Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
xfs_trans_ail.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * Copyright (c) 2008 Dave Chinner
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_trace.h"
29 #include "xfs_error.h"
30 
31 #ifdef DEBUG
32 /*
33  * Check that the list is sorted as it should be.
34  */
35 STATIC void
37  struct xfs_ail *ailp,
38  xfs_log_item_t *lip)
39 {
40  xfs_log_item_t *prev_lip;
41 
42  if (list_empty(&ailp->xa_ail))
43  return;
44 
45  /*
46  * Check the next and previous entries are valid.
47  */
48  ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
49  prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
50  if (&prev_lip->li_ail != &ailp->xa_ail)
51  ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
52 
53  prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
54  if (&prev_lip->li_ail != &ailp->xa_ail)
55  ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
56 
57 
58 #ifdef XFS_TRANS_DEBUG
59  /*
60  * Walk the list checking lsn ordering, and that every entry has the
61  * XFS_LI_IN_AIL flag set. This is really expensive, so only do it
62  * when specifically debugging the transaction subsystem.
63  */
64  prev_lip = list_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
65  list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
66  if (&prev_lip->li_ail != &ailp->xa_ail)
67  ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
68  ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
69  prev_lip = lip;
70  }
71 #endif /* XFS_TRANS_DEBUG */
72 }
73 #else /* !DEBUG */
74 #define xfs_ail_check(a,l)
75 #endif /* DEBUG */
76 
77 /*
78  * Return a pointer to the first item in the AIL. If the AIL is empty, then
79  * return NULL.
80  */
81 xfs_log_item_t *
83  struct xfs_ail *ailp)
84 {
85  if (list_empty(&ailp->xa_ail))
86  return NULL;
87 
88  return list_first_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
89 }
90 
91  /*
92  * Return a pointer to the last item in the AIL. If the AIL is empty, then
93  * return NULL.
94  */
95 static xfs_log_item_t *
96 xfs_ail_max(
97  struct xfs_ail *ailp)
98 {
99  if (list_empty(&ailp->xa_ail))
100  return NULL;
101 
102  return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
103 }
104 
105 /*
106  * Return a pointer to the item which follows the given item in the AIL. If
107  * the given item is the last item in the list, then return NULL.
108  */
109 static xfs_log_item_t *
110 xfs_ail_next(
111  struct xfs_ail *ailp,
112  xfs_log_item_t *lip)
113 {
114  if (lip->li_ail.next == &ailp->xa_ail)
115  return NULL;
116 
117  return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
118 }
119 
120 /*
121  * This is called by the log manager code to determine the LSN of the tail of
122  * the log. This is exactly the LSN of the first item in the AIL. If the AIL
123  * is empty, then this function returns 0.
124  *
125  * We need the AIL lock in order to get a coherent read of the lsn of the last
126  * item in the AIL.
127  */
128 xfs_lsn_t
130  struct xfs_ail *ailp)
131 {
132  xfs_lsn_t lsn = 0;
133  xfs_log_item_t *lip;
134 
135  spin_lock(&ailp->xa_lock);
136  lip = xfs_ail_min(ailp);
137  if (lip)
138  lsn = lip->li_lsn;
139  spin_unlock(&ailp->xa_lock);
140 
141  return lsn;
142 }
143 
144 /*
145  * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
146  */
147 static xfs_lsn_t
148 xfs_ail_max_lsn(
149  struct xfs_ail *ailp)
150 {
151  xfs_lsn_t lsn = 0;
152  xfs_log_item_t *lip;
153 
154  spin_lock(&ailp->xa_lock);
155  lip = xfs_ail_max(ailp);
156  if (lip)
157  lsn = lip->li_lsn;
158  spin_unlock(&ailp->xa_lock);
159 
160  return lsn;
161 }
162 
163 /*
164  * The cursor keeps track of where our current traversal is up to by tracking
165  * the next item in the list for us. However, for this to be safe, removing an
166  * object from the AIL needs to invalidate any cursor that points to it. hence
167  * the traversal cursor needs to be linked to the struct xfs_ail so that
168  * deletion can search all the active cursors for invalidation.
169  */
170 STATIC void
172  struct xfs_ail *ailp,
173  struct xfs_ail_cursor *cur)
174 {
175  cur->item = NULL;
176  list_add_tail(&cur->list, &ailp->xa_cursors);
177 }
178 
179 /*
180  * Get the next item in the traversal and advance the cursor. If the cursor
181  * was invalidated (indicated by a lip of 1), restart the traversal.
182  */
183 struct xfs_log_item *
185  struct xfs_ail *ailp,
186  struct xfs_ail_cursor *cur)
187 {
188  struct xfs_log_item *lip = cur->item;
189 
190  if ((__psint_t)lip & 1)
191  lip = xfs_ail_min(ailp);
192  if (lip)
193  cur->item = xfs_ail_next(ailp, lip);
194  return lip;
195 }
196 
197 /*
198  * When the traversal is complete, we need to remove the cursor from the list
199  * of traversing cursors.
200  */
201 void
203  struct xfs_ail *ailp,
204  struct xfs_ail_cursor *cur)
205 {
206  cur->item = NULL;
207  list_del_init(&cur->list);
208 }
209 
210 /*
211  * Invalidate any cursor that is pointing to this item. This is called when an
212  * item is removed from the AIL. Any cursor pointing to this object is now
213  * invalid and the traversal needs to be terminated so it doesn't reference a
214  * freed object. We set the low bit of the cursor item pointer so we can
215  * distinguish between an invalidation and the end of the list when getting the
216  * next item from the cursor.
217  */
218 STATIC void
220  struct xfs_ail *ailp,
221  struct xfs_log_item *lip)
222 {
223  struct xfs_ail_cursor *cur;
224 
225  list_for_each_entry(cur, &ailp->xa_cursors, list) {
226  if (cur->item == lip)
227  cur->item = (struct xfs_log_item *)
228  ((__psint_t)cur->item | 1);
229  }
230 }
231 
232 /*
233  * Find the first item in the AIL with the given @lsn by searching in ascending
234  * LSN order and initialise the cursor to point to the next item for a
235  * ascending traversal. Pass a @lsn of zero to initialise the cursor to the
236  * first item in the AIL. Returns NULL if the list is empty.
237  */
238 xfs_log_item_t *
240  struct xfs_ail *ailp,
241  struct xfs_ail_cursor *cur,
242  xfs_lsn_t lsn)
243 {
244  xfs_log_item_t *lip;
245 
246  xfs_trans_ail_cursor_init(ailp, cur);
247 
248  if (lsn == 0) {
249  lip = xfs_ail_min(ailp);
250  goto out;
251  }
252 
253  list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
254  if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
255  goto out;
256  }
257  return NULL;
258 
259 out:
260  if (lip)
261  cur->item = xfs_ail_next(ailp, lip);
262  return lip;
263 }
264 
265 static struct xfs_log_item *
266 __xfs_trans_ail_cursor_last(
267  struct xfs_ail *ailp,
268  xfs_lsn_t lsn)
269 {
270  xfs_log_item_t *lip;
271 
272  list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) {
273  if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
274  return lip;
275  }
276  return NULL;
277 }
278 
279 /*
280  * Find the last item in the AIL with the given @lsn by searching in descending
281  * LSN order and initialise the cursor to point to that item. If there is no
282  * item with the value of @lsn, then it sets the cursor to the last item with an
283  * LSN lower than @lsn. Returns NULL if the list is empty.
284  */
285 struct xfs_log_item *
287  struct xfs_ail *ailp,
288  struct xfs_ail_cursor *cur,
289  xfs_lsn_t lsn)
290 {
291  xfs_trans_ail_cursor_init(ailp, cur);
292  cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
293  return cur->item;
294 }
295 
296 /*
297  * Splice the log item list into the AIL at the given LSN. We splice to the
298  * tail of the given LSN to maintain insert order for push traversals. The
299  * cursor is optional, allowing repeated updates to the same LSN to avoid
300  * repeated traversals. This should not be called with an empty list.
301  */
302 static void
303 xfs_ail_splice(
304  struct xfs_ail *ailp,
305  struct xfs_ail_cursor *cur,
306  struct list_head *list,
307  xfs_lsn_t lsn)
308 {
309  struct xfs_log_item *lip;
310 
311  ASSERT(!list_empty(list));
312 
313  /*
314  * Use the cursor to determine the insertion point if one is
315  * provided. If not, or if the one we got is not valid,
316  * find the place in the AIL where the items belong.
317  */
318  lip = cur ? cur->item : NULL;
319  if (!lip || (__psint_t) lip & 1)
320  lip = __xfs_trans_ail_cursor_last(ailp, lsn);
321 
322  /*
323  * If a cursor is provided, we know we're processing the AIL
324  * in lsn order, and future items to be spliced in will
325  * follow the last one being inserted now. Update the
326  * cursor to point to that last item, now while we have a
327  * reliable pointer to it.
328  */
329  if (cur)
330  cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
331 
332  /*
333  * Finally perform the splice. Unless the AIL was empty,
334  * lip points to the item in the AIL _after_ which the new
335  * items should go. If lip is null the AIL was empty, so
336  * the new items go at the head of the AIL.
337  */
338  if (lip)
339  list_splice(list, &lip->li_ail);
340  else
341  list_splice(list, &ailp->xa_ail);
342 }
343 
344 /*
345  * Delete the given item from the AIL. Return a pointer to the item.
346  */
347 static void
348 xfs_ail_delete(
349  struct xfs_ail *ailp,
350  xfs_log_item_t *lip)
351 {
352  xfs_ail_check(ailp, lip);
353  list_del(&lip->li_ail);
354  xfs_trans_ail_cursor_clear(ailp, lip);
355 }
356 
357 static long
358 xfsaild_push(
359  struct xfs_ail *ailp)
360 {
361  xfs_mount_t *mp = ailp->xa_mount;
362  struct xfs_ail_cursor cur;
363  xfs_log_item_t *lip;
364  xfs_lsn_t lsn;
366  long tout;
367  int stuck = 0;
368  int flushing = 0;
369  int count = 0;
370 
371  /*
372  * If we encountered pinned items or did not finish writing out all
373  * buffers the last time we ran, force the log first and wait for it
374  * before pushing again.
375  */
376  if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 &&
377  (!list_empty_careful(&ailp->xa_buf_list) ||
378  xfs_ail_min_lsn(ailp))) {
379  ailp->xa_log_flush = 0;
380 
381  XFS_STATS_INC(xs_push_ail_flush);
382  xfs_log_force(mp, XFS_LOG_SYNC);
383  }
384 
385  spin_lock(&ailp->xa_lock);
386 
387  /* barrier matches the xa_target update in xfs_ail_push() */
388  smp_rmb();
389  target = ailp->xa_target;
390  ailp->xa_target_prev = target;
391 
392  lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn);
393  if (!lip) {
394  /*
395  * If the AIL is empty or our push has reached the end we are
396  * done now.
397  */
398  xfs_trans_ail_cursor_done(ailp, &cur);
399  spin_unlock(&ailp->xa_lock);
400  goto out_done;
401  }
402 
403  XFS_STATS_INC(xs_push_ail);
404 
405  lsn = lip->li_lsn;
406  while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
407  int lock_result;
408 
409  /*
410  * Note that IOP_PUSH may unlock and reacquire the AIL lock. We
411  * rely on the AIL cursor implementation to be able to deal with
412  * the dropped lock.
413  */
414  lock_result = IOP_PUSH(lip, &ailp->xa_buf_list);
415  switch (lock_result) {
416  case XFS_ITEM_SUCCESS:
417  XFS_STATS_INC(xs_push_ail_success);
418  trace_xfs_ail_push(lip);
419 
420  ailp->xa_last_pushed_lsn = lsn;
421  break;
422 
423  case XFS_ITEM_FLUSHING:
424  /*
425  * The item or its backing buffer is already beeing
426  * flushed. The typical reason for that is that an
427  * inode buffer is locked because we already pushed the
428  * updates to it as part of inode clustering.
429  *
430  * We do not want to to stop flushing just because lots
431  * of items are already beeing flushed, but we need to
432  * re-try the flushing relatively soon if most of the
433  * AIL is beeing flushed.
434  */
435  XFS_STATS_INC(xs_push_ail_flushing);
436  trace_xfs_ail_flushing(lip);
437 
438  flushing++;
439  ailp->xa_last_pushed_lsn = lsn;
440  break;
441 
442  case XFS_ITEM_PINNED:
443  XFS_STATS_INC(xs_push_ail_pinned);
444  trace_xfs_ail_pinned(lip);
445 
446  stuck++;
447  ailp->xa_log_flush++;
448  break;
449  case XFS_ITEM_LOCKED:
450  XFS_STATS_INC(xs_push_ail_locked);
451  trace_xfs_ail_locked(lip);
452 
453  stuck++;
454  break;
455  default:
456  ASSERT(0);
457  break;
458  }
459 
460  count++;
461 
462  /*
463  * Are there too many items we can't do anything with?
464  *
465  * If we we are skipping too many items because we can't flush
466  * them or they are already being flushed, we back off and
467  * given them time to complete whatever operation is being
468  * done. i.e. remove pressure from the AIL while we can't make
469  * progress so traversals don't slow down further inserts and
470  * removals to/from the AIL.
471  *
472  * The value of 100 is an arbitrary magic number based on
473  * observation.
474  */
475  if (stuck > 100)
476  break;
477 
478  lip = xfs_trans_ail_cursor_next(ailp, &cur);
479  if (lip == NULL)
480  break;
481  lsn = lip->li_lsn;
482  }
483  xfs_trans_ail_cursor_done(ailp, &cur);
484  spin_unlock(&ailp->xa_lock);
485 
487  ailp->xa_log_flush++;
488 
489  if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
490 out_done:
491  /*
492  * We reached the target or the AIL is empty, so wait a bit
493  * longer for I/O to complete and remove pushed items from the
494  * AIL before we start the next scan from the start of the AIL.
495  */
496  tout = 50;
497  ailp->xa_last_pushed_lsn = 0;
498  } else if (((stuck + flushing) * 100) / count > 90) {
499  /*
500  * Either there is a lot of contention on the AIL or we are
501  * stuck due to operations in progress. "Stuck" in this case
502  * is defined as >90% of the items we tried to push were stuck.
503  *
504  * Backoff a bit more to allow some I/O to complete before
505  * restarting from the start of the AIL. This prevents us from
506  * spinning on the same items, and if they are pinned will all
507  * the restart to issue a log force to unpin the stuck items.
508  */
509  tout = 20;
510  ailp->xa_last_pushed_lsn = 0;
511  } else {
512  /*
513  * Assume we have more work to do in a short while.
514  */
515  tout = 10;
516  }
517 
518  return tout;
519 }
520 
521 static int
522 xfsaild(
523  void *data)
524 {
525  struct xfs_ail *ailp = data;
526  long tout = 0; /* milliseconds */
527 
528  current->flags |= PF_MEMALLOC;
529 
530  while (!kthread_should_stop()) {
531  if (tout && tout <= 20)
533  else
535 
536  spin_lock(&ailp->xa_lock);
537 
538  /*
539  * Idle if the AIL is empty and we are not racing with a target
540  * update. We check the AIL after we set the task to a sleep
541  * state to guarantee that we either catch an xa_target update
542  * or that a wake_up resets the state to TASK_RUNNING.
543  * Otherwise, we run the risk of sleeping indefinitely.
544  *
545  * The barrier matches the xa_target update in xfs_ail_push().
546  */
547  smp_rmb();
548  if (!xfs_ail_min(ailp) &&
549  ailp->xa_target == ailp->xa_target_prev) {
550  spin_unlock(&ailp->xa_lock);
551  schedule();
552  tout = 0;
553  continue;
554  }
555  spin_unlock(&ailp->xa_lock);
556 
557  if (tout)
559 
561 
562  try_to_freeze();
563 
564  tout = xfsaild_push(ailp);
565  }
566 
567  return 0;
568 }
569 
570 /*
571  * This routine is called to move the tail of the AIL forward. It does this by
572  * trying to flush items in the AIL whose lsns are below the given
573  * threshold_lsn.
574  *
575  * The push is run asynchronously in a workqueue, which means the caller needs
576  * to handle waiting on the async flush for space to become available.
577  * We don't want to interrupt any push that is in progress, hence we only queue
578  * work if we set the pushing bit approriately.
579  *
580  * We do this unlocked - we only need to know whether there is anything in the
581  * AIL at the time we are called. We don't need to access the contents of
582  * any of the objects, so the lock is not needed.
583  */
584 void
586  struct xfs_ail *ailp,
587  xfs_lsn_t threshold_lsn)
588 {
589  xfs_log_item_t *lip;
590 
591  lip = xfs_ail_min(ailp);
592  if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) ||
593  XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0)
594  return;
595 
596  /*
597  * Ensure that the new target is noticed in push code before it clears
598  * the XFS_AIL_PUSHING_BIT.
599  */
600  smp_wmb();
601  xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn);
602  smp_wmb();
603 
604  wake_up_process(ailp->xa_task);
605 }
606 
607 /*
608  * Push out all items in the AIL immediately
609  */
610 void
612  struct xfs_ail *ailp)
613 {
614  xfs_lsn_t threshold_lsn = xfs_ail_max_lsn(ailp);
615 
616  if (threshold_lsn)
617  xfs_ail_push(ailp, threshold_lsn);
618 }
619 
620 /*
621  * Push out all items in the AIL immediately and wait until the AIL is empty.
622  */
623 void
625  struct xfs_ail *ailp)
626 {
627  struct xfs_log_item *lip;
628  DEFINE_WAIT(wait);
629 
630  spin_lock(&ailp->xa_lock);
631  while ((lip = xfs_ail_max(ailp)) != NULL) {
633  ailp->xa_target = lip->li_lsn;
634  wake_up_process(ailp->xa_task);
635  spin_unlock(&ailp->xa_lock);
636  schedule();
637  spin_lock(&ailp->xa_lock);
638  }
639  spin_unlock(&ailp->xa_lock);
640 
641  finish_wait(&ailp->xa_empty, &wait);
642 }
643 
644 /*
645  * xfs_trans_ail_update - bulk AIL insertion operation.
646  *
647  * @xfs_trans_ail_update takes an array of log items that all need to be
648  * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
649  * be added. Otherwise, it will be repositioned by removing it and re-adding
650  * it to the AIL. If we move the first item in the AIL, update the log tail to
651  * match the new minimum LSN in the AIL.
652  *
653  * This function takes the AIL lock once to execute the update operations on
654  * all the items in the array, and as such should not be called with the AIL
655  * lock held. As a result, once we have the AIL lock, we need to check each log
656  * item LSN to confirm it needs to be moved forward in the AIL.
657  *
658  * To optimise the insert operation, we delete all the items from the AIL in
659  * the first pass, moving them into a temporary list, then splice the temporary
660  * list into the correct position in the AIL. This avoids needing to do an
661  * insert operation on every item.
662  *
663  * This function must be called with the AIL lock held. The lock is dropped
664  * before returning.
665  */
666 void
668  struct xfs_ail *ailp,
669  struct xfs_ail_cursor *cur,
670  struct xfs_log_item **log_items,
671  int nr_items,
672  xfs_lsn_t lsn) __releases(ailp->xa_lock)
673 {
674  xfs_log_item_t *mlip;
675  int mlip_changed = 0;
676  int i;
677  LIST_HEAD(tmp);
678 
679  ASSERT(nr_items > 0); /* Not required, but true. */
680  mlip = xfs_ail_min(ailp);
681 
682  for (i = 0; i < nr_items; i++) {
683  struct xfs_log_item *lip = log_items[i];
684  if (lip->li_flags & XFS_LI_IN_AIL) {
685  /* check if we really need to move the item */
686  if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
687  continue;
688 
689  xfs_ail_delete(ailp, lip);
690  if (mlip == lip)
691  mlip_changed = 1;
692  } else {
693  lip->li_flags |= XFS_LI_IN_AIL;
694  }
695  lip->li_lsn = lsn;
696  list_add(&lip->li_ail, &tmp);
697  }
698 
699  if (!list_empty(&tmp))
700  xfs_ail_splice(ailp, cur, &tmp, lsn);
701 
702  if (mlip_changed) {
703  if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
705  spin_unlock(&ailp->xa_lock);
706 
708  } else {
709  spin_unlock(&ailp->xa_lock);
710  }
711 }
712 
713 /*
714  * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL
715  *
716  * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
717  * removed from the AIL. The caller is already holding the AIL lock, and done
718  * all the checks necessary to ensure the items passed in via @log_items are
719  * ready for deletion. This includes checking that the items are in the AIL.
720  *
721  * For each log item to be removed, unlink it from the AIL, clear the IN_AIL
722  * flag from the item and reset the item's lsn to 0. If we remove the first
723  * item in the AIL, update the log tail to match the new minimum LSN in the
724  * AIL.
725  *
726  * This function will not drop the AIL lock until all items are removed from
727  * the AIL to minimise the amount of lock traffic on the AIL. This does not
728  * greatly increase the AIL hold time, but does significantly reduce the amount
729  * of traffic on the lock, especially during IO completion.
730  *
731  * This function must be called with the AIL lock held. The lock is dropped
732  * before returning.
733  */
734 void
736  struct xfs_ail *ailp,
737  struct xfs_log_item **log_items,
738  int nr_items,
739  int shutdown_type) __releases(ailp->xa_lock)
740 {
741  xfs_log_item_t *mlip;
742  int mlip_changed = 0;
743  int i;
744 
745  mlip = xfs_ail_min(ailp);
746 
747  for (i = 0; i < nr_items; i++) {
748  struct xfs_log_item *lip = log_items[i];
749  if (!(lip->li_flags & XFS_LI_IN_AIL)) {
750  struct xfs_mount *mp = ailp->xa_mount;
751 
752  spin_unlock(&ailp->xa_lock);
753  if (!XFS_FORCED_SHUTDOWN(mp)) {
755  "%s: attempting to delete a log item that is not in the AIL",
756  __func__);
757  xfs_force_shutdown(mp, shutdown_type);
758  }
759  return;
760  }
761 
762  xfs_ail_delete(ailp, lip);
763  lip->li_flags &= ~XFS_LI_IN_AIL;
764  lip->li_lsn = 0;
765  if (mlip == lip)
766  mlip_changed = 1;
767  }
768 
769  if (mlip_changed) {
770  if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
772  if (list_empty(&ailp->xa_ail))
773  wake_up_all(&ailp->xa_empty);
774  spin_unlock(&ailp->xa_lock);
775 
777  } else {
778  spin_unlock(&ailp->xa_lock);
779  }
780 }
781 
782 int
784  xfs_mount_t *mp)
785 {
786  struct xfs_ail *ailp;
787 
788  ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
789  if (!ailp)
790  return ENOMEM;
791 
792  ailp->xa_mount = mp;
793  INIT_LIST_HEAD(&ailp->xa_ail);
794  INIT_LIST_HEAD(&ailp->xa_cursors);
795  spin_lock_init(&ailp->xa_lock);
796  INIT_LIST_HEAD(&ailp->xa_buf_list);
798 
799  ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
800  ailp->xa_mount->m_fsname);
801  if (IS_ERR(ailp->xa_task))
802  goto out_free_ailp;
803 
804  mp->m_ail = ailp;
805  return 0;
806 
807 out_free_ailp:
808  kmem_free(ailp);
809  return ENOMEM;
810 }
811 
812 void
814  xfs_mount_t *mp)
815 {
816  struct xfs_ail *ailp = mp->m_ail;
817 
818  kthread_stop(ailp->xa_task);
819  kmem_free(ailp);
820 }