 STATIC void
97  struct xlog *log,
98  int need_bytes);
99 STATIC void
101  struct xlog *log,
102  struct xlog_ticket *ticket);
103 STATIC void
105  struct xlog *log,
106  struct xlog_ticket *ticket);
107 
108 #if defined(DEBUG)
109 STATIC void
111  struct xlog *log,
112  char *ptr);
113 STATIC void
115  struct xlog *log);
116 STATIC void
118  struct xlog *log,
119  struct xlog_in_core *iclog,
120  int count,
121  boolean_t syncing);
122 STATIC void
124  struct xlog *log,
125  struct xlog_in_core *iclog,
126  xfs_lsn_t tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133 
134 STATIC int
136  struct xlog *log);
137 
138 static void
139 xlog_grant_sub_space(
140  struct xlog *log,
141  atomic64_t *head,
142  int bytes)
143 {
144  int64_t head_val = atomic64_read(head);
145  int64_t new, old;
146 
147  do {
148  int cycle, space;
149 
150  xlog_crack_grant_head_val(head_val, &cycle, &space);
151 
152  space -= bytes;
153  if (space < 0) {
154  space += log->l_logsize;
155  cycle--;
156  }
157 
158  old = head_val;
159  new = xlog_assign_grant_head_val(cycle, space);
160  head_val = atomic64_cmpxchg(head, old, new);
161  } while (head_val != old);
162 }
163 
164 static void
165 xlog_grant_add_space(
166  struct xlog *log,
167  atomic64_t *head,
168  int bytes)
169 {
170  int64_t head_val = atomic64_read(head);
171  int64_t new, old;
172 
173  do {
174  int tmp;
175  int cycle, space;
176 
177  xlog_crack_grant_head_val(head_val, &cycle, &space);
178 
179  tmp = log->l_logsize - space;
180  if (tmp > bytes)
181  space += bytes;
182  else {
183  space = bytes - tmp;
184  cycle++;
185  }
186 
187  old = head_val;
188  new = xlog_assign_grant_head_val(cycle, space);
189  head_val = atomic64_cmpxchg(head, old, new);
190  } while (head_val != old);
191 }
192 
193 STATIC void
195  struct xlog_grant_head *head)
196 {
197  xlog_assign_grant_head(&head->grant, 1, 0);
198  INIT_LIST_HEAD(&head->waiters);
199  spin_lock_init(&head->lock);
200 }
201 
202 STATIC void
204  struct xlog_grant_head *head)
205 {
206  struct xlog_ticket *tic;
207 
208  spin_lock(&head->lock);
209  list_for_each_entry(tic, &head->waiters, t_queue)
210  wake_up_process(tic->t_task);
211  spin_unlock(&head->lock);
212 }
213 
214 static inline int
215 xlog_ticket_reservation(
216  struct xlog *log,
217  struct xlog_grant_head *head,
218  struct xlog_ticket *tic)
219 {
220  if (head == &log->l_write_head) {
221  ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222  return tic->t_unit_res;
223  } else {
224  if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225  return tic->t_unit_res * tic->t_cnt;
226  else
227  return tic->t_unit_res;
228  }
229 }
230 
231 STATIC bool
233  struct xlog *log,
234  struct xlog_grant_head *head,
235  int *free_bytes)
236 {
237  struct xlog_ticket *tic;
238  int need_bytes;
239 
240  list_for_each_entry(tic, &head->waiters, t_queue) {
241  need_bytes = xlog_ticket_reservation(log, head, tic);
242  if (*free_bytes < need_bytes)
243  return false;
244 
245  *free_bytes -= need_bytes;
246  trace_xfs_log_grant_wake_up(log, tic);
247  wake_up_process(tic->t_task);
248  }
249 
250  return true;
251 }
252 
253 STATIC int
255  struct xlog *log,
256  struct xlog_grant_head *head,
257  struct xlog_ticket *tic,
258  int need_bytes)
259 {
260  list_add_tail(&tic->t_queue, &head->waiters);
261 
262  do {
263  if (XLOG_FORCED_SHUTDOWN(log))
264  goto shutdown;
265  xlog_grant_push_ail(log, need_bytes);
266 
268  spin_unlock(&head->lock);
269 
270  XFS_STATS_INC(xs_sleep_logspace);
271 
272  trace_xfs_log_grant_sleep(log, tic);
273  schedule();
274  trace_xfs_log_grant_wake(log, tic);
275 
276  spin_lock(&head->lock);
277  if (XLOG_FORCED_SHUTDOWN(log))
278  goto shutdown;
279  } while (xlog_space_left(log, &head->grant) < need_bytes);
280 
281  list_del_init(&tic->t_queue);
282  return 0;
283 shutdown:
284  list_del_init(&tic->t_queue);
285  return XFS_ERROR(EIO);
286 }
287 
288 /*
289  * Atomically get the log space required for a log ticket.
290  *
291  * Once a ticket gets put onto head->waiters, it will only return after the
292  * needed reservation is satisfied.
293  *
294  * This function is structured so that it has a lock free fast path. This is
295  * necessary because every new transaction reservation will come through this
296  * path. Hence any lock will be globally hot if we take it unconditionally on
297  * every pass.
298  *
299  * As tickets are only ever moved on and off head->waiters under head->lock, we
300  * only need to take that lock if we are going to add the ticket to the queue
301  * and sleep. We can avoid taking the lock if the ticket was never added to
302  * head->waiters because the t_queue list head will be empty and we hold the
303  * only reference to it so it can safely be checked unlocked.
304  */
305 STATIC int
307  struct xlog *log,
308  struct xlog_grant_head *head,
309  struct xlog_ticket *tic,
310  int *need_bytes)
311 {
312  int free_bytes;
313  int error = 0;
314 
315  ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
316 
317  /*
318  * If there are other waiters on the queue then give them a chance at
319  * logspace before us. Wake up the first waiters, if we do not wake
320  * up all the waiters then go to sleep waiting for more free space,
321  * otherwise try to get some space for this transaction.
322  */
323  *need_bytes = xlog_ticket_reservation(log, head, tic);
324  free_bytes = xlog_space_left(log, &head->grant);
325  if (!list_empty_careful(&head->waiters)) {
326  spin_lock(&head->lock);
327  if (!xlog_grant_head_wake(log, head, &free_bytes) ||
328  free_bytes < *need_bytes) {
329  error = xlog_grant_head_wait(log, head, tic,
330  *need_bytes);
331  }
332  spin_unlock(&head->lock);
333  } else if (free_bytes < *need_bytes) {
334  spin_lock(&head->lock);
335  error = xlog_grant_head_wait(log, head, tic, *need_bytes);
336  spin_unlock(&head->lock);
337  }
338 
339  return error;
340 }
341 
342 static void
343 xlog_tic_reset_res(xlog_ticket_t *tic)
344 {
345  tic->t_res_num = 0;
346  tic->t_res_arr_sum = 0;
347  tic->t_res_num_ophdrs = 0;
348 }
349 
350 static void
351 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
352 {
353  if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
354  /* add to overflow and start again */
355  tic->t_res_o_flow += tic->t_res_arr_sum;
356  tic->t_res_num = 0;
357  tic->t_res_arr_sum = 0;
358  }
359 
360  tic->t_res_arr[tic->t_res_num].r_len = len;
361  tic->t_res_arr[tic->t_res_num].r_type = type;
362  tic->t_res_arr_sum += len;
363  tic->t_res_num++;
364 }
365 
366 /*
367  * Replenish the byte reservation required by moving the grant write head.
368  */
369 int
371  struct xfs_mount *mp,
372  struct xlog_ticket *tic)
373 {
374  struct xlog *log = mp->m_log;
375  int need_bytes;
376  int error = 0;
377 
378  if (XLOG_FORCED_SHUTDOWN(log))
379  return XFS_ERROR(EIO);
380 
381  XFS_STATS_INC(xs_try_logspace);
382 
383  /*
384  * This is a new transaction on the ticket, so we need to change the
385  * transaction ID so that the next transaction has a different TID in
386  * the log. Just add one to the existing tid so that we can see chains
387  * of rolling transactions in the log easily.
388  */
389  tic->t_tid++;
390 
391  xlog_grant_push_ail(log, tic->t_unit_res);
392 
393  tic->t_curr_res = tic->t_unit_res;
394  xlog_tic_reset_res(tic);
395 
396  if (tic->t_cnt > 0)
397  return 0;
398 
399  trace_xfs_log_regrant(log, tic);
400 
401  error = xlog_grant_head_check(log, &log->l_write_head, tic,
402  &need_bytes);
403  if (error)
404  goto out_error;
405 
406  xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
407  trace_xfs_log_regrant_exit(log, tic);
409  return 0;
410 
411 out_error:
412  /*
413  * If we are failing, make sure the ticket doesn't have any current
414  * reservations. We don't want to add this back when the ticket/
415  * transaction gets cancelled.
416  */
417  tic->t_curr_res = 0;
418  tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
419  return error;
420 }
421 
422 /*
423  * Reserve log space and return a ticket corresponding the reservation.
424  *
425  * Each reservation is going to reserve extra space for a log record header.
426  * When writes happen to the on-disk log, we don't subtract the length of the
427  * log record header from any reservation. By wasting space in each
428  * reservation, we prevent over allocation problems.
429  */
430 int
432  struct xfs_mount *mp,
433  int unit_bytes,
434  int cnt,
435  struct xlog_ticket **ticp,
436  __uint8_t client,
437  bool permanent,
438  uint t_type)
439 {
440  struct xlog *log = mp->m_log;
441  struct xlog_ticket *tic;
442  int need_bytes;
443  int error = 0;
444 
445  ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446 
447  if (XLOG_FORCED_SHUTDOWN(log))
448  return XFS_ERROR(EIO);
449 
450  XFS_STATS_INC(xs_try_logspace);
451 
452  ASSERT(*ticp == NULL);
453  tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454  KM_SLEEP | KM_MAYFAIL);
455  if (!tic)
456  return XFS_ERROR(ENOMEM);
457 
458  tic->t_trans_type = t_type;
459  *ticp = tic;
460 
461  xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
462 
463  trace_xfs_log_reserve(log, tic);
464 
465  error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466  &need_bytes);
467  if (error)
468  goto out_error;
469 
470  xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471  xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472  trace_xfs_log_reserve_exit(log, tic);
474  return 0;
475 
476 out_error:
477  /*
478  * If we are failing, make sure the ticket doesn't have any current
479  * reservations. We don't want to add this back when the ticket/
480  * transaction gets cancelled.
481  */
482  tic->t_curr_res = 0;
483  tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484  return error;
485 }
486 
487 
488 /*
489  * NOTES:
490  *
491  * 1. currblock field gets updated at startup and after in-core logs
492  * marked as with WANT_SYNC.
493  */
494 
495 /*
496  * This routine is called when a user of a log manager ticket is done with
497  * the reservation. If the ticket was ever used, then a commit record for
498  * the associated transaction is written out as a log operation header with
499  * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500  * a given ticket. If the ticket was one with a permanent reservation, then
501  * a few operations are done differently. Permanent reservation tickets by
502  * default don't release the reservation. They just commit the current
503  * transaction with the belief that the reservation is still needed. A flag
504  * must be passed in before permanent reservations are actually released.
505  * When these type of tickets are not released, they need to be set into
506  * the inited state again. By doing this, a start record will be written
507  * out when the next write occurs.
508  */
509 xfs_lsn_t
511  struct xfs_mount *mp,
512  struct xlog_ticket *ticket,
513  struct xlog_in_core **iclog,
514  uint flags)
515 {
516  struct xlog *log = mp->m_log;
517  xfs_lsn_t lsn = 0;
518 
519  if (XLOG_FORCED_SHUTDOWN(log) ||
520  /*
521  * If nothing was ever written, don't write out commit record.
522  * If we get an error, just continue and give back the log ticket.
523  */
524  (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525  (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526  lsn = (xfs_lsn_t) -1;
527  if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
528  flags |= XFS_LOG_REL_PERM_RESERV;
529  }
530  }
531 
532 
533  if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
534  (flags & XFS_LOG_REL_PERM_RESERV)) {
535  trace_xfs_log_done_nonperm(log, ticket);
536 
537  /*
538  * Release ticket if not permanent reservation or a specific
539  * request has been made to release a permanent reservation.
540  */
541  xlog_ungrant_log_space(log, ticket);
542  xfs_log_ticket_put(ticket);
543  } else {
544  trace_xfs_log_done_perm(log, ticket);
545 
546  xlog_regrant_reserve_log_space(log, ticket);
547  /* If this ticket was a permanent reservation and we aren't
548  * trying to release it, reset the inited flags; so next time
549  * we write, a start record will be written out.
550  */
551  ticket->t_flags |= XLOG_TIC_INITED;
552  }
553 
554  return lsn;
555 }
556 
557 /*
558  * Attaches a new iclog I/O completion callback routine during
559  * transaction commit. If the log is in error state, a non-zero
560  * return code is handed back and the caller is responsible for
561  * executing the callback at an appropriate time.
562  */
563 int
565  struct xfs_mount *mp,
566  struct xlog_in_core *iclog,
568 {
569  int abortflg;
570 
571  spin_lock(&iclog->ic_callback_lock);
572  abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
573  if (!abortflg) {
574  ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
575  (iclog->ic_state == XLOG_STATE_WANT_SYNC));
576  cb->cb_next = NULL;
577  *(iclog->ic_callback_tail) = cb;
578  iclog->ic_callback_tail = &(cb->cb_next);
579  }
580  spin_unlock(&iclog->ic_callback_lock);
581  return abortflg;
582 }
583 
584 int
586  struct xfs_mount *mp,
587  struct xlog_in_core *iclog)
588 {
589  if (xlog_state_release_iclog(mp->m_log, iclog)) {
590  xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
591  return EIO;
592  }
593 
594  return 0;
595 }
596 
597 /*
598  * Mount a log filesystem
599  *
600  * mp - ubiquitous xfs mount point structure
601  * log_target - buftarg of on-disk log device
602  * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
603  * num_bblocks - Number of BBSIZE blocks in on-disk log
604  *
605  * Return error or zero.
606  */
607 int
609  xfs_mount_t *mp,
610  xfs_buftarg_t *log_target,
611  xfs_daddr_t blk_offset,
612  int num_bblks)
613 {
614  int error;
615 
616  if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
617  xfs_notice(mp, "Mounting Filesystem");
618  else {
619  xfs_notice(mp,
620 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
621  ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622  }
623 
624  mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625  if (IS_ERR(mp->m_log)) {
626  error = -PTR_ERR(mp->m_log);
627  goto out;
628  }
629 
630  /*
631  * Initialize the AIL now we have a log.
632  */
633  error = xfs_trans_ail_init(mp);
634  if (error) {
635  xfs_warn(mp, "AIL initialisation failed: error %d", error);
636  goto out_free_log;
637  }
638  mp->m_log->l_ailp = mp->m_ail;
639 
640  /*
641  * skip log recovery on a norecovery mount. pretend it all
642  * just worked.
643  */
644  if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
645  int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
646 
647  if (readonly)
648  mp->m_flags &= ~XFS_MOUNT_RDONLY;
649 
650  error = xlog_recover(mp->m_log);
651 
652  if (readonly)
653  mp->m_flags |= XFS_MOUNT_RDONLY;
654  if (error) {
655  xfs_warn(mp, "log mount/recovery failed: error %d",
656  error);
657  goto out_destroy_ail;
658  }
659  }
660 
661  /* Normal transactions can now occur */
662  mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
663 
664  /*
665  * Now the log has been fully initialised and we know were our
666  * space grant counters are, we can initialise the permanent ticket
667  * needed for delayed logging to work.
668  */
669  xlog_cil_init_post_recovery(mp->m_log);
670 
671  return 0;
672 
673 out_destroy_ail:
675 out_free_log:
676  xlog_dealloc_log(mp->m_log);
677 out:
678  return error;
679 }
680 
681 /*
682  * Finish the recovery of the file system. This is separate from
683  * the xfs_log_mount() call, because it depends on the code in
684  * xfs_mountfs() to read in the root and real-time bitmap inodes
685  * between calling xfs_log_mount() and here.
686  *
687  * mp - ubiquitous xfs mount point structure
688  */
689 int
691 {
692  int error;
693 
694  if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
695  error = xlog_recover_finish(mp->m_log);
696  else {
697  error = 0;
698  ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
699  }
700 
701  return error;
702 }
703 
704 /*
705  * Final log writes as part of unmount.
706  *
707  * Mark the filesystem clean as unmount happens. Note that during relocation
708  * this routine needs to be executed as part of source-bag while the
709  * deallocation must not be done until source-end.
710  */
711 
712 /*
713  * Unmount record used to have a string "Unmount filesystem--" in the
714  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
715  * We just write the magic number now since that particular field isn't
716  * currently architecture converted and "nUmount" is a bit foo.
717  * As far as I know, there weren't any dependencies on the old behaviour.
718  */
719 
720 int
722 {
723  struct xlog *log = mp->m_log;
724  xlog_in_core_t *iclog;
725 #ifdef DEBUG
726  xlog_in_core_t *first_iclog;
727 #endif
728  xlog_ticket_t *tic = NULL;
729  xfs_lsn_t lsn;
730  int error;
731 
732  /*
733  * Don't write out unmount record on read-only mounts.
734  * Or, if we are doing a forced umount (typically because of IO errors).
735  */
736  if (mp->m_flags & XFS_MOUNT_RDONLY)
737  return 0;
738 
739  error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
740  ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
741 
742 #ifdef DEBUG
743  first_iclog = iclog = log->l_iclog;
744  do {
745  if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
746  ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
747  ASSERT(iclog->ic_offset == 0);
748  }
749  iclog = iclog->ic_next;
750  } while (iclog != first_iclog);
751 #endif
752  if (! (XLOG_FORCED_SHUTDOWN(log))) {
753  error = xfs_log_reserve(mp, 600, 1, &tic,
754  XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
755  if (!error) {
756  /* the data section must be 32 bit size aligned */
757  struct {
758  __uint16_t magic;
759  __uint16_t pad1;
760  __uint32_t pad2; /* may as well make it 64 bits */
761  } magic = {
762  .magic = XLOG_UNMOUNT_TYPE,
763  };
764  struct xfs_log_iovec reg = {
765  .i_addr = &magic,
766  .i_len = sizeof(magic),
768  };
769  struct xfs_log_vec vec = {
770  .lv_niovecs = 1,
771  .lv_iovecp = &reg,
772  };
773 
774  /* remove inited flag, and account for space used */
775  tic->t_flags = 0;
776  tic->t_curr_res -= sizeof(magic);
777  error = xlog_write(log, &vec, tic, &lsn,
779  /*
780  * At this point, we're umounting anyway,
781  * so there's no point in transitioning log state
782  * to IOERROR. Just continue...
783  */
784  }
785 
786  if (error)
787  xfs_alert(mp, "%s: unmount record failed", __func__);
788 
789 
790  spin_lock(&log->l_icloglock);
791  iclog = log->l_iclog;
792  atomic_inc(&iclog->ic_refcnt);
793  xlog_state_want_sync(log, iclog);
794  spin_unlock(&log->l_icloglock);
795  error = xlog_state_release_iclog(log, iclog);
796 
797  spin_lock(&log->l_icloglock);
798  if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
799  iclog->ic_state == XLOG_STATE_DIRTY)) {
800  if (!XLOG_FORCED_SHUTDOWN(log)) {
801  xlog_wait(&iclog->ic_force_wait,
802  &log->l_icloglock);
803  } else {
804  spin_unlock(&log->l_icloglock);
805  }
806  } else {
807  spin_unlock(&log->l_icloglock);
808  }
809  if (tic) {
810  trace_xfs_log_umount_write(log, tic);
811  xlog_ungrant_log_space(log, tic);
812  xfs_log_ticket_put(tic);
813  }
814  } else {
815  /*
816  * We're already in forced_shutdown mode, couldn't
817  * even attempt to write out the unmount transaction.
818  *
819  * Go through the motions of sync'ing and releasing
820  * the iclog, even though no I/O will actually happen,
821  * we need to wait for other log I/Os that may already
822  * be in progress. Do this as a separate section of
823  * code so we'll know if we ever get stuck here that
824  * we're in this odd situation of trying to unmount
825  * a file system that went into forced_shutdown as
826  * the result of an unmount..
827  */
828  spin_lock(&log->l_icloglock);
829  iclog = log->l_iclog;
830  atomic_inc(&iclog->ic_refcnt);
831 
832  xlog_state_want_sync(log, iclog);
833  spin_unlock(&log->l_icloglock);
834  error = xlog_state_release_iclog(log, iclog);
835 
836  spin_lock(&log->l_icloglock);
837 
838  if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
839  || iclog->ic_state == XLOG_STATE_DIRTY
840  || iclog->ic_state == XLOG_STATE_IOERROR) ) {
841 
842  xlog_wait(&iclog->ic_force_wait,
843  &log->l_icloglock);
844  } else {
845  spin_unlock(&log->l_icloglock);
846  }
847  }
848 
849  return error;
850 } /* xfs_log_unmount_write */
851 
852 /*
853  * Deallocate log structures for unmount/relocation.
854  *
855  * We need to stop the aild from running before we destroy
856  * and deallocate the log as the aild references the log.
857  */
858 void
859 xfs_log_unmount(xfs_mount_t *mp)
860 {
861  cancel_delayed_work_sync(&mp->m_sync_work);
863  xlog_dealloc_log(mp->m_log);
864 }
865 
866 void
868  struct xfs_mount *mp,
869  struct xfs_log_item *item,
870  int type,
871  const struct xfs_item_ops *ops)
872 {
873  item->li_mountp = mp;
874  item->li_ailp = mp->m_ail;
875  item->li_type = type;
876  item->li_ops = ops;
877  item->li_lv = NULL;
878 
879  INIT_LIST_HEAD(&item->li_ail);
880  INIT_LIST_HEAD(&item->li_cil);
881 }
882 
883 /*
884  * Wake up processes waiting for log space after we have moved the log tail.
885  */
886 void
888  struct xfs_mount *mp)
889 {
890  struct xlog *log = mp->m_log;
891  int free_bytes;
892 
893  if (XLOG_FORCED_SHUTDOWN(log))
894  return;
895 
896  if (!list_empty_careful(&log->l_write_head.waiters)) {
897  ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
898 
899  spin_lock(&log->l_write_head.lock);
900  free_bytes = xlog_space_left(log, &log->l_write_head.grant);
901  xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
902  spin_unlock(&log->l_write_head.lock);
903  }
904 
905  if (!list_empty_careful(&log->l_reserve_head.waiters)) {
906  ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
907 
908  spin_lock(&log->l_reserve_head.lock);
909  free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
910  xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
911  spin_unlock(&log->l_reserve_head.lock);
912  }
913 }
914 
915 /*
916  * Determine if we have a transaction that has gone to disk
917  * that needs to be covered. To begin the transition to the idle state
918  * firstly the log needs to be idle (no AIL and nothing in the iclogs).
919  * If we are then in a state where covering is needed, the caller is informed
920  * that dummy transactions are required to move the log into the idle state.
921  *
922  * Because this is called as part of the sync process, we should also indicate
923  * that dummy transactions should be issued in anything but the covered or
924  * idle states. This ensures that the log tail is accurately reflected in
925  * the log at the end of the sync, hence if a crash occurrs avoids replay
926  * of transactions where the metadata is already on disk.
927  */
928 int
929 xfs_log_need_covered(xfs_mount_t *mp)
930 {
931  int needed = 0;
932  struct xlog *log = mp->m_log;
933 
934  if (!xfs_fs_writable(mp))
935  return 0;
936 
937  spin_lock(&log->l_icloglock);
938  switch (log->l_covered_state) {
939  case XLOG_STATE_COVER_DONE:
940  case XLOG_STATE_COVER_DONE2:
941  case XLOG_STATE_COVER_IDLE:
942  break;
943  case XLOG_STATE_COVER_NEED:
944  case XLOG_STATE_COVER_NEED2:
945  if (!xfs_ail_min_lsn(log->l_ailp) &&
946  xlog_iclogs_empty(log)) {
947  if (log->l_covered_state == XLOG_STATE_COVER_NEED)
948  log->l_covered_state = XLOG_STATE_COVER_DONE;
949  else
950  log->l_covered_state = XLOG_STATE_COVER_DONE2;
951  }
952  /* FALLTHRU */
953  default:
954  needed = 1;
955  break;
956  }
957  spin_unlock(&log->l_icloglock);
958  return needed;
959 }
960 
961 /*
962  * We may be holding the log iclog lock upon entering this routine.
963  */
964 xfs_lsn_t
966  struct xfs_mount *mp)
967 {
968  struct xlog *log = mp->m_log;
969  struct xfs_log_item *lip;
970  xfs_lsn_t tail_lsn;
971 
972  assert_spin_locked(&mp->m_ail->xa_lock);
973 
974  /*
975  * To make sure we always have a valid LSN for the log tail we keep
976  * track of the last LSN which was committed in log->l_last_sync_lsn,
977  * and use that when the AIL was empty.
978  */
979  lip = xfs_ail_min(mp->m_ail);
980  if (lip)
981  tail_lsn = lip->li_lsn;
982  else
983  tail_lsn = atomic64_read(&log->l_last_sync_lsn);
984  atomic64_set(&log->l_tail_lsn, tail_lsn);
985  return tail_lsn;
986 }
987 
988 xfs_lsn_t
990  struct xfs_mount *mp)
991 {
992  xfs_lsn_t tail_lsn;
993 
994  spin_lock(&mp->m_ail->xa_lock);
995  tail_lsn = xlog_assign_tail_lsn_locked(mp);
996  spin_unlock(&mp->m_ail->xa_lock);
997 
998  return tail_lsn;
999 }
1000 
1001 /*
1002  * Return the space in the log between the tail and the head. The head
1003  * is passed in the cycle/bytes formal parms. In the special case where
1004  * the reserve head has wrapped passed the tail, this calculation is no
1005  * longer valid. In this case, just return 0 which means there is no space
1006  * in the log. This works for all places where this function is called
1007  * with the reserve head. Of course, if the write head were to ever
1008  * wrap the tail, we should blow up. Rather than catch this case here,
1009  * we depend on other ASSERTions in other parts of the code. XXXmiken
1010  *
1011  * This code also handles the case where the reservation head is behind
1012  * the tail. The details of this case are described below, but the end
1013  * result is that we return the size of the log as the amount of space left.
1014  */
1015 STATIC int
1017  struct xlog *log,
1018  atomic64_t *head)
1019 {
1020  int free_bytes;
1021  int tail_bytes;
1022  int tail_cycle;
1023  int head_cycle;
1024  int head_bytes;
1025 
1026  xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1027  xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1028  tail_bytes = BBTOB(tail_bytes);
1029  if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1030  free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1031  else if (tail_cycle + 1 < head_cycle)
1032  return 0;
1033  else if (tail_cycle < head_cycle) {
1034  ASSERT(tail_cycle == (head_cycle - 1));
1035  free_bytes = tail_bytes - head_bytes;
1036  } else {
1037  /*
1038  * The reservation head is behind the tail.
1039  * In this case we just want to return the size of the
1040  * log as the amount of space left.
1041  */
1042  xfs_alert(log->l_mp,
1043  "xlog_space_left: head behind tail\n"
1044  " tail_cycle = %d, tail_bytes = %d\n"
1045  " GH cycle = %d, GH bytes = %d",
1046  tail_cycle, tail_bytes, head_cycle, head_bytes);
1047  ASSERT(0);
1048  free_bytes = log->l_logsize;
1049  }
1050  return free_bytes;
1051 }
1052 
1053 
1054 /*
1055  * Log function which is called when an io completes.
1056  *
1057  * The log manager needs its own routine, in order to control what
1058  * happens with the buffer after the write completes.
1059  */
1060 void
1062 {
1063  struct xlog_in_core *iclog = bp->b_fspriv;
1064  struct xlog *l = iclog->ic_log;
1065  int aborted = 0;
1066 
1067  /*
1068  * Race to shutdown the filesystem if we see an error.
1069  */
1070  if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1072  xfs_buf_ioerror_alert(bp, __func__);
1073  xfs_buf_stale(bp);
1074  xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1075  /*
1076  * This flag will be propagated to the trans-committed
1077  * callback routines to let them know that the log-commit
1078  * didn't succeed.
1079  */
1080  aborted = XFS_LI_ABORTED;
1081  } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1082  aborted = XFS_LI_ABORTED;
1083  }
1084 
1085  /* log I/O is always issued ASYNC */
1086  ASSERT(XFS_BUF_ISASYNC(bp));
1087  xlog_state_done_syncing(iclog, aborted);
1088  /*
1089  * do not reference the buffer (bp) here as we could race
1090  * with it being freed after writing the unmount record to the
1091  * log.
1092  */
1093 
1094 } /* xlog_iodone */
1095 
1096 /*
1097  * Return size of each in-core log record buffer.
1098  *
1099  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1100  *
1101  * If the filesystem blocksize is too large, we may need to choose a
1102  * larger size since the directory code currently logs entire blocks.
1103  */
1104 
1105 STATIC void
1107  struct xfs_mount *mp,
1108  struct xlog *log)
1109 {
1110  int size;
1111  int xhdrs;
1112 
1113  if (mp->m_logbufs <= 0)
1114  log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1115  else
1116  log->l_iclog_bufs = mp->m_logbufs;
1117 
1118  /*
1119  * Buffer size passed in from mount system call.
1120  */
1121  if (mp->m_logbsize > 0) {
1122  size = log->l_iclog_size = mp->m_logbsize;
1123  log->l_iclog_size_log = 0;
1124  while (size != 1) {
1125  log->l_iclog_size_log++;
1126  size >>= 1;
1127  }
1128 
1129  if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1130  /* # headers = size / 32k
1131  * one header holds cycles from 32k of data
1132  */
1133 
1134  xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1135  if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1136  xhdrs++;
1137  log->l_iclog_hsize = xhdrs << BBSHIFT;
1138  log->l_iclog_heads = xhdrs;
1139  } else {
1140  ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1141  log->l_iclog_hsize = BBSIZE;
1142  log->l_iclog_heads = 1;
1143  }
1144  goto done;
1145  }
1146 
1147  /* All machines use 32kB buffers by default. */
1148  log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1149  log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1150 
1151  /* the default log size is 16k or 32k which is one header sector */
1152  log->l_iclog_hsize = BBSIZE;
1153  log->l_iclog_heads = 1;
1154 
1155 done:
1156  /* are we being asked to make the sizes selected above visible? */
1157  if (mp->m_logbufs == 0)
1158  mp->m_logbufs = log->l_iclog_bufs;
1159  if (mp->m_logbsize == 0)
1160  mp->m_logbsize = log->l_iclog_size;
1161 } /* xlog_get_iclog_buffer_size */
1162 
1163 
1164 /*
1165  * This routine initializes some of the log structure for a given mount point.
1166  * Its primary purpose is to fill in enough, so recovery can occur. However,
1167  * some other stuff may be filled in too.
1168  */
1169 STATIC struct xlog *
1171  struct xfs_mount *mp,
1172  struct xfs_buftarg *log_target,
1173  xfs_daddr_t blk_offset,
1174  int num_bblks)
1175 {
1176  struct xlog *log;
1178  xlog_in_core_t **iclogp;
1179  xlog_in_core_t *iclog, *prev_iclog=NULL;
1180  xfs_buf_t *bp;
1181  int i;
1182  int error = ENOMEM;
1183  uint log2_size = 0;
1184 
1185  log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1186  if (!log) {
1187  xfs_warn(mp, "Log allocation failed: No memory!");
1188  goto out;
1189  }
1190 
1191  log->l_mp = mp;
1192  log->l_targ = log_target;
1193  log->l_logsize = BBTOB(num_bblks);
1194  log->l_logBBstart = blk_offset;
1195  log->l_logBBsize = num_bblks;
1196  log->l_covered_state = XLOG_STATE_COVER_IDLE;
1197  log->l_flags |= XLOG_ACTIVE_RECOVERY;
1198 
1199  log->l_prev_block = -1;
1200  /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1201  xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1202  xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1203  log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1204 
1205  xlog_grant_head_init(&log->l_reserve_head);
1206  xlog_grant_head_init(&log->l_write_head);
1207 
1208  error = EFSCORRUPTED;
1209  if (xfs_sb_version_hassector(&mp->m_sb)) {
1210  log2_size = mp->m_sb.sb_logsectlog;
1211  if (log2_size < BBSHIFT) {
1212  xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1213  log2_size, BBSHIFT);
1214  goto out_free_log;
1215  }
1216 
1217  log2_size -= BBSHIFT;
1218  if (log2_size > mp->m_sectbb_log) {
1219  xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1220  log2_size, mp->m_sectbb_log);
1221  goto out_free_log;
1222  }
1223 
1224  /* for larger sector sizes, must have v2 or external log */
1225  if (log2_size && log->l_logBBstart > 0 &&
1226  !xfs_sb_version_haslogv2(&mp->m_sb)) {
1227  xfs_warn(mp,
1228  "log sector size (0x%x) invalid for configuration.",
1229  log2_size);
1230  goto out_free_log;
1231  }
1232  }
1233  log->l_sectBBsize = 1 << log2_size;
1234 
1235  xlog_get_iclog_buffer_size(mp, log);
1236 
1237  error = ENOMEM;
1238  bp = xfs_buf_alloc(mp->m_logdev_targp, 0, BTOBB(log->l_iclog_size), 0);
1239  if (!bp)
1240  goto out_free_log;
1241  bp->b_iodone = xlog_iodone;
1242  ASSERT(xfs_buf_islocked(bp));
1243  log->l_xbuf = bp;
1244 
1245  spin_lock_init(&log->l_icloglock);
1246  init_waitqueue_head(&log->l_flush_wait);
1247 
1248  iclogp = &log->l_iclog;
1249  /*
1250  * The amount of memory to allocate for the iclog structure is
1251  * rather funky due to the way the structure is defined. It is
1252  * done this way so that we can use different sizes for machines
1253  * with different amounts of memory. See the definition of
1254  * xlog_in_core_t in xfs_log_priv.h for details.
1255  */
1256  ASSERT(log->l_iclog_size >= 4096);
1257  for (i=0; i < log->l_iclog_bufs; i++) {
1258  *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1259  if (!*iclogp)
1260  goto out_free_iclog;
1261 
1262  iclog = *iclogp;
1263  iclog->ic_prev = prev_iclog;
1264  prev_iclog = iclog;
1265 
1266  bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1267  BTOBB(log->l_iclog_size), 0);
1268  if (!bp)
1269  goto out_free_iclog;
1270 
1271  bp->b_iodone = xlog_iodone;
1272  iclog->ic_bp = bp;
1273  iclog->ic_data = bp->b_addr;
1274 #ifdef DEBUG
1275  log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1276 #endif
1277  head = &iclog->ic_header;
1278  memset(head, 0, sizeof(xlog_rec_header_t));
1280  head->h_version = cpu_to_be32(
1281  xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1282  head->h_size = cpu_to_be32(log->l_iclog_size);
1283  /* new fields */
1284  head->h_fmt = cpu_to_be32(XLOG_FMT);
1285  memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1286 
1287  iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1288  iclog->ic_state = XLOG_STATE_ACTIVE;
1289  iclog->ic_log = log;
1290  atomic_set(&iclog->ic_refcnt, 0);
1291  spin_lock_init(&iclog->ic_callback_lock);
1292  iclog->ic_callback_tail = &(iclog->ic_callback);
1293  iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1294 
1295  ASSERT(xfs_buf_islocked(iclog->ic_bp));
1296  init_waitqueue_head(&iclog->ic_force_wait);
1297  init_waitqueue_head(&iclog->ic_write_wait);
1298 
1299  iclogp = &iclog->ic_next;
1300  }
1301  *iclogp = log->l_iclog; /* complete ring */
1302  log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1303 
1304  error = xlog_cil_init(log);
1305  if (error)
1306  goto out_free_iclog;
1307  return log;
1308 
1309 out_free_iclog:
1310  for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1311  prev_iclog = iclog->ic_next;
1312  if (iclog->ic_bp)
1313  xfs_buf_free(iclog->ic_bp);
1314  kmem_free(iclog);
1315  }
1316  spinlock_destroy(&log->l_icloglock);
1317  xfs_buf_free(log->l_xbuf);
1318 out_free_log:
1319  kmem_free(log);
1320 out:
1321  return ERR_PTR(-error);
1322 } /* xlog_alloc_log */
1323 
1324 
1325 /*
1326  * Write out the commit record of a transaction associated with the given
1327  * ticket. Return the lsn of the commit record.
1328  */
1329 STATIC int
1331  struct xlog *log,
1332  struct xlog_ticket *ticket,
1333  struct xlog_in_core **iclog,
1334  xfs_lsn_t *commitlsnp)
1335 {
1336  struct xfs_mount *mp = log->l_mp;
1337  int error;
1338  struct xfs_log_iovec reg = {
1339  .i_addr = NULL,
1340  .i_len = 0,
1341  .i_type = XLOG_REG_TYPE_COMMIT,
1342  };
1343  struct xfs_log_vec vec = {
1344  .lv_niovecs = 1,
1345  .lv_iovecp = &reg,
1346  };
1347 
1348  ASSERT_ALWAYS(iclog);
1349  error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1351  if (error)
1352  xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1353  return error;
1354 }
1355 
1356 /*
1357  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1358  * log space. This code pushes on the lsn which would supposedly free up
1359  * the 25% which we want to leave free. We may need to adopt a policy which
1360  * pushes on an lsn which is further along in the log once we reach the high
1361  * water mark. In this manner, we would be creating a low water mark.
1362  */
1363 STATIC void
1365  struct xlog *log,
1366  int need_bytes)
1367 {
1368  xfs_lsn_t threshold_lsn = 0;
1369  xfs_lsn_t last_sync_lsn;
1370  int free_blocks;
1371  int free_bytes;
1372  int threshold_block;
1373  int threshold_cycle;
1374  int free_threshold;
1375 
1376  ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1377 
1378  free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1379  free_blocks = BTOBBT(free_bytes);
1380 
1381  /*
1382  * Set the threshold for the minimum number of free blocks in the
1383  * log to the maximum of what the caller needs, one quarter of the
1384  * log, and 256 blocks.
1385  */
1386  free_threshold = BTOBB(need_bytes);
1387  free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1388  free_threshold = MAX(free_threshold, 256);
1389  if (free_blocks >= free_threshold)
1390  return;
1391 
1392  xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1393  &threshold_block);
1394  threshold_block += free_threshold;
1395  if (threshold_block >= log->l_logBBsize) {
1396  threshold_block -= log->l_logBBsize;
1397  threshold_cycle += 1;
1398  }
1399  threshold_lsn = xlog_assign_lsn(threshold_cycle,
1400  threshold_block);
1401  /*
1402  * Don't pass in an lsn greater than the lsn of the last
1403  * log record known to be on disk. Use a snapshot of the last sync lsn
1404  * so that it doesn't change between the compare and the set.
1405  */
1406  last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1407  if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1408  threshold_lsn = last_sync_lsn;
1409 
1410  /*
1411  * Get the transaction layer to kick the dirty buffers out to
1412  * disk asynchronously. No point in trying to do this if
1413  * the filesystem is shutting down.
1414  */
1415  if (!XLOG_FORCED_SHUTDOWN(log))
1416  xfs_ail_push(log->l_ailp, threshold_lsn);
1417 }
1418 
1419 /*
1420  * The bdstrat callback function for log bufs. This gives us a central
1421  * place to trap bufs in case we get hit by a log I/O error and need to
1422  * shutdown. Actually, in practice, even when we didn't get a log error,
1423  * we transition the iclogs to IOERROR state *after* flushing all existing
1424  * iclogs to disk. This is because we don't want anymore new transactions to be
1425  * started or completed afterwards.
1426  */
1427 STATIC int
1429  struct xfs_buf *bp)
1430 {
1431  struct xlog_in_core *iclog = bp->b_fspriv;
1432 
1433  if (iclog->ic_state & XLOG_STATE_IOERROR) {
1434  xfs_buf_ioerror(bp, EIO);
1435  xfs_buf_stale(bp);
1436  xfs_buf_ioend(bp, 0);
1437  /*
1438  * It would seem logical to return EIO here, but we rely on
1439  * the log state machine to propagate I/O errors instead of
1440  * doing it here.
1441  */
1442  return 0;
1443  }
1444 
1445  xfs_buf_iorequest(bp);
1446  return 0;
1447 }
1448 
1449 /*
1450  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1451  * fashion. Previously, we should have moved the current iclog
1452  * ptr in the log to point to the next available iclog. This allows further
1453  * write to continue while this code syncs out an iclog ready to go.
1454  * Before an in-core log can be written out, the data section must be scanned
1455  * to save away the 1st word of each BBSIZE block into the header. We replace
1456  * it with the current cycle count. Each BBSIZE block is tagged with the
1457  * cycle count because there in an implicit assumption that drives will
1458  * guarantee that entire 512 byte blocks get written at once. In other words,
1459  * we can't have part of a 512 byte block written and part not written. By
1460  * tagging each block, we will know which blocks are valid when recovering
1461  * after an unclean shutdown.
1462  *
1463  * This routine is single threaded on the iclog. No other thread can be in
1464  * this routine with the same iclog. Changing contents of iclog can there-
1465  * fore be done without grabbing the state machine lock. Updating the global
1466  * log will require grabbing the lock though.
1467  *
1468  * The entire log manager uses a logical block numbering scheme. Only
1469  * log_sync (and then only bwrite()) know about the fact that the log may
1470  * not start with block zero on a given device. The log block start offset
1471  * is added immediately before calling bwrite().
1472  */
1473 
1474 STATIC int
1476  struct xlog *log,
1477  struct xlog_in_core *iclog)
1478 {
1479  xfs_caddr_t dptr; /* pointer to byte sized element */
1480  xfs_buf_t *bp;
1481  int i;
1482  uint count; /* byte count of bwrite */
1483  uint count_init; /* initial count before roundup */
1484  int roundoff; /* roundoff to BB or stripe */
1485  int split = 0; /* split write into two regions */
1486  int error;
1487  int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1488 
1489  XFS_STATS_INC(xs_log_writes);
1490  ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1491 
1492  /* Add for LR header */
1493  count_init = log->l_iclog_hsize + iclog->ic_offset;
1494 
1495  /* Round out the log write size */
1496  if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1497  /* we have a v2 stripe unit to use */
1498  count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1499  } else {
1500  count = BBTOB(BTOBB(count_init));
1501  }
1502  roundoff = count - count_init;
1503  ASSERT(roundoff >= 0);
1504  ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1505  roundoff < log->l_mp->m_sb.sb_logsunit)
1506  ||
1507  (log->l_mp->m_sb.sb_logsunit <= 1 &&
1508  roundoff < BBTOB(1)));
1509 
1510  /* move grant heads by roundoff in sync */
1511  xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1512  xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1513 
1514  /* put cycle number in every block */
1515  xlog_pack_data(log, iclog, roundoff);
1516 
1517  /* real byte length */
1518  if (v2) {
1519  iclog->ic_header.h_len =
1520  cpu_to_be32(iclog->ic_offset + roundoff);
1521  } else {
1522  iclog->ic_header.h_len =
1523  cpu_to_be32(iclog->ic_offset);
1524  }
1525 
1526  bp = iclog->ic_bp;
1527  XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1528 
1529  XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1530 
1531  /* Do we need to split this write into 2 parts? */
1532  if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1533  split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1534  count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1535  iclog->ic_bwritecnt = 2; /* split into 2 writes */
1536  } else {
1537  iclog->ic_bwritecnt = 1;
1538  }
1539  bp->b_io_length = BTOBB(count);
1540  bp->b_fspriv = iclog;
1541  XFS_BUF_ZEROFLAGS(bp);
1542  XFS_BUF_ASYNC(bp);
1543  bp->b_flags |= XBF_SYNCIO;
1544 
1545  if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1546  bp->b_flags |= XBF_FUA;
1547 
1548  /*
1549  * Flush the data device before flushing the log to make
1550  * sure all meta data written back from the AIL actually made
1551  * it to disk before stamping the new log tail LSN into the
1552  * log buffer. For an external log we need to issue the
1553  * flush explicitly, and unfortunately synchronously here;
1554  * for an internal log we can simply use the block layer
1555  * state machine for preflushes.
1556  */
1557  if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1558  xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1559  else
1560  bp->b_flags |= XBF_FLUSH;
1561  }
1562 
1563  ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1564  ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1565 
1566  xlog_verify_iclog(log, iclog, count, B_TRUE);
1567 
1568  /* account for log which doesn't start at block #0 */
1569  XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1570  /*
1571  * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1572  * is shutting down.
1573  */
1574  XFS_BUF_WRITE(bp);
1575 
1576  error = xlog_bdstrat(bp);
1577  if (error) {
1578  xfs_buf_ioerror_alert(bp, "xlog_sync");
1579  return error;
1580  }
1581  if (split) {
1582  bp = iclog->ic_log->l_xbuf;
1583  XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1585  (char *)&iclog->ic_header + count, split);
1586  bp->b_fspriv = iclog;
1587  XFS_BUF_ZEROFLAGS(bp);
1588  XFS_BUF_ASYNC(bp);
1589  bp->b_flags |= XBF_SYNCIO;
1590  if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1591  bp->b_flags |= XBF_FUA;
1592  dptr = bp->b_addr;
1593  /*
1594  * Bump the cycle numbers at the start of each block
1595  * since this part of the buffer is at the start of
1596  * a new cycle. Watch out for the header magic number
1597  * case, though.
1598  */
1599  for (i = 0; i < split; i += BBSIZE) {
1600  be32_add_cpu((__be32 *)dptr, 1);
1601  if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1602  be32_add_cpu((__be32 *)dptr, 1);
1603  dptr += BBSIZE;
1604  }
1605 
1606  ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1607  ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1608 
1609  /* account for internal log which doesn't start at block #0 */
1610  XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1611  XFS_BUF_WRITE(bp);
1612  error = xlog_bdstrat(bp);
1613  if (error) {
1614  xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1615  return error;
1616  }
1617  }
1618  return 0;
1619 } /* xlog_sync */
1620 
1621 
1622 /*
1623  * Deallocate a log structure
1624  */
1625 STATIC void
1627  struct xlog *log)
1628 {
1629  xlog_in_core_t *iclog, *next_iclog;
1630  int i;
1631 
1632  xlog_cil_destroy(log);
1633 
1634  /*
1635  * always need to ensure that the extra buffer does not point to memory
1636  * owned by another log buffer before we free it.
1637  */
1638  xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1639  xfs_buf_free(log->l_xbuf);
1640 
1641  iclog = log->l_iclog;
1642  for (i=0; i<log->l_iclog_bufs; i++) {
1643  xfs_buf_free(iclog->ic_bp);
1644  next_iclog = iclog->ic_next;
1645  kmem_free(iclog);
1646  iclog = next_iclog;
1647  }
1648  spinlock_destroy(&log->l_icloglock);
1649 
1650  log->l_mp->m_log = NULL;
1651  kmem_free(log);
1652 } /* xlog_dealloc_log */
1653 
1654 /*
1655  * Update counters atomically now that memcpy is done.
1656  */
1657 /* ARGSUSED */
1658 static inline void
1659 xlog_state_finish_copy(
1660  struct xlog *log,
1661  struct xlog_in_core *iclog,
1662  int record_cnt,
1663  int copy_bytes)
1664 {
1665  spin_lock(&log->l_icloglock);
1666 
1667  be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1668  iclog->ic_offset += copy_bytes;
1669 
1670  spin_unlock(&log->l_icloglock);
1671 } /* xlog_state_finish_copy */
1672 
1673 
1674 
1675 
1676 /*
1677  * print out info relating to regions written which consume
1678  * the reservation
1679  */
1680 void
1682  struct xfs_mount *mp,
1683  struct xlog_ticket *ticket)
1684 {
1685  uint i;
1686  uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1687 
1688  /* match with XLOG_REG_TYPE_* in xfs_log.h */
1689  static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1690  "bformat",
1691  "bchunk",
1692  "efi_format",
1693  "efd_format",
1694  "iformat",
1695  "icore",
1696  "iext",
1697  "ibroot",
1698  "ilocal",
1699  "iattr_ext",
1700  "iattr_broot",
1701  "iattr_local",
1702  "qformat",
1703  "dquot",
1704  "quotaoff",
1705  "LR header",
1706  "unmount",
1707  "commit",
1708  "trans header"
1709  };
1710  static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1711  "SETATTR_NOT_SIZE",
1712  "SETATTR_SIZE",
1713  "INACTIVE",
1714  "CREATE",
1715  "CREATE_TRUNC",
1716  "TRUNCATE_FILE",
1717  "REMOVE",
1718  "LINK",
1719  "RENAME",
1720  "MKDIR",
1721  "RMDIR",
1722  "SYMLINK",
1723  "SET_DMATTRS",
1724  "GROWFS",
1725  "STRAT_WRITE",
1726  "DIOSTRAT",
1727  "WRITE_SYNC",
1728  "WRITEID",
1729  "ADDAFORK",
1730  "ATTRINVAL",
1731  "ATRUNCATE",
1732  "ATTR_SET",
1733  "ATTR_RM",
1734  "ATTR_FLAG",
1735  "CLEAR_AGI_BUCKET",
1736  "QM_SBCHANGE",
1737  "DUMMY1",
1738  "DUMMY2",
1739  "QM_QUOTAOFF",
1740  "QM_DQALLOC",
1741  "QM_SETQLIM",
1742  "QM_DQCLUSTER",
1743  "QM_QINOCREATE",
1744  "QM_QUOTAOFF_END",
1745  "SB_UNIT",
1746  "FSYNC_TS",
1747  "GROWFSRT_ALLOC",
1748  "GROWFSRT_ZERO",
1749  "GROWFSRT_FREE",
1750  "SWAPEXT"
1751  };
1752 
1753  xfs_warn(mp,
1754  "xlog_write: reservation summary:\n"
1755  " trans type = %s (%u)\n"
1756  " unit res = %d bytes\n"
1757  " current res = %d bytes\n"
1758  " total reg = %u bytes (o/flow = %u bytes)\n"
1759  " ophdrs = %u (ophdr space = %u bytes)\n"
1760  " ophdr + reg = %u bytes\n"
1761  " num regions = %u\n",
1762  ((ticket->t_trans_type <= 0 ||
1763  ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1764  "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1765  ticket->t_trans_type,
1766  ticket->t_unit_res,
1767  ticket->t_curr_res,
1768  ticket->t_res_arr_sum, ticket->t_res_o_flow,
1769  ticket->t_res_num_ophdrs, ophdr_spc,
1770  ticket->t_res_arr_sum +
1771  ticket->t_res_o_flow + ophdr_spc,
1772  ticket->t_res_num);
1773 
1774  for (i = 0; i < ticket->t_res_num; i++) {
1775  uint r_type = ticket->t_res_arr[i].r_type;
1776  xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1777  ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1778  "bad-rtype" : res_type_str[r_type-1]),
1779  ticket->t_res_arr[i].r_len);
1780  }
1781 
1783  "xlog_write: reservation ran out. Need to up reservation");
1784  xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1785 }
1786 
1787 /*
1788  * Calculate the potential space needed by the log vector. Each region gets
1789  * its own xlog_op_header_t and may need to be double word aligned.
1790  */
1791 static int
1792 xlog_write_calc_vec_length(
1793  struct xlog_ticket *ticket,
1794  struct xfs_log_vec *log_vector)
1795 {
1796  struct xfs_log_vec *lv;
1797  int headers = 0;
1798  int len = 0;
1799  int i;
1800 
1801  /* acct for start rec of xact */
1802  if (ticket->t_flags & XLOG_TIC_INITED)
1803  headers++;
1804 
1805  for (lv = log_vector; lv; lv = lv->lv_next) {
1806  headers += lv->lv_niovecs;
1807 
1808  for (i = 0; i < lv->lv_niovecs; i++) {
1809  struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
1810 
1811  len += vecp->i_len;
1812  xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1813  }
1814  }
1815 
1816  ticket->t_res_num_ophdrs += headers;
1817  len += headers * sizeof(struct xlog_op_header);
1818 
1819  return len;
1820 }
1821 
1822 /*
1823  * If first write for transaction, insert start record We can't be trying to
1824  * commit if we are inited. We can't have any "partial_copy" if we are inited.
1825  */
1826 static int
1827 xlog_write_start_rec(
1828  struct xlog_op_header *ophdr,
1829  struct xlog_ticket *ticket)
1830 {
1831  if (!(ticket->t_flags & XLOG_TIC_INITED))
1832  return 0;
1833 
1834  ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1835  ophdr->oh_clientid = ticket->t_clientid;
1836  ophdr->oh_len = 0;
1837  ophdr->oh_flags = XLOG_START_TRANS;
1838  ophdr->oh_res2 = 0;
1839 
1840  ticket->t_flags &= ~XLOG_TIC_INITED;
1841 
1842  return sizeof(struct xlog_op_header);
1843 }
1844 
1845 static xlog_op_header_t *
1846 xlog_write_setup_ophdr(
1847  struct xlog *log,
1848  struct xlog_op_header *ophdr,
1849  struct xlog_ticket *ticket,
1850  uint flags)
1851 {
1852  ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1853  ophdr->oh_clientid = ticket->t_clientid;
1854  ophdr->oh_res2 = 0;
1855 
1856  /* are we copying a commit or unmount record? */
1857  ophdr->oh_flags = flags;
1858 
1859  /*
1860  * We've seen logs corrupted with bad transaction client ids. This
1861  * makes sure that XFS doesn't generate them on. Turn this into an EIO
1862  * and shut down the filesystem.
1863  */
1864  switch (ophdr->oh_clientid) {
1865  case XFS_TRANSACTION:
1866  case XFS_VOLUME:
1867  case XFS_LOG:
1868  break;
1869  default:
1870  xfs_warn(log->l_mp,
1871  "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1872  ophdr->oh_clientid, ticket);
1873  return NULL;
1874  }
1875 
1876  return ophdr;
1877 }
1878 
1879 /*
1880  * Set up the parameters of the region copy into the log. This has
1881  * to handle region write split across multiple log buffers - this
1882  * state is kept external to this function so that this code can
1883  * can be written in an obvious, self documenting manner.
1884  */
1885 static int
1886 xlog_write_setup_copy(
1887  struct xlog_ticket *ticket,
1888  struct xlog_op_header *ophdr,
1889  int space_available,
1890  int space_required,
1891  int *copy_off,
1892  int *copy_len,
1893  int *last_was_partial_copy,
1894  int *bytes_consumed)
1895 {
1896  int still_to_copy;
1897 
1898  still_to_copy = space_required - *bytes_consumed;
1899  *copy_off = *bytes_consumed;
1900 
1901  if (still_to_copy <= space_available) {
1902  /* write of region completes here */
1903  *copy_len = still_to_copy;
1904  ophdr->oh_len = cpu_to_be32(*copy_len);
1905  if (*last_was_partial_copy)
1907  *last_was_partial_copy = 0;
1908  *bytes_consumed = 0;
1909  return 0;
1910  }
1911 
1912  /* partial write of region, needs extra log op header reservation */
1913  *copy_len = space_available;
1914  ophdr->oh_len = cpu_to_be32(*copy_len);
1915  ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1916  if (*last_was_partial_copy)
1917  ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1918  *bytes_consumed += *copy_len;
1919  (*last_was_partial_copy)++;
1920 
1921  /* account for new log op header */
1922  ticket->t_curr_res -= sizeof(struct xlog_op_header);
1923  ticket->t_res_num_ophdrs++;
1924 
1925  return sizeof(struct xlog_op_header);
1926 }
1927 
1928 static int
1929 xlog_write_copy_finish(
1930  struct xlog *log,
1931  struct xlog_in_core *iclog,
1932  uint flags,
1933  int *record_cnt,
1934  int *data_cnt,
1935  int *partial_copy,
1936  int *partial_copy_len,
1937  int log_offset,
1938  struct xlog_in_core **commit_iclog)
1939 {
1940  if (*partial_copy) {
1941  /*
1942  * This iclog has already been marked WANT_SYNC by
1943  * xlog_state_get_iclog_space.
1944  */
1945  xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1946  *record_cnt = 0;
1947  *data_cnt = 0;
1948  return xlog_state_release_iclog(log, iclog);
1949  }
1950 
1951  *partial_copy = 0;
1952  *partial_copy_len = 0;
1953 
1954  if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1955  /* no more space in this iclog - push it. */
1956  xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1957  *record_cnt = 0;
1958  *data_cnt = 0;
1959 
1960  spin_lock(&log->l_icloglock);
1961  xlog_state_want_sync(log, iclog);
1962  spin_unlock(&log->l_icloglock);
1963 
1964  if (!commit_iclog)
1965  return xlog_state_release_iclog(log, iclog);
1966  ASSERT(flags & XLOG_COMMIT_TRANS);
1967  *commit_iclog = iclog;
1968  }
1969 
1970  return 0;
1971 }
1972 
1973 /*
1974  * Write some region out to in-core log
1975  *
1976  * This will be called when writing externally provided regions or when
1977  * writing out a commit record for a given transaction.
1978  *
1979  * General algorithm:
1980  * 1. Find total length of this write. This may include adding to the
1981  * lengths passed in.
1982  * 2. Check whether we violate the tickets reservation.
1983  * 3. While writing to this iclog
1984  * A. Reserve as much space in this iclog as can get
1985  * B. If this is first write, save away start lsn
1986  * C. While writing this region:
1987  * 1. If first write of transaction, write start record
1988  * 2. Write log operation header (header per region)
1989  * 3. Find out if we can fit entire region into this iclog
1990  * 4. Potentially, verify destination memcpy ptr
1991  * 5. Memcpy (partial) region
1992  * 6. If partial copy, release iclog; otherwise, continue
1993  * copying more regions into current iclog
1994  * 4. Mark want sync bit (in simulation mode)
1995  * 5. Release iclog for potential flush to on-disk log.
1996  *
1997  * ERRORS:
1998  * 1. Panic if reservation is overrun. This should never happen since
1999  * reservation amounts are generated internal to the filesystem.
2000  * NOTES:
2001  * 1. Tickets are single threaded data structures.
2002  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2003  * syncing routine. When a single log_write region needs to span
2004  * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2005  * on all log operation writes which don't contain the end of the
2006  * region. The XLOG_END_TRANS bit is used for the in-core log
2007  * operation which contains the end of the continued log_write region.
2008  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2009  * we don't really know exactly how much space will be used. As a result,
2010  * we don't update ic_offset until the end when we know exactly how many
2011  * bytes have been written out.
2012  */
2013 int
2015  struct xlog *log,
2016  struct xfs_log_vec *log_vector,
2017  struct xlog_ticket *ticket,
2018  xfs_lsn_t *start_lsn,
2019  struct xlog_in_core **commit_iclog,
2020  uint flags)
2021 {
2022  struct xlog_in_core *iclog = NULL;
2023  struct xfs_log_iovec *vecp;
2024  struct xfs_log_vec *lv;
2025  int len;
2026  int index;
2027  int partial_copy = 0;
2028  int partial_copy_len = 0;
2029  int contwr = 0;
2030  int record_cnt = 0;
2031  int data_cnt = 0;
2032  int error;
2033 
2034  *start_lsn = 0;
2035 
2036  len = xlog_write_calc_vec_length(ticket, log_vector);
2037 
2038  /*
2039  * Region headers and bytes are already accounted for.
2040  * We only need to take into account start records and
2041  * split regions in this function.
2042  */
2043  if (ticket->t_flags & XLOG_TIC_INITED)
2044  ticket->t_curr_res -= sizeof(xlog_op_header_t);
2045 
2046  /*
2047  * Commit record headers need to be accounted for. These
2048  * come in as separate writes so are easy to detect.
2049  */
2050  if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2051  ticket->t_curr_res -= sizeof(xlog_op_header_t);
2052 
2053  if (ticket->t_curr_res < 0)
2054  xlog_print_tic_res(log->l_mp, ticket);
2055 
2056  index = 0;
2057  lv = log_vector;
2058  vecp = lv->lv_iovecp;
2059  while (lv && index < lv->lv_niovecs) {
2060  void *ptr;
2061  int log_offset;
2062 
2063  error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2064  &contwr, &log_offset);
2065  if (error)
2066  return error;
2067 
2068  ASSERT(log_offset <= iclog->ic_size - 1);
2069  ptr = iclog->ic_datap + log_offset;
2070 
2071  /* start_lsn is the first lsn written to. That's all we need. */
2072  if (!*start_lsn)
2073  *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2074 
2075  /*
2076  * This loop writes out as many regions as can fit in the amount
2077  * of space which was allocated by xlog_state_get_iclog_space().
2078  */
2079  while (lv && index < lv->lv_niovecs) {
2080  struct xfs_log_iovec *reg = &vecp[index];
2081  struct xlog_op_header *ophdr;
2082  int start_rec_copy;
2083  int copy_len;
2084  int copy_off;
2085 
2086  ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2087  ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2088 
2089  start_rec_copy = xlog_write_start_rec(ptr, ticket);
2090  if (start_rec_copy) {
2091  record_cnt++;
2092  xlog_write_adv_cnt(&ptr, &len, &log_offset,
2093  start_rec_copy);
2094  }
2095 
2096  ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2097  if (!ophdr)
2098  return XFS_ERROR(EIO);
2099 
2100  xlog_write_adv_cnt(&ptr, &len, &log_offset,
2101  sizeof(struct xlog_op_header));
2102 
2103  len += xlog_write_setup_copy(ticket, ophdr,
2104  iclog->ic_size-log_offset,
2105  reg->i_len,
2106  &copy_off, &copy_len,
2107  &partial_copy,
2108  &partial_copy_len);
2109  xlog_verify_dest_ptr(log, ptr);
2110 
2111  /* copy region */
2112  ASSERT(copy_len >= 0);
2113  memcpy(ptr, reg->i_addr + copy_off, copy_len);
2114  xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2115 
2116  copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2117  record_cnt++;
2118  data_cnt += contwr ? copy_len : 0;
2119 
2120  error = xlog_write_copy_finish(log, iclog, flags,
2121  &record_cnt, &data_cnt,
2122  &partial_copy,
2123  &partial_copy_len,
2124  log_offset,
2125  commit_iclog);
2126  if (error)
2127  return error;
2128 
2129  /*
2130  * if we had a partial copy, we need to get more iclog
2131  * space but we don't want to increment the region
2132  * index because there is still more is this region to
2133  * write.
2134  *
2135  * If we completed writing this region, and we flushed
2136  * the iclog (indicated by resetting of the record
2137  * count), then we also need to get more log space. If
2138  * this was the last record, though, we are done and
2139  * can just return.
2140  */
2141  if (partial_copy)
2142  break;
2143 
2144  if (++index == lv->lv_niovecs) {
2145  lv = lv->lv_next;
2146  index = 0;
2147  if (lv)
2148  vecp = lv->lv_iovecp;
2149  }
2150  if (record_cnt == 0) {
2151  if (!lv)
2152  return 0;
2153  break;
2154  }
2155  }
2156  }
2157 
2158  ASSERT(len == 0);
2159 
2160  xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2161  if (!commit_iclog)
2162  return xlog_state_release_iclog(log, iclog);
2163 
2164  ASSERT(flags & XLOG_COMMIT_TRANS);
2165  *commit_iclog = iclog;
2166  return 0;
2167 }
2168 
2169 
2170 /*****************************************************************************
2171  *
2172  * State Machine functions
2173  *
2174  *****************************************************************************
2175  */
2176 
2177 /* Clean iclogs starting from the head. This ordering must be
2178  * maintained, so an iclog doesn't become ACTIVE beyond one that
2179  * is SYNCING. This is also required to maintain the notion that we use
2180  * a ordered wait queue to hold off would be writers to the log when every
2181  * iclog is trying to sync to disk.
2182  *
2183  * State Change: DIRTY -> ACTIVE
2184  */
2185 STATIC void
2187  struct xlog *log)
2188 {
2189  xlog_in_core_t *iclog;
2190  int changed = 0;
2191 
2192  iclog = log->l_iclog;
2193  do {
2194  if (iclog->ic_state == XLOG_STATE_DIRTY) {
2195  iclog->ic_state = XLOG_STATE_ACTIVE;
2196  iclog->ic_offset = 0;
2197  ASSERT(iclog->ic_callback == NULL);
2198  /*
2199  * If the number of ops in this iclog indicate it just
2200  * contains the dummy transaction, we can
2201  * change state into IDLE (the second time around).
2202  * Otherwise we should change the state into
2203  * NEED a dummy.
2204  * We don't need to cover the dummy.
2205  */
2206  if (!changed &&
2207  (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2208  XLOG_COVER_OPS)) {
2209  changed = 1;
2210  } else {
2211  /*
2212  * We have two dirty iclogs so start over
2213  * This could also be num of ops indicates
2214  * this is not the dummy going out.
2215  */
2216  changed = 2;
2217  }
2218  iclog->ic_header.h_num_logops = 0;
2219  memset(iclog->ic_header.h_cycle_data, 0,
2220  sizeof(iclog->ic_header.h_cycle_data));
2221  iclog->ic_header.h_lsn = 0;
2222  } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2223  /* do nothing */;
2224  else
2225  break; /* stop cleaning */
2226  iclog = iclog->ic_next;
2227  } while (iclog != log->l_iclog);
2228 
2229  /* log is locked when we are called */
2230  /*
2231  * Change state for the dummy log recording.
2232  * We usually go to NEED. But we go to NEED2 if the changed indicates
2233  * we are done writing the dummy record.
2234  * If we are done with the second dummy recored (DONE2), then
2235  * we go to IDLE.
2236  */
2237  if (changed) {
2238  switch (log->l_covered_state) {
2239  case XLOG_STATE_COVER_IDLE:
2240  case XLOG_STATE_COVER_NEED:
2241  case XLOG_STATE_COVER_NEED2:
2242  log->l_covered_state = XLOG_STATE_COVER_NEED;
2243  break;
2244 
2245  case XLOG_STATE_COVER_DONE:
2246  if (changed == 1)
2247  log->l_covered_state = XLOG_STATE_COVER_NEED2;
2248  else
2249  log->l_covered_state = XLOG_STATE_COVER_NEED;
2250  break;
2251 
2252  case XLOG_STATE_COVER_DONE2:
2253  if (changed == 1)
2254  log->l_covered_state = XLOG_STATE_COVER_IDLE;
2255  else
2256  log->l_covered_state = XLOG_STATE_COVER_NEED;
2257  break;
2258 
2259  default:
2260  ASSERT(0);
2261  }
2262  }
2263 } /* xlog_state_clean_log */
2264 
2267  struct xlog *log)
2268 {
2269  xlog_in_core_t *lsn_log;
2270  xfs_lsn_t lowest_lsn, lsn;
2271 
2272  lsn_log = log->l_iclog;
2273  lowest_lsn = 0;
2274  do {
2275  if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2276  lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2277  if ((lsn && !lowest_lsn) ||
2278  (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2279  lowest_lsn = lsn;
2280  }
2281  }
2282  lsn_log = lsn_log->ic_next;
2283  } while (lsn_log != log->l_iclog);
2284  return lowest_lsn;
2285 }
2286 
2287 
2288 STATIC void
2290  struct xlog *log,
2291  int aborted,
2292  struct xlog_in_core *ciclog)
2293 {
2294  xlog_in_core_t *iclog;
2295  xlog_in_core_t *first_iclog; /* used to know when we've
2296  * processed all iclogs once */
2297  xfs_log_callback_t *cb, *cb_next;
2298  int flushcnt = 0;
2299  xfs_lsn_t lowest_lsn;
2300  int ioerrors; /* counter: iclogs with errors */
2301  int loopdidcallbacks; /* flag: inner loop did callbacks*/
2302  int funcdidcallbacks; /* flag: function did callbacks */
2303  int repeats; /* for issuing console warnings if
2304  * looping too many times */
2305  int wake = 0;
2306 
2307  spin_lock(&log->l_icloglock);
2308  first_iclog = iclog = log->l_iclog;
2309  ioerrors = 0;
2310  funcdidcallbacks = 0;
2311  repeats = 0;
2312 
2313  do {
2314  /*
2315  * Scan all iclogs starting with the one pointed to by the
2316  * log. Reset this starting point each time the log is
2317  * unlocked (during callbacks).
2318  *
2319  * Keep looping through iclogs until one full pass is made
2320  * without running any callbacks.
2321  */
2322  first_iclog = log->l_iclog;
2323  iclog = log->l_iclog;
2324  loopdidcallbacks = 0;
2325  repeats++;
2326 
2327  do {
2328 
2329  /* skip all iclogs in the ACTIVE & DIRTY states */
2330  if (iclog->ic_state &
2331  (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2332  iclog = iclog->ic_next;
2333  continue;
2334  }
2335 
2336  /*
2337  * Between marking a filesystem SHUTDOWN and stopping
2338  * the log, we do flush all iclogs to disk (if there
2339  * wasn't a log I/O error). So, we do want things to
2340  * go smoothly in case of just a SHUTDOWN w/o a
2341  * LOG_IO_ERROR.
2342  */
2343  if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2344  /*
2345  * Can only perform callbacks in order. Since
2346  * this iclog is not in the DONE_SYNC/
2347  * DO_CALLBACK state, we skip the rest and
2348  * just try to clean up. If we set our iclog
2349  * to DO_CALLBACK, we will not process it when
2350  * we retry since a previous iclog is in the
2351  * CALLBACK and the state cannot change since
2352  * we are holding the l_icloglock.
2353  */
2354  if (!(iclog->ic_state &
2355  (XLOG_STATE_DONE_SYNC |
2356  XLOG_STATE_DO_CALLBACK))) {
2357  if (ciclog && (ciclog->ic_state ==
2358  XLOG_STATE_DONE_SYNC)) {
2359  ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2360  }
2361  break;
2362  }
2363  /*
2364  * We now have an iclog that is in either the
2365  * DO_CALLBACK or DONE_SYNC states. The other
2366  * states (WANT_SYNC, SYNCING, or CALLBACK were
2367  * caught by the above if and are going to
2368  * clean (i.e. we aren't doing their callbacks)
2369  * see the above if.
2370  */
2371 
2372  /*
2373  * We will do one more check here to see if we
2374  * have chased our tail around.
2375  */
2376 
2377  lowest_lsn = xlog_get_lowest_lsn(log);
2378  if (lowest_lsn &&
2379  XFS_LSN_CMP(lowest_lsn,
2380  be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2381  iclog = iclog->ic_next;
2382  continue; /* Leave this iclog for
2383  * another thread */
2384  }
2385 
2386  iclog->ic_state = XLOG_STATE_CALLBACK;
2387 
2388 
2389  /*
2390  * Completion of a iclog IO does not imply that
2391  * a transaction has completed, as transactions
2392  * can be large enough to span many iclogs. We
2393  * cannot change the tail of the log half way
2394  * through a transaction as this may be the only
2395  * transaction in the log and moving th etail to
2396  * point to the middle of it will prevent
2397  * recovery from finding the start of the
2398  * transaction. Hence we should only update the
2399  * last_sync_lsn if this iclog contains
2400  * transaction completion callbacks on it.
2401  *
2402  * We have to do this before we drop the
2403  * icloglock to ensure we are the only one that
2404  * can update it.
2405  */
2406  ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2407  be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2408  if (iclog->ic_callback)
2409  atomic64_set(&log->l_last_sync_lsn,
2410  be64_to_cpu(iclog->ic_header.h_lsn));
2411 
2412  } else
2413  ioerrors++;
2414 
2415  spin_unlock(&log->l_icloglock);
2416 
2417  /*
2418  * Keep processing entries in the callback list until
2419  * we come around and it is empty. We need to
2420  * atomically see that the list is empty and change the
2421  * state to DIRTY so that we don't miss any more
2422  * callbacks being added.
2423  */
2424  spin_lock(&iclog->ic_callback_lock);
2425  cb = iclog->ic_callback;
2426  while (cb) {
2427  iclog->ic_callback_tail = &(iclog->ic_callback);
2428  iclog->ic_callback = NULL;
2429  spin_unlock(&iclog->ic_callback_lock);
2430 
2431  /* perform callbacks in the order given */
2432  for (; cb; cb = cb_next) {
2433  cb_next = cb->cb_next;
2434  cb->cb_func(cb->cb_arg, aborted);
2435  }
2436  spin_lock(&iclog->ic_callback_lock);
2437  cb = iclog->ic_callback;
2438  }
2439 
2440  loopdidcallbacks++;
2441  funcdidcallbacks++;
2442 
2443  spin_lock(&log->l_icloglock);
2444  ASSERT(iclog->ic_callback == NULL);
2445  spin_unlock(&iclog->ic_callback_lock);
2446  if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2447  iclog->ic_state = XLOG_STATE_DIRTY;
2448 
2449  /*
2450  * Transition from DIRTY to ACTIVE if applicable.
2451  * NOP if STATE_IOERROR.
2452  */
2453  xlog_state_clean_log(log);
2454 
2455  /* wake up threads waiting in xfs_log_force() */
2456  wake_up_all(&iclog->ic_force_wait);
2457 
2458  iclog = iclog->ic_next;
2459  } while (first_iclog != iclog);
2460 
2461  if (repeats > 5000) {
2462  flushcnt += repeats;
2463  repeats = 0;
2464  xfs_warn(log->l_mp,
2465  "%s: possible infinite loop (%d iterations)",
2466  __func__, flushcnt);
2467  }
2468  } while (!ioerrors && loopdidcallbacks);
2469 
2470  /*
2471  * make one last gasp attempt to see if iclogs are being left in
2472  * limbo..
2473  */
2474 #ifdef DEBUG
2475  if (funcdidcallbacks) {
2476  first_iclog = iclog = log->l_iclog;
2477  do {
2478  ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2479  /*
2480  * Terminate the loop if iclogs are found in states
2481  * which will cause other threads to clean up iclogs.
2482  *
2483  * SYNCING - i/o completion will go through logs
2484  * DONE_SYNC - interrupt thread should be waiting for
2485  * l_icloglock
2486  * IOERROR - give up hope all ye who enter here
2487  */
2488  if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2489  iclog->ic_state == XLOG_STATE_SYNCING ||
2490  iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2491  iclog->ic_state == XLOG_STATE_IOERROR )
2492  break;
2493  iclog = iclog->ic_next;
2494  } while (first_iclog != iclog);
2495  }
2496 #endif
2497 
2498  if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2499  wake = 1;
2500  spin_unlock(&log->l_icloglock);
2501 
2502  if (wake)
2503  wake_up_all(&log->l_flush_wait);
2504 }
2505 
2506 
2507 /*
2508  * Finish transitioning this iclog to the dirty state.
2509  *
2510  * Make sure that we completely execute this routine only when this is
2511  * the last call to the iclog. There is a good chance that iclog flushes,
2512  * when we reach the end of the physical log, get turned into 2 separate
2513  * calls to bwrite. Hence, one iclog flush could generate two calls to this
2514  * routine. By using the reference count bwritecnt, we guarantee that only
2515  * the second completion goes through.
2516  *
2517  * Callbacks could take time, so they are done outside the scope of the
2518  * global state machine log lock.
2519  */
2520 STATIC void
2522  xlog_in_core_t *iclog,
2523  int aborted)
2524 {
2525  struct xlog *log = iclog->ic_log;
2526 
2527  spin_lock(&log->l_icloglock);
2528 
2529  ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2530  iclog->ic_state == XLOG_STATE_IOERROR);
2531  ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2532  ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2533 
2534 
2535  /*
2536  * If we got an error, either on the first buffer, or in the case of
2537  * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2538  * and none should ever be attempted to be written to disk
2539  * again.
2540  */
2541  if (iclog->ic_state != XLOG_STATE_IOERROR) {
2542  if (--iclog->ic_bwritecnt == 1) {
2543  spin_unlock(&log->l_icloglock);
2544  return;
2545  }
2546  iclog->ic_state = XLOG_STATE_DONE_SYNC;
2547  }
2548 
2549  /*
2550  * Someone could be sleeping prior to writing out the next
2551  * iclog buffer, we wake them all, one will get to do the
2552  * I/O, the others get to wait for the result.
2553  */
2554  wake_up_all(&iclog->ic_write_wait);
2555  spin_unlock(&log->l_icloglock);
2556  xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2557 } /* xlog_state_done_syncing */
2558 
2559 
2560 /*
2561  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2562  * sleep. We wait on the flush queue on the head iclog as that should be
2563  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2564  * we will wait here and all new writes will sleep until a sync completes.
2565  *
2566  * The in-core logs are used in a circular fashion. They are not used
2567  * out-of-order even when an iclog past the head is free.
2568  *
2569  * return:
2570  * * log_offset where xlog_write() can start writing into the in-core
2571  * log's data space.
2572  * * in-core log pointer to which xlog_write() should write.
2573  * * boolean indicating this is a continued write to an in-core log.
2574  * If this is the last write, then the in-core log's offset field
2575  * needs to be incremented, depending on the amount of data which
2576  * is copied.
2577  */
2578 STATIC int
2580  struct xlog *log,
2581  int len,
2582  struct xlog_in_core **iclogp,
2583  struct xlog_ticket *ticket,
2584  int *continued_write,
2585  int *logoffsetp)
2586 {
2587  int log_offset;
2589  xlog_in_core_t *iclog;
2590  int error;
2591 
2592 restart:
2593  spin_lock(&log->l_icloglock);
2594  if (XLOG_FORCED_SHUTDOWN(log)) {
2595  spin_unlock(&log->l_icloglock);
2596  return XFS_ERROR(EIO);
2597  }
2598 
2599  iclog = log->l_iclog;
2600  if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2601  XFS_STATS_INC(xs_log_noiclogs);
2602 
2603  /* Wait for log writes to have flushed */
2604  xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2605  goto restart;
2606  }
2607 
2608  head = &iclog->ic_header;
2609 
2610  atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2611  log_offset = iclog->ic_offset;
2612 
2613  /* On the 1st write to an iclog, figure out lsn. This works
2614  * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2615  * committing to. If the offset is set, that's how many blocks
2616  * must be written.
2617  */
2618  if (log_offset == 0) {
2619  ticket->t_curr_res -= log->l_iclog_hsize;
2620  xlog_tic_add_region(ticket,
2621  log->l_iclog_hsize,
2623  head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2624  head->h_lsn = cpu_to_be64(
2625  xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2626  ASSERT(log->l_curr_block >= 0);
2627  }
2628 
2629  /* If there is enough room to write everything, then do it. Otherwise,
2630  * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2631  * bit is on, so this will get flushed out. Don't update ic_offset
2632  * until you know exactly how many bytes get copied. Therefore, wait
2633  * until later to update ic_offset.
2634  *
2635  * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2636  * can fit into remaining data section.
2637  */
2638  if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2639  xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2640 
2641  /*
2642  * If I'm the only one writing to this iclog, sync it to disk.
2643  * We need to do an atomic compare and decrement here to avoid
2644  * racing with concurrent atomic_dec_and_lock() calls in
2645  * xlog_state_release_iclog() when there is more than one
2646  * reference to the iclog.
2647  */
2648  if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2649  /* we are the only one */
2650  spin_unlock(&log->l_icloglock);
2651  error = xlog_state_release_iclog(log, iclog);
2652  if (error)
2653  return error;
2654  } else {
2655  spin_unlock(&log->l_icloglock);
2656  }
2657  goto restart;
2658  }
2659 
2660  /* Do we have enough room to write the full amount in the remainder
2661  * of this iclog? Or must we continue a write on the next iclog and
2662  * mark this iclog as completely taken? In the case where we switch
2663  * iclogs (to mark it taken), this particular iclog will release/sync
2664  * to disk in xlog_write().
2665  */
2666  if (len <= iclog->ic_size - iclog->ic_offset) {
2667  *continued_write = 0;
2668  iclog->ic_offset += len;
2669  } else {
2670  *continued_write = 1;
2671  xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2672  }
2673  *iclogp = iclog;
2674 
2675  ASSERT(iclog->ic_offset <= iclog->ic_size);
2676  spin_unlock(&log->l_icloglock);
2677 
2678  *logoffsetp = log_offset;
2679  return 0;
2680 } /* xlog_state_get_iclog_space */
2681 
2682 /* The first cnt-1 times through here we don't need to
2683  * move the grant write head because the permanent
2684  * reservation has reserved cnt times the unit amount.
2685  * Release part of current permanent unit reservation and
2686  * reset current reservation to be one units worth. Also
2687  * move grant reservation head forward.
2688  */
2689 STATIC void
2691  struct xlog *log,
2692  struct xlog_ticket *ticket)
2693 {
2694  trace_xfs_log_regrant_reserve_enter(log, ticket);
2695 
2696  if (ticket->t_cnt > 0)
2697  ticket->t_cnt--;
2698 
2699  xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2700  ticket->t_curr_res);
2701  xlog_grant_sub_space(log, &log->l_write_head.grant,
2702  ticket->t_curr_res);
2703  ticket->t_curr_res = ticket->t_unit_res;
2704  xlog_tic_reset_res(ticket);
2705 
2706  trace_xfs_log_regrant_reserve_sub(log, ticket);
2707 
2708  /* just return if we still have some of the pre-reserved space */
2709  if (ticket->t_cnt > 0)
2710  return;
2711 
2712  xlog_grant_add_space(log, &log->l_reserve_head.grant,
2713  ticket->t_unit_res);
2714 
2715  trace_xfs_log_regrant_reserve_exit(log, ticket);
2716 
2717  ticket->t_curr_res = ticket->t_unit_res;
2718  xlog_tic_reset_res(ticket);
2719 } /* xlog_regrant_reserve_log_space */
2720 
2721 
2722 /*
2723  * Give back the space left from a reservation.
2724  *
2725  * All the information we need to make a correct determination of space left
2726  * is present. For non-permanent reservations, things are quite easy. The
2727  * count should have been decremented to zero. We only need to deal with the
2728  * space remaining in the current reservation part of the ticket. If the
2729  * ticket contains a permanent reservation, there may be left over space which
2730  * needs to be released. A count of N means that N-1 refills of the current
2731  * reservation can be done before we need to ask for more space. The first
2732  * one goes to fill up the first current reservation. Once we run out of
2733  * space, the count will stay at zero and the only space remaining will be
2734  * in the current reservation field.
2735  */
2736 STATIC void
2738  struct xlog *log,
2739  struct xlog_ticket *ticket)
2740 {
2741  int bytes;
2742 
2743  if (ticket->t_cnt > 0)
2744  ticket->t_cnt--;
2745 
2746  trace_xfs_log_ungrant_enter(log, ticket);
2747  trace_xfs_log_ungrant_sub(log, ticket);
2748 
2749  /*
2750  * If this is a permanent reservation ticket, we may be able to free
2751  * up more space based on the remaining count.
2752  */
2753  bytes = ticket->t_curr_res;
2754  if (ticket->t_cnt > 0) {
2755  ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2756  bytes += ticket->t_unit_res*ticket->t_cnt;
2757  }
2758 
2759  xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2760  xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2761 
2762  trace_xfs_log_ungrant_exit(log, ticket);
2763 
2764  xfs_log_space_wake(log->l_mp);
2765 }
2766 
2767 /*
2768  * Flush iclog to disk if this is the last reference to the given iclog and
2769  * the WANT_SYNC bit is set.
2770  *
2771  * When this function is entered, the iclog is not necessarily in the
2772  * WANT_SYNC state. It may be sitting around waiting to get filled.
2773  *
2774  *
2775  */
2776 STATIC int
2778  struct xlog *log,
2779  struct xlog_in_core *iclog)
2780 {
2781  int sync = 0; /* do we sync? */
2782 
2783  if (iclog->ic_state & XLOG_STATE_IOERROR)
2784  return XFS_ERROR(EIO);
2785 
2786  ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2787  if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2788  return 0;
2789 
2790  if (iclog->ic_state & XLOG_STATE_IOERROR) {
2791  spin_unlock(&log->l_icloglock);
2792  return XFS_ERROR(EIO);
2793  }
2794  ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2795  iclog->ic_state == XLOG_STATE_WANT_SYNC);
2796 
2797  if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2798  /* update tail before writing to iclog */
2799  xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2800  sync++;
2801  iclog->ic_state = XLOG_STATE_SYNCING;
2802  iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2803  xlog_verify_tail_lsn(log, iclog, tail_lsn);
2804  /* cycle incremented when incrementing curr_block */
2805  }
2806  spin_unlock(&log->l_icloglock);
2807 
2808  /*
2809  * We let the log lock go, so it's possible that we hit a log I/O
2810  * error or some other SHUTDOWN condition that marks the iclog
2811  * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2812  * this iclog has consistent data, so we ignore IOERROR
2813  * flags after this point.
2814  */
2815  if (sync)
2816  return xlog_sync(log, iclog);
2817  return 0;
2818 } /* xlog_state_release_iclog */
2819 
2820 
2821 /*
2822  * This routine will mark the current iclog in the ring as WANT_SYNC
2823  * and move the current iclog pointer to the next iclog in the ring.
2824  * When this routine is called from xlog_state_get_iclog_space(), the
2825  * exact size of the iclog has not yet been determined. All we know is
2826  * that every data block. We have run out of space in this log record.
2827  */
2828 STATIC void
2830  struct xlog *log,
2831  struct xlog_in_core *iclog,
2832  int eventual_size)
2833 {
2834  ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2835  if (!eventual_size)
2836  eventual_size = iclog->ic_offset;
2837  iclog->ic_state = XLOG_STATE_WANT_SYNC;
2838  iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2839  log->l_prev_block = log->l_curr_block;
2840  log->l_prev_cycle = log->l_curr_cycle;
2841 
2842  /* roll log?: ic_offset changed later */
2843  log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2844 
2845  /* Round up to next log-sunit */
2846  if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2847  log->l_mp->m_sb.sb_logsunit > 1) {
2848  __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2849  log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2850  }
2851 
2852  if (log->l_curr_block >= log->l_logBBsize) {
2853  log->l_curr_cycle++;
2854  if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2855  log->l_curr_cycle++;
2856  log->l_curr_block -= log->l_logBBsize;
2857  ASSERT(log->l_curr_block >= 0);
2858  }
2859  ASSERT(iclog == log->l_iclog);
2860  log->l_iclog = iclog->ic_next;
2861 } /* xlog_state_switch_iclogs */
2862 
2863 /*
2864  * Write out all data in the in-core log as of this exact moment in time.
2865  *
2866  * Data may be written to the in-core log during this call. However,
2867  * we don't guarantee this data will be written out. A change from past
2868  * implementation means this routine will *not* write out zero length LRs.
2869  *
2870  * Basically, we try and perform an intelligent scan of the in-core logs.
2871  * If we determine there is no flushable data, we just return. There is no
2872  * flushable data if:
2873  *
2874  * 1. the current iclog is active and has no data; the previous iclog
2875  * is in the active or dirty state.
2876  * 2. the current iclog is drity, and the previous iclog is in the
2877  * active or dirty state.
2878  *
2879  * We may sleep if:
2880  *
2881  * 1. the current iclog is not in the active nor dirty state.
2882  * 2. the current iclog dirty, and the previous iclog is not in the
2883  * active nor dirty state.
2884  * 3. the current iclog is active, and there is another thread writing
2885  * to this particular iclog.
2886  * 4. a) the current iclog is active and has no other writers
2887  * b) when we return from flushing out this iclog, it is still
2888  * not in the active nor dirty state.
2889  */
2890 int
2892  struct xfs_mount *mp,
2893  uint flags,
2894  int *log_flushed)
2895 {
2896  struct xlog *log = mp->m_log;
2897  struct xlog_in_core *iclog;
2898  xfs_lsn_t lsn;
2899 
2900  XFS_STATS_INC(xs_log_force);
2901 
2902  xlog_cil_force(log);
2903 
2904  spin_lock(&log->l_icloglock);
2905 
2906  iclog = log->l_iclog;
2907  if (iclog->ic_state & XLOG_STATE_IOERROR) {
2908  spin_unlock(&log->l_icloglock);
2909  return XFS_ERROR(EIO);
2910  }
2911 
2912  /* If the head iclog is not active nor dirty, we just attach
2913  * ourselves to the head and go to sleep.
2914  */
2915  if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2916  iclog->ic_state == XLOG_STATE_DIRTY) {
2917  /*
2918  * If the head is dirty or (active and empty), then
2919  * we need to look at the previous iclog. If the previous
2920  * iclog is active or dirty we are done. There is nothing
2921  * to sync out. Otherwise, we attach ourselves to the
2922  * previous iclog and go to sleep.
2923  */
2924  if (iclog->ic_state == XLOG_STATE_DIRTY ||
2925  (atomic_read(&iclog->ic_refcnt) == 0
2926  && iclog->ic_offset == 0)) {
2927  iclog = iclog->ic_prev;
2928  if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2929  iclog->ic_state == XLOG_STATE_DIRTY)
2930  goto no_sleep;
2931  else
2932  goto maybe_sleep;
2933  } else {
2934  if (atomic_read(&iclog->ic_refcnt) == 0) {
2935  /* We are the only one with access to this
2936  * iclog. Flush it out now. There should
2937  * be a roundoff of zero to show that someone
2938  * has already taken care of the roundoff from
2939  * the previous sync.
2940  */
2941  atomic_inc(&iclog->ic_refcnt);
2942  lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2943  xlog_state_switch_iclogs(log, iclog, 0);
2944  spin_unlock(&log->l_icloglock);
2945 
2946  if (xlog_state_release_iclog(log, iclog))
2947  return XFS_ERROR(EIO);
2948 
2949  if (log_flushed)
2950  *log_flushed = 1;
2951  spin_lock(&log->l_icloglock);
2952  if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2953  iclog->ic_state != XLOG_STATE_DIRTY)
2954  goto maybe_sleep;
2955  else
2956  goto no_sleep;
2957  } else {
2958  /* Someone else is writing to this iclog.
2959  * Use its call to flush out the data. However,
2960  * the other thread may not force out this LR,
2961  * so we mark it WANT_SYNC.
2962  */
2963  xlog_state_switch_iclogs(log, iclog, 0);
2964  goto maybe_sleep;
2965  }
2966  }
2967  }
2968 
2969  /* By the time we come around again, the iclog could've been filled
2970  * which would give it another lsn. If we have a new lsn, just
2971  * return because the relevant data has been flushed.
2972  */
2973 maybe_sleep:
2974  if (flags & XFS_LOG_SYNC) {
2975  /*
2976  * We must check if we're shutting down here, before
2977  * we wait, while we're holding the l_icloglock.
2978  * Then we check again after waking up, in case our
2979  * sleep was disturbed by a bad news.
2980  */
2981  if (iclog->ic_state & XLOG_STATE_IOERROR) {
2982  spin_unlock(&log->l_icloglock);
2983  return XFS_ERROR(EIO);
2984  }
2985  XFS_STATS_INC(xs_log_force_sleep);
2986  xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
2987  /*
2988  * No need to grab the log lock here since we're
2989  * only deciding whether or not to return EIO
2990  * and the memory read should be atomic.
2991  */
2992  if (iclog->ic_state & XLOG_STATE_IOERROR)
2993  return XFS_ERROR(EIO);
2994  if (log_flushed)
2995  *log_flushed = 1;
2996  } else {
2997 
2998 no_sleep:
2999  spin_unlock(&log->l_icloglock);
3000  }
3001  return 0;
3002 }
3003 
3004 /*
3005  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3006  * about errors or whether the log was flushed or not. This is the normal
3007  * interface to use when trying to unpin items or move the log forward.
3008  */
3009 void
3011  xfs_mount_t *mp,
3012  uint flags)
3013 {
3014  int error;
3015 
3016  trace_xfs_log_force(mp, 0);
3017  error = _xfs_log_force(mp, flags, NULL);
3018  if (error)
3019  xfs_warn(mp, "%s: error %d returned.", __func__, error);
3020 }
3021 
3022 /*
3023  * Force the in-core log to disk for a specific LSN.
3024  *
3025  * Find in-core log with lsn.
3026  * If it is in the DIRTY state, just return.
3027  * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3028  * state and go to sleep or return.
3029  * If it is in any other state, go to sleep or return.
3030  *
3031  * Synchronous forces are implemented with a signal variable. All callers
3032  * to force a given lsn to disk will wait on a the sv attached to the
3033  * specific in-core log. When given in-core log finally completes its
3034  * write to disk, that thread will wake up all threads waiting on the
3035  * sv.
3036  */
3037 int
3039  struct xfs_mount *mp,
3040  xfs_lsn_t lsn,
3041  uint flags,
3042  int *log_flushed)
3043 {
3044  struct xlog *log = mp->m_log;
3045  struct xlog_in_core *iclog;
3046  int already_slept = 0;
3047 
3048  ASSERT(lsn != 0);
3049 
3050  XFS_STATS_INC(xs_log_force);
3051 
3052  lsn = xlog_cil_force_lsn(log, lsn);
3053  if (lsn == NULLCOMMITLSN)
3054  return 0;
3055 
3056 try_again:
3057  spin_lock(&log->l_icloglock);
3058  iclog = log->l_iclog;
3059  if (iclog->ic_state & XLOG_STATE_IOERROR) {
3060  spin_unlock(&log->l_icloglock);
3061  return XFS_ERROR(EIO);
3062  }
3063 
3064  do {
3065  if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3066  iclog = iclog->ic_next;
3067  continue;
3068  }
3069 
3070  if (iclog->ic_state == XLOG_STATE_DIRTY) {
3071  spin_unlock(&log->l_icloglock);
3072  return 0;
3073  }
3074 
3075  if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3076  /*
3077  * We sleep here if we haven't already slept (e.g.
3078  * this is the first time we've looked at the correct
3079  * iclog buf) and the buffer before us is going to
3080  * be sync'ed. The reason for this is that if we
3081  * are doing sync transactions here, by waiting for
3082  * the previous I/O to complete, we can allow a few
3083  * more transactions into this iclog before we close
3084  * it down.
3085  *
3086  * Otherwise, we mark the buffer WANT_SYNC, and bump
3087  * up the refcnt so we can release the log (which
3088  * drops the ref count). The state switch keeps new
3089  * transaction commits from using this buffer. When
3090  * the current commits finish writing into the buffer,
3091  * the refcount will drop to zero and the buffer will
3092  * go out then.
3093  */
3094  if (!already_slept &&
3095  (iclog->ic_prev->ic_state &
3096  (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3097  ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3098 
3099  XFS_STATS_INC(xs_log_force_sleep);
3100 
3101  xlog_wait(&iclog->ic_prev->ic_write_wait,
3102  &log->l_icloglock);
3103  if (log_flushed)
3104  *log_flushed = 1;
3105  already_slept = 1;
3106  goto try_again;
3107  }
3108  atomic_inc(&iclog->ic_refcnt);
3109  xlog_state_switch_iclogs(log, iclog, 0);
3110  spin_unlock(&log->l_icloglock);
3111  if (xlog_state_release_iclog(log, iclog))
3112  return XFS_ERROR(EIO);
3113  if (log_flushed)
3114  *log_flushed = 1;
3115  spin_lock(&log->l_icloglock);
3116  }
3117 
3118  if ((flags & XFS_LOG_SYNC) && /* sleep */
3119  !(iclog->ic_state &
3120  (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3121  /*
3122  * Don't wait on completion if we know that we've
3123  * gotten a log write error.
3124  */
3125  if (iclog->ic_state & XLOG_STATE_IOERROR) {
3126  spin_unlock(&log->l_icloglock);
3127  return XFS_ERROR(EIO);
3128  }
3129  XFS_STATS_INC(xs_log_force_sleep);
3130  xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3131  /*
3132  * No need to grab the log lock here since we're
3133  * only deciding whether or not to return EIO
3134  * and the memory read should be atomic.
3135  */
3136  if (iclog->ic_state & XLOG_STATE_IOERROR)
3137  return XFS_ERROR(EIO);
3138 
3139  if (log_flushed)
3140  *log_flushed = 1;
3141  } else { /* just return */
3142  spin_unlock(&log->l_icloglock);
3143  }
3144 
3145  return 0;
3146  } while (iclog != log->l_iclog);
3147 
3148  spin_unlock(&log->l_icloglock);
3149  return 0;
3150 }
3151 
3152 /*
3153  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3154  * about errors or whether the log was flushed or not. This is the normal
3155  * interface to use when trying to unpin items or move the log forward.
3156  */
3157 void
3159  xfs_mount_t *mp,
3160  xfs_lsn_t lsn,
3161  uint flags)
3162 {
3163  int error;
3164 
3165  trace_xfs_log_force(mp, lsn);
3166  error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3167  if (error)
3168  xfs_warn(mp, "%s: error %d returned.", __func__, error);
3169 }
3170 
3171 /*
3172  * Called when we want to mark the current iclog as being ready to sync to
3173  * disk.
3174  */
3175 STATIC void
3177  struct xlog *log,
3178  struct xlog_in_core *iclog)
3179 {
3180  assert_spin_locked(&log->l_icloglock);
3181 
3182  if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3183  xlog_state_switch_iclogs(log, iclog, 0);
3184  } else {
3185  ASSERT(iclog->ic_state &
3186  (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3187  }
3188 }
3189 
3190 
3191 /*****************************************************************************
3192  *
3193  * TICKET functions
3194  *
3195  *****************************************************************************
3196  */
3197 
3198 /*
3199  * Free a used ticket when its refcount falls to zero.
3200  */
3201 void
3203  xlog_ticket_t *ticket)
3204 {
3205  ASSERT(atomic_read(&ticket->t_ref) > 0);
3206  if (atomic_dec_and_test(&ticket->t_ref))
3207  kmem_zone_free(xfs_log_ticket_zone, ticket);
3208 }
3209 
3210 xlog_ticket_t *
3212  xlog_ticket_t *ticket)
3213 {
3214  ASSERT(atomic_read(&ticket->t_ref) > 0);
3215  atomic_inc(&ticket->t_ref);
3216  return ticket;
3217 }
3218 
3219 /*
3220  * Allocate and initialise a new log ticket.
3221  */
3222 struct xlog_ticket *
3224  struct xlog *log,
3225  int unit_bytes,
3226  int cnt,
3227  char client,
3228  bool permanent,
3229  xfs_km_flags_t alloc_flags)
3230 {
3231  struct xlog_ticket *tic;
3232  uint num_headers;
3233  int iclog_space;
3234 
3235  tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3236  if (!tic)
3237  return NULL;
3238 
3239  /*
3240  * Permanent reservations have up to 'cnt'-1 active log operations
3241  * in the log. A unit in this case is the amount of space for one
3242  * of these log operations. Normal reservations have a cnt of 1
3243  * and their unit amount is the total amount of space required.
3244  *
3245  * The following lines of code account for non-transaction data
3246  * which occupy space in the on-disk log.
3247  *
3248  * Normal form of a transaction is:
3249  * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3250  * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3251  *
3252  * We need to account for all the leadup data and trailer data
3253  * around the transaction data.
3254  * And then we need to account for the worst case in terms of using
3255  * more space.
3256  * The worst case will happen if:
3257  * - the placement of the transaction happens to be such that the
3258  * roundoff is at its maximum
3259  * - the transaction data is synced before the commit record is synced
3260  * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3261  * Therefore the commit record is in its own Log Record.
3262  * This can happen as the commit record is called with its
3263  * own region to xlog_write().
3264  * This then means that in the worst case, roundoff can happen for
3265  * the commit-rec as well.
3266  * The commit-rec is smaller than padding in this scenario and so it is
3267  * not added separately.
3268  */
3269 
3270  /* for trans header */
3271  unit_bytes += sizeof(xlog_op_header_t);
3272  unit_bytes += sizeof(xfs_trans_header_t);
3273 
3274  /* for start-rec */
3275  unit_bytes += sizeof(xlog_op_header_t);
3276 
3277  /*
3278  * for LR headers - the space for data in an iclog is the size minus
3279  * the space used for the headers. If we use the iclog size, then we
3280  * undercalculate the number of headers required.
3281  *
3282  * Furthermore - the addition of op headers for split-recs might
3283  * increase the space required enough to require more log and op
3284  * headers, so take that into account too.
3285  *
3286  * IMPORTANT: This reservation makes the assumption that if this
3287  * transaction is the first in an iclog and hence has the LR headers
3288  * accounted to it, then the remaining space in the iclog is
3289  * exclusively for this transaction. i.e. if the transaction is larger
3290  * than the iclog, it will be the only thing in that iclog.
3291  * Fundamentally, this means we must pass the entire log vector to
3292  * xlog_write to guarantee this.
3293  */
3294  iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3295  num_headers = howmany(unit_bytes, iclog_space);
3296 
3297  /* for split-recs - ophdrs added when data split over LRs */
3298  unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3299 
3300  /* add extra header reservations if we overrun */
3301  while (!num_headers ||
3302  howmany(unit_bytes, iclog_space) > num_headers) {
3303  unit_bytes += sizeof(xlog_op_header_t);
3304  num_headers++;
3305  }
3306  unit_bytes += log->l_iclog_hsize * num_headers;
3307 
3308  /* for commit-rec LR header - note: padding will subsume the ophdr */
3309  unit_bytes += log->l_iclog_hsize;
3310 
3311  /* for roundoff padding for transaction data and one for commit record */
3312  if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3313  log->l_mp->m_sb.sb_logsunit > 1) {
3314  /* log su roundoff */
3315  unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3316  } else {
3317  /* BB roundoff */
3318  unit_bytes += 2*BBSIZE;
3319  }
3320 
3321  atomic_set(&tic->t_ref, 1);
3322  tic->t_task = current;
3323  INIT_LIST_HEAD(&tic->t_queue);
3324  tic->t_unit_res = unit_bytes;
3325  tic->t_curr_res = unit_bytes;
3326  tic->t_cnt = cnt;
3327  tic->t_ocnt = cnt;
3328  tic->t_tid = random32();
3329  tic->t_clientid = client;
3330  tic->t_flags = XLOG_TIC_INITED;
3331  tic->t_trans_type = 0;
3332  if (permanent)
3333  tic->t_flags |= XLOG_TIC_PERM_RESERV;
3334 
3335  xlog_tic_reset_res(tic);
3336 
3337  return tic;
3338 }
3339 
3340 
3341 /******************************************************************************
3342  *
3343  * Log debug routines
3344  *
3345  ******************************************************************************
3346  */
3347 #if defined(DEBUG)
3348 /*
3349  * Make sure that the destination ptr is within the valid data region of
3350  * one of the iclogs. This uses backup pointers stored in a different
3351  * part of the log in case we trash the log structure.
3352  */
3353 void
3355  struct xlog *log,
3356  char *ptr)
3357 {
3358  int i;
3359  int good_ptr = 0;
3360 
3361  for (i = 0; i < log->l_iclog_bufs; i++) {
3362  if (ptr >= log->l_iclog_bak[i] &&
3363  ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3364  good_ptr++;
3365  }
3366 
3367  if (!good_ptr)
3368  xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3369 }
3370 
3371 /*
3372  * Check to make sure the grant write head didn't just over lap the tail. If
3373  * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3374  * the cycles differ by exactly one and check the byte count.
3375  *
3376  * This check is run unlocked, so can give false positives. Rather than assert
3377  * on failures, use a warn-once flag and a panic tag to allow the admin to
3378  * determine if they want to panic the machine when such an error occurs. For
3379  * debug kernels this will have the same effect as using an assert but, unlinke
3380  * an assert, it can be turned off at runtime.
3381  */
3382 STATIC void
3384  struct xlog *log)
3385 {
3386  int tail_cycle, tail_blocks;
3387  int cycle, space;
3388 
3389  xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3390  xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3391  if (tail_cycle != cycle) {
3392  if (cycle - 1 != tail_cycle &&
3393  !(log->l_flags & XLOG_TAIL_WARN)) {
3394  xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3395  "%s: cycle - 1 != tail_cycle", __func__);
3396  log->l_flags |= XLOG_TAIL_WARN;
3397  }
3398 
3399  if (space > BBTOB(tail_blocks) &&
3400  !(log->l_flags & XLOG_TAIL_WARN)) {
3401  xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3402  "%s: space > BBTOB(tail_blocks)", __func__);
3403  log->l_flags |= XLOG_TAIL_WARN;
3404  }
3405  }
3406 }
3407 
3408 /* check if it will fit */
3409 STATIC void
3411  struct xlog *log,
3412  struct xlog_in_core *iclog,
3413  xfs_lsn_t tail_lsn)
3414 {
3415  int blocks;
3416 
3417  if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3418  blocks =
3419  log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3420  if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3421  xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3422  } else {
3423  ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3424 
3425  if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3426  xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3427 
3428  blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3429  if (blocks < BTOBB(iclog->ic_offset) + 1)
3430  xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3431  }
3432 } /* xlog_verify_tail_lsn */
3433 
3434 /*
3435  * Perform a number of checks on the iclog before writing to disk.
3436  *
3437  * 1. Make sure the iclogs are still circular
3438  * 2. Make sure we have a good magic number
3439  * 3. Make sure we don't have magic numbers in the data
3440  * 4. Check fields of each log operation header for:
3441  * A. Valid client identifier
3442  * B. tid ptr value falls in valid ptr space (user space code)
3443  * C. Length in log record header is correct according to the
3444  * individual operation headers within record.
3445  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3446  * log, check the preceding blocks of the physical log to make sure all
3447  * the cycle numbers agree with the current cycle number.
3448  */
3449 STATIC void
3451  struct xlog *log,
3452  struct xlog_in_core *iclog,
3453  int count,
3454  boolean_t syncing)
3455 {
3456  xlog_op_header_t *ophead;
3457  xlog_in_core_t *icptr;
3458  xlog_in_core_2_t *xhdr;
3459  xfs_caddr_t ptr;
3460  xfs_caddr_t base_ptr;
3461  __psint_t field_offset;
3462  __uint8_t clientid;
3463  int len, i, j, k, op_len;
3464  int idx;
3465 
3466  /* check validity of iclog pointers */
3467  spin_lock(&log->l_icloglock);
3468  icptr = log->l_iclog;
3469  for (i=0; i < log->l_iclog_bufs; i++) {
3470  if (icptr == NULL)
3471  xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3472  icptr = icptr->ic_next;
3473  }
3474  if (icptr != log->l_iclog)
3475  xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3476  spin_unlock(&log->l_icloglock);
3477 
3478  /* check log magic numbers */
3479  if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3480  xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3481 
3482  ptr = (xfs_caddr_t) &iclog->ic_header;
3483  for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3484  ptr += BBSIZE) {
3485  if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3486  xfs_emerg(log->l_mp, "%s: unexpected magic num",
3487  __func__);
3488  }
3489 
3490  /* check fields */
3491  len = be32_to_cpu(iclog->ic_header.h_num_logops);
3492  ptr = iclog->ic_datap;
3493  base_ptr = ptr;
3494  ophead = (xlog_op_header_t *)ptr;
3495  xhdr = iclog->ic_data;
3496  for (i = 0; i < len; i++) {
3497  ophead = (xlog_op_header_t *)ptr;
3498 
3499  /* clientid is only 1 byte */
3500  field_offset = (__psint_t)
3501  ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3502  if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3503  clientid = ophead->oh_clientid;
3504  } else {
3505  idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3506  if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3507  j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3508  k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3509  clientid = xlog_get_client_id(
3510  xhdr[j].hic_xheader.xh_cycle_data[k]);
3511  } else {
3512  clientid = xlog_get_client_id(
3513  iclog->ic_header.h_cycle_data[idx]);
3514  }
3515  }
3516  if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3517  xfs_warn(log->l_mp,
3518  "%s: invalid clientid %d op 0x%p offset 0x%lx",
3519  __func__, clientid, ophead,
3520  (unsigned long)field_offset);
3521 
3522  /* check length */
3523  field_offset = (__psint_t)
3524  ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3525  if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3526  op_len = be32_to_cpu(ophead->oh_len);
3527  } else {
3528  idx = BTOBBT((__psint_t)&ophead->oh_len -
3529  (__psint_t)iclog->ic_datap);
3530  if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3531  j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3532  k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3533  op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3534  } else {
3535  op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3536  }
3537  }
3538  ptr += sizeof(xlog_op_header_t) + op_len;
3539  }
3540 } /* xlog_verify_iclog */
3541 #endif
3542 
3543 /*
3544  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3545  */
3546 STATIC int
3548  struct xlog *log)
3549 {
3550  xlog_in_core_t *iclog, *ic;
3551 
3552  iclog = log->l_iclog;
3553  if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3554  /*
3555  * Mark all the incore logs IOERROR.
3556  * From now on, no log flushes will result.
3557  */
3558  ic = iclog;
3559  do {
3560  ic->ic_state = XLOG_STATE_IOERROR;
3561  ic = ic->ic_next;
3562  } while (ic != iclog);
3563  return 0;
3564  }
3565  /*
3566  * Return non-zero, if state transition has already happened.
3567  */
3568  return 1;
3569 }
3570 
3571 /*
3572  * This is called from xfs_force_shutdown, when we're forcibly
3573  * shutting down the filesystem, typically because of an IO error.
3574  * Our main objectives here are to make sure that:
3575  * a. the filesystem gets marked 'SHUTDOWN' for all interested
3576  * parties to find out, 'atomically'.
3577  * b. those who're sleeping on log reservations, pinned objects and
3578  * other resources get woken up, and be told the bad news.
3579  * c. nothing new gets queued up after (a) and (b) are done.
3580  * d. if !logerror, flush the iclogs to disk, then seal them off
3581  * for business.
3582  *
3583  * Note: for delayed logging the !logerror case needs to flush the regions
3584  * held in memory out to the iclogs before flushing them to disk. This needs
3585  * to be done before the log is marked as shutdown, otherwise the flush to the
3586  * iclogs will fail.
3587  */
3588 int
3590  struct xfs_mount *mp,
3591  int logerror)
3592 {
3593  struct xlog *log;
3594  int retval;
3595 
3596  log = mp->m_log;
3597 
3598  /*
3599  * If this happens during log recovery, don't worry about
3600  * locking; the log isn't open for business yet.
3601  */
3602  if (!log ||
3603  log->l_flags & XLOG_ACTIVE_RECOVERY) {
3604  mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3605  if (mp->m_sb_bp)
3606  XFS_BUF_DONE(mp->m_sb_bp);
3607  return 0;
3608  }
3609 
3610  /*
3611  * Somebody could've already done the hard work for us.
3612  * No need to get locks for this.
3613  */
3614  if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3615  ASSERT(XLOG_FORCED_SHUTDOWN(log));
3616  return 1;
3617  }
3618  retval = 0;
3619 
3620  /*
3621  * Flush the in memory commit item list before marking the log as
3622  * being shut down. We need to do it in this order to ensure all the
3623  * completed transactions are flushed to disk with the xfs_log_force()
3624  * call below.
3625  */
3626  if (!logerror)
3627  xlog_cil_force(log);
3628 
3629  /*
3630  * mark the filesystem and the as in a shutdown state and wake
3631  * everybody up to tell them the bad news.
3632  */
3633  spin_lock(&log->l_icloglock);
3634  mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3635  if (mp->m_sb_bp)
3636  XFS_BUF_DONE(mp->m_sb_bp);
3637 
3638  /*
3639  * This flag is sort of redundant because of the mount flag, but
3640  * it's good to maintain the separation between the log and the rest
3641  * of XFS.
3642  */
3643  log->l_flags |= XLOG_IO_ERROR;
3644 
3645  /*
3646  * If we hit a log error, we want to mark all the iclogs IOERROR
3647  * while we're still holding the loglock.
3648  */
3649  if (logerror)
3650  retval = xlog_state_ioerror(log);
3651  spin_unlock(&log->l_icloglock);
3652 
3653  /*
3654  * We don't want anybody waiting for log reservations after this. That
3655  * means we have to wake up everybody queued up on reserveq as well as
3656  * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3657  * we don't enqueue anything once the SHUTDOWN flag is set, and this
3658  * action is protected by the grant locks.
3659  */
3660  xlog_grant_head_wake_all(&log->l_reserve_head);
3661  xlog_grant_head_wake_all(&log->l_write_head);
3662 
3663  if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3664  ASSERT(!logerror);
3665  /*
3666  * Force the incore logs to disk before shutting the
3667  * log down completely.
3668  */
3669  _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3670 
3671  spin_lock(&log->l_icloglock);
3672  retval = xlog_state_ioerror(log);
3673  spin_unlock(&log->l_icloglock);
3674  }
3675  /*
3676  * Wake up everybody waiting on xfs_log_force.
3677  * Callback all log item committed functions as if the
3678  * log writes were completed.
3679  */
3680  xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3681 
3682 #ifdef XFSERRORDEBUG
3683  {
3684  xlog_in_core_t *iclog;
3685 
3686  spin_lock(&log->l_icloglock);
3687  iclog = log->l_iclog;
3688  do {
3689  ASSERT(iclog->ic_callback == 0);
3690  iclog = iclog->ic_next;
3691  } while (iclog != log->l_iclog);
3692  spin_unlock(&log->l_icloglock);
3693  }
3694 #endif
3695  /* return non-zero if log IOERROR transition had already happened */
3696  return retval;
3697 }
3698 
3699 STATIC int
3701  struct xlog *log)
3702 {
3703  xlog_in_core_t *iclog;
3704 
3705  iclog = log->l_iclog;
3706  do {
3707  /* endianness does not matter here, zero is zero in
3708  * any language.
3709  */
3710  if (iclog->ic_header.h_num_logops)
3711  return 0;
3712  iclog = iclog->ic_next;
3713  } while (iclog != log->l_iclog);
3714  return 1;
3715 }