Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
xfs_trans_buf.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_log.h"
22 #include "xfs_trans.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_alloc_btree.h"
28 #include "xfs_ialloc_btree.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_buf_item.h"
32 #include "xfs_trans_priv.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
35 
36 /*
37  * Check to see if a buffer matching the given parameters is already
38  * a part of the given transaction.
39  */
40 STATIC struct xfs_buf *
42  struct xfs_trans *tp,
43  struct xfs_buftarg *target,
44  struct xfs_buf_map *map,
45  int nmaps)
46 {
47  struct xfs_log_item_desc *lidp;
48  struct xfs_buf_log_item *blip;
49  int len = 0;
50  int i;
51 
52  for (i = 0; i < nmaps; i++)
53  len += map[i].bm_len;
54 
55  list_for_each_entry(lidp, &tp->t_items, lid_trans) {
56  blip = (struct xfs_buf_log_item *)lidp->lid_item;
57  if (blip->bli_item.li_type == XFS_LI_BUF &&
58  blip->bli_buf->b_target == target &&
59  XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
60  blip->bli_buf->b_length == len) {
61  ASSERT(blip->bli_buf->b_map_count == nmaps);
62  return blip->bli_buf;
63  }
64  }
65 
66  return NULL;
67 }
68 
69 /*
70  * Add the locked buffer to the transaction.
71  *
72  * The buffer must be locked, and it cannot be associated with any
73  * transaction.
74  *
75  * If the buffer does not yet have a buf log item associated with it,
76  * then allocate one for it. Then add the buf item to the transaction.
77  */
78 STATIC void
80  struct xfs_trans *tp,
81  struct xfs_buf *bp,
82  int reset_recur)
83 {
84  struct xfs_buf_log_item *bip;
85 
86  ASSERT(bp->b_transp == NULL);
87 
88  /*
89  * The xfs_buf_log_item pointer is stored in b_fsprivate. If
90  * it doesn't have one yet, then allocate one and initialize it.
91  * The checks to see if one is there are in xfs_buf_item_init().
92  */
93  xfs_buf_item_init(bp, tp->t_mountp);
94  bip = bp->b_fspriv;
95  ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
96  ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
97  ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
98  if (reset_recur)
99  bip->bli_recur = 0;
100 
101  /*
102  * Take a reference for this transaction on the buf item.
103  */
104  atomic_inc(&bip->bli_refcount);
105 
106  /*
107  * Get a log_item_desc to point at the new item.
108  */
109  xfs_trans_add_item(tp, &bip->bli_item);
110 
111  /*
112  * Initialize b_fsprivate2 so we can find it with incore_match()
113  * in xfs_trans_get_buf() and friends above.
114  */
115  bp->b_transp = tp;
116 
117 }
118 
119 void
121  struct xfs_trans *tp,
122  struct xfs_buf *bp)
123 {
124  _xfs_trans_bjoin(tp, bp, 0);
125  trace_xfs_trans_bjoin(bp->b_fspriv);
126 }
127 
128 /*
129  * Get and lock the buffer for the caller if it is not already
130  * locked within the given transaction. If it is already locked
131  * within the transaction, just increment its lock recursion count
132  * and return a pointer to it.
133  *
134  * If the transaction pointer is NULL, make this just a normal
135  * get_buf() call.
136  */
137 struct xfs_buf *
139  struct xfs_trans *tp,
140  struct xfs_buftarg *target,
141  struct xfs_buf_map *map,
142  int nmaps,
144 {
145  xfs_buf_t *bp;
146  xfs_buf_log_item_t *bip;
147 
148  if (!tp)
149  return xfs_buf_get_map(target, map, nmaps, flags);
150 
151  /*
152  * If we find the buffer in the cache with this transaction
153  * pointer in its b_fsprivate2 field, then we know we already
154  * have it locked. In this case we just increment the lock
155  * recursion count and return the buffer to the caller.
156  */
157  bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
158  if (bp != NULL) {
160  if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
161  xfs_buf_stale(bp);
162  XFS_BUF_DONE(bp);
163  }
164 
165  ASSERT(bp->b_transp == tp);
166  bip = bp->b_fspriv;
167  ASSERT(bip != NULL);
168  ASSERT(atomic_read(&bip->bli_refcount) > 0);
169  bip->bli_recur++;
170  trace_xfs_trans_get_buf_recur(bip);
171  return (bp);
172  }
173 
174  bp = xfs_buf_get_map(target, map, nmaps, flags);
175  if (bp == NULL) {
176  return NULL;
177  }
178 
179  ASSERT(!bp->b_error);
180 
181  _xfs_trans_bjoin(tp, bp, 1);
182  trace_xfs_trans_get_buf(bp->b_fspriv);
183  return (bp);
184 }
185 
186 /*
187  * Get and lock the superblock buffer of this file system for the
188  * given transaction.
189  *
190  * We don't need to use incore_match() here, because the superblock
191  * buffer is a private buffer which we keep a pointer to in the
192  * mount structure.
193  */
194 xfs_buf_t *
195 xfs_trans_getsb(xfs_trans_t *tp,
196  struct xfs_mount *mp,
197  int flags)
198 {
199  xfs_buf_t *bp;
200  xfs_buf_log_item_t *bip;
201 
202  /*
203  * Default to just trying to lock the superblock buffer
204  * if tp is NULL.
205  */
206  if (tp == NULL) {
207  return (xfs_getsb(mp, flags));
208  }
209 
210  /*
211  * If the superblock buffer already has this transaction
212  * pointer in its b_fsprivate2 field, then we know we already
213  * have it locked. In this case we just increment the lock
214  * recursion count and return the buffer to the caller.
215  */
216  bp = mp->m_sb_bp;
217  if (bp->b_transp == tp) {
218  bip = bp->b_fspriv;
219  ASSERT(bip != NULL);
220  ASSERT(atomic_read(&bip->bli_refcount) > 0);
221  bip->bli_recur++;
222  trace_xfs_trans_getsb_recur(bip);
223  return (bp);
224  }
225 
226  bp = xfs_getsb(mp, flags);
227  if (bp == NULL)
228  return NULL;
229 
230  _xfs_trans_bjoin(tp, bp, 1);
231  trace_xfs_trans_getsb(bp->b_fspriv);
232  return (bp);
233 }
234 
235 #ifdef DEBUG
236 xfs_buftarg_t *xfs_error_target;
237 int xfs_do_error;
238 int xfs_req_num;
239 int xfs_error_mod = 33;
240 #endif
241 
242 /*
243  * Get and lock the buffer for the caller if it is not already
244  * locked within the given transaction. If it has not yet been
245  * read in, read it from disk. If it is already locked
246  * within the transaction and already read in, just increment its
247  * lock recursion count and return a pointer to it.
248  *
249  * If the transaction pointer is NULL, make this just a normal
250  * read_buf() call.
251  */
252 int
254  struct xfs_mount *mp,
255  struct xfs_trans *tp,
256  struct xfs_buftarg *target,
257  struct xfs_buf_map *map,
258  int nmaps,
260  struct xfs_buf **bpp)
261 {
262  xfs_buf_t *bp;
263  xfs_buf_log_item_t *bip;
264  int error;
265 
266  *bpp = NULL;
267  if (!tp) {
268  bp = xfs_buf_read_map(target, map, nmaps, flags);
269  if (!bp)
270  return (flags & XBF_TRYLOCK) ?
272 
273  if (bp->b_error) {
274  error = bp->b_error;
275  xfs_buf_ioerror_alert(bp, __func__);
276  XFS_BUF_UNDONE(bp);
277  xfs_buf_stale(bp);
278  xfs_buf_relse(bp);
279  return error;
280  }
281 #ifdef DEBUG
282  if (xfs_do_error) {
283  if (xfs_error_target == target) {
284  if (((xfs_req_num++) % xfs_error_mod) == 0) {
285  xfs_buf_relse(bp);
286  xfs_debug(mp, "Returning error!");
287  return XFS_ERROR(EIO);
288  }
289  }
290  }
291 #endif
292  if (XFS_FORCED_SHUTDOWN(mp))
293  goto shutdown_abort;
294  *bpp = bp;
295  return 0;
296  }
297 
298  /*
299  * If we find the buffer in the cache with this transaction
300  * pointer in its b_fsprivate2 field, then we know we already
301  * have it locked. If it is already read in we just increment
302  * the lock recursion count and return the buffer to the caller.
303  * If the buffer is not yet read in, then we read it in, increment
304  * the lock recursion count, and return it to the caller.
305  */
306  bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
307  if (bp != NULL) {
309  ASSERT(bp->b_transp == tp);
310  ASSERT(bp->b_fspriv != NULL);
311  ASSERT(!bp->b_error);
312  if (!(XFS_BUF_ISDONE(bp))) {
313  trace_xfs_trans_read_buf_io(bp, _RET_IP_);
314  ASSERT(!XFS_BUF_ISASYNC(bp));
315  XFS_BUF_READ(bp);
316  xfsbdstrat(tp->t_mountp, bp);
317  error = xfs_buf_iowait(bp);
318  if (error) {
319  xfs_buf_ioerror_alert(bp, __func__);
320  xfs_buf_relse(bp);
321  /*
322  * We can gracefully recover from most read
323  * errors. Ones we can't are those that happen
324  * after the transaction's already dirty.
325  */
326  if (tp->t_flags & XFS_TRANS_DIRTY)
327  xfs_force_shutdown(tp->t_mountp,
328  SHUTDOWN_META_IO_ERROR);
329  return error;
330  }
331  }
332  /*
333  * We never locked this buf ourselves, so we shouldn't
334  * brelse it either. Just get out.
335  */
336  if (XFS_FORCED_SHUTDOWN(mp)) {
337  trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
338  *bpp = NULL;
339  return XFS_ERROR(EIO);
340  }
341 
342 
343  bip = bp->b_fspriv;
344  bip->bli_recur++;
345 
346  ASSERT(atomic_read(&bip->bli_refcount) > 0);
347  trace_xfs_trans_read_buf_recur(bip);
348  *bpp = bp;
349  return 0;
350  }
351 
352  bp = xfs_buf_read_map(target, map, nmaps, flags);
353  if (bp == NULL) {
354  *bpp = NULL;
355  return (flags & XBF_TRYLOCK) ?
356  0 : XFS_ERROR(ENOMEM);
357  }
358  if (bp->b_error) {
359  error = bp->b_error;
360  xfs_buf_stale(bp);
361  XFS_BUF_DONE(bp);
362  xfs_buf_ioerror_alert(bp, __func__);
363  if (tp->t_flags & XFS_TRANS_DIRTY)
364  xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
365  xfs_buf_relse(bp);
366  return error;
367  }
368 #ifdef DEBUG
369  if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
370  if (xfs_error_target == target) {
371  if (((xfs_req_num++) % xfs_error_mod) == 0) {
372  xfs_force_shutdown(tp->t_mountp,
373  SHUTDOWN_META_IO_ERROR);
374  xfs_buf_relse(bp);
375  xfs_debug(mp, "Returning trans error!");
376  return XFS_ERROR(EIO);
377  }
378  }
379  }
380 #endif
381  if (XFS_FORCED_SHUTDOWN(mp))
382  goto shutdown_abort;
383 
384  _xfs_trans_bjoin(tp, bp, 1);
385  trace_xfs_trans_read_buf(bp->b_fspriv);
386 
387  *bpp = bp;
388  return 0;
389 
390 shutdown_abort:
391  trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
392  xfs_buf_relse(bp);
393  *bpp = NULL;
394  return XFS_ERROR(EIO);
395 }
396 
397 
398 /*
399  * Release the buffer bp which was previously acquired with one of the
400  * xfs_trans_... buffer allocation routines if the buffer has not
401  * been modified within this transaction. If the buffer is modified
402  * within this transaction, do decrement the recursion count but do
403  * not release the buffer even if the count goes to 0. If the buffer is not
404  * modified within the transaction, decrement the recursion count and
405  * release the buffer if the recursion count goes to 0.
406  *
407  * If the buffer is to be released and it was not modified before
408  * this transaction began, then free the buf_log_item associated with it.
409  *
410  * If the transaction pointer is NULL, make this just a normal
411  * brelse() call.
412  */
413 void
414 xfs_trans_brelse(xfs_trans_t *tp,
415  xfs_buf_t *bp)
416 {
417  xfs_buf_log_item_t *bip;
418 
419  /*
420  * Default to a normal brelse() call if the tp is NULL.
421  */
422  if (tp == NULL) {
423  ASSERT(bp->b_transp == NULL);
424  xfs_buf_relse(bp);
425  return;
426  }
427 
428  ASSERT(bp->b_transp == tp);
429  bip = bp->b_fspriv;
430  ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
431  ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
432  ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
433  ASSERT(atomic_read(&bip->bli_refcount) > 0);
434 
435  trace_xfs_trans_brelse(bip);
436 
437  /*
438  * If the release is just for a recursive lock,
439  * then decrement the count and return.
440  */
441  if (bip->bli_recur > 0) {
442  bip->bli_recur--;
443  return;
444  }
445 
446  /*
447  * If the buffer is dirty within this transaction, we can't
448  * release it until we commit.
449  */
450  if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
451  return;
452 
453  /*
454  * If the buffer has been invalidated, then we can't release
455  * it until the transaction commits to disk unless it is re-dirtied
456  * as part of this transaction. This prevents us from pulling
457  * the item from the AIL before we should.
458  */
459  if (bip->bli_flags & XFS_BLI_STALE)
460  return;
461 
462  ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
463 
464  /*
465  * Free up the log item descriptor tracking the released item.
466  */
467  xfs_trans_del_item(&bip->bli_item);
468 
469  /*
470  * Clear the hold flag in the buf log item if it is set.
471  * We wouldn't want the next user of the buffer to
472  * get confused.
473  */
474  if (bip->bli_flags & XFS_BLI_HOLD) {
475  bip->bli_flags &= ~XFS_BLI_HOLD;
476  }
477 
478  /*
479  * Drop our reference to the buf log item.
480  */
481  atomic_dec(&bip->bli_refcount);
482 
483  /*
484  * If the buf item is not tracking data in the log, then
485  * we must free it before releasing the buffer back to the
486  * free pool. Before releasing the buffer to the free pool,
487  * clear the transaction pointer in b_fsprivate2 to dissolve
488  * its relation to this transaction.
489  */
490  if (!xfs_buf_item_dirty(bip)) {
491 /***
492  ASSERT(bp->b_pincount == 0);
493 ***/
494  ASSERT(atomic_read(&bip->bli_refcount) == 0);
495  ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
496  ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
497  xfs_buf_item_relse(bp);
498  }
499 
500  bp->b_transp = NULL;
501  xfs_buf_relse(bp);
502 }
503 
504 /*
505  * Mark the buffer as not needing to be unlocked when the buf item's
506  * IOP_UNLOCK() routine is called. The buffer must already be locked
507  * and associated with the given transaction.
508  */
509 /* ARGSUSED */
510 void
511 xfs_trans_bhold(xfs_trans_t *tp,
512  xfs_buf_t *bp)
513 {
514  xfs_buf_log_item_t *bip = bp->b_fspriv;
515 
516  ASSERT(bp->b_transp == tp);
517  ASSERT(bip != NULL);
518  ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
519  ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
520  ASSERT(atomic_read(&bip->bli_refcount) > 0);
521 
522  bip->bli_flags |= XFS_BLI_HOLD;
523  trace_xfs_trans_bhold(bip);
524 }
525 
526 /*
527  * Cancel the previous buffer hold request made on this buffer
528  * for this transaction.
529  */
530 void
531 xfs_trans_bhold_release(xfs_trans_t *tp,
532  xfs_buf_t *bp)
533 {
534  xfs_buf_log_item_t *bip = bp->b_fspriv;
535 
536  ASSERT(bp->b_transp == tp);
537  ASSERT(bip != NULL);
538  ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
539  ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
540  ASSERT(atomic_read(&bip->bli_refcount) > 0);
541  ASSERT(bip->bli_flags & XFS_BLI_HOLD);
542 
543  bip->bli_flags &= ~XFS_BLI_HOLD;
544  trace_xfs_trans_bhold_release(bip);
545 }
546 
547 /*
548  * This is called to mark bytes first through last inclusive of the given
549  * buffer as needing to be logged when the transaction is committed.
550  * The buffer must already be associated with the given transaction.
551  *
552  * First and last are numbers relative to the beginning of this buffer,
553  * so the first byte in the buffer is numbered 0 regardless of the
554  * value of b_blkno.
555  */
556 void
557 xfs_trans_log_buf(xfs_trans_t *tp,
558  xfs_buf_t *bp,
559  uint first,
560  uint last)
561 {
562  xfs_buf_log_item_t *bip = bp->b_fspriv;
563 
564  ASSERT(bp->b_transp == tp);
565  ASSERT(bip != NULL);
566  ASSERT(first <= last && last < BBTOB(bp->b_length));
567  ASSERT(bp->b_iodone == NULL ||
569 
570  /*
571  * Mark the buffer as needing to be written out eventually,
572  * and set its iodone function to remove the buffer's buf log
573  * item from the AIL and free it when the buffer is flushed
574  * to disk. See xfs_buf_attach_iodone() for more details
575  * on li_cb and xfs_buf_iodone_callbacks().
576  * If we end up aborting this transaction, we trap this buffer
577  * inside the b_bdstrat callback so that this won't get written to
578  * disk.
579  */
580  XFS_BUF_DONE(bp);
581 
582  ASSERT(atomic_read(&bip->bli_refcount) > 0);
584  bip->bli_item.li_cb = xfs_buf_iodone;
585 
586  trace_xfs_trans_log_buf(bip);
587 
588  /*
589  * If we invalidated the buffer within this transaction, then
590  * cancel the invalidation now that we're dirtying the buffer
591  * again. There are no races with the code in xfs_buf_item_unpin(),
592  * because we have a reference to the buffer this entire time.
593  */
594  if (bip->bli_flags & XFS_BLI_STALE) {
595  bip->bli_flags &= ~XFS_BLI_STALE;
596  ASSERT(XFS_BUF_ISSTALE(bp));
597  XFS_BUF_UNSTALE(bp);
598  bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL;
599  }
600 
601  tp->t_flags |= XFS_TRANS_DIRTY;
602  bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
603  bip->bli_flags |= XFS_BLI_LOGGED;
604  xfs_buf_item_log(bip, first, last);
605 }
606 
607 
608 /*
609  * Invalidate a buffer that is being used within a transaction.
610  *
611  * Typically this is because the blocks in the buffer are being freed, so we
612  * need to prevent it from being written out when we're done. Allowing it
613  * to be written again might overwrite data in the free blocks if they are
614  * reallocated to a file.
615  *
616  * We prevent the buffer from being written out by marking it stale. We can't
617  * get rid of the buf log item at this point because the buffer may still be
618  * pinned by another transaction. If that is the case, then we'll wait until
619  * the buffer is committed to disk for the last time (we can tell by the ref
620  * count) and free it in xfs_buf_item_unpin(). Until that happens we will
621  * keep the buffer locked so that the buffer and buf log item are not reused.
622  *
623  * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
624  * the buf item. This will be used at recovery time to determine that copies
625  * of the buffer in the log before this should not be replayed.
626  *
627  * We mark the item descriptor and the transaction dirty so that we'll hold
628  * the buffer until after the commit.
629  *
630  * Since we're invalidating the buffer, we also clear the state about which
631  * parts of the buffer have been logged. We also clear the flag indicating
632  * that this is an inode buffer since the data in the buffer will no longer
633  * be valid.
634  *
635  * We set the stale bit in the buffer as well since we're getting rid of it.
636  */
637 void
639  xfs_trans_t *tp,
640  xfs_buf_t *bp)
641 {
642  xfs_buf_log_item_t *bip = bp->b_fspriv;
643 
644  ASSERT(bp->b_transp == tp);
645  ASSERT(bip != NULL);
646  ASSERT(atomic_read(&bip->bli_refcount) > 0);
647 
648  trace_xfs_trans_binval(bip);
649 
650  if (bip->bli_flags & XFS_BLI_STALE) {
651  /*
652  * If the buffer is already invalidated, then
653  * just return.
654  */
655  ASSERT(XFS_BUF_ISSTALE(bp));
656  ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
657  ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF));
658  ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
659  ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
660  ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
661  return;
662  }
663 
664  xfs_buf_stale(bp);
665 
666  bip->bli_flags |= XFS_BLI_STALE;
667  bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
668  bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
669  bip->bli_format.blf_flags |= XFS_BLF_CANCEL;
670  memset((char *)(bip->bli_format.blf_data_map), 0,
671  (bip->bli_format.blf_map_size * sizeof(uint)));
672  bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
673  tp->t_flags |= XFS_TRANS_DIRTY;
674 }
675 
676 /*
677  * This call is used to indicate that the buffer contains on-disk inodes which
678  * must be handled specially during recovery. They require special handling
679  * because only the di_next_unlinked from the inodes in the buffer should be
680  * recovered. The rest of the data in the buffer is logged via the inodes
681  * themselves.
682  *
683  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
684  * transferred to the buffer's log format structure so that we'll know what to
685  * do at recovery time.
686  */
687 void
689  xfs_trans_t *tp,
690  xfs_buf_t *bp)
691 {
692  xfs_buf_log_item_t *bip = bp->b_fspriv;
693 
694  ASSERT(bp->b_transp == tp);
695  ASSERT(bip != NULL);
696  ASSERT(atomic_read(&bip->bli_refcount) > 0);
697 
698  bip->bli_flags |= XFS_BLI_INODE_BUF;
699 }
700 
701 /*
702  * This call is used to indicate that the buffer is going to
703  * be staled and was an inode buffer. This means it gets
704  * special processing during unpin - where any inodes
705  * associated with the buffer should be removed from ail.
706  * There is also special processing during recovery,
707  * any replay of the inodes in the buffer needs to be
708  * prevented as the buffer may have been reused.
709  */
710 void
712  xfs_trans_t *tp,
713  xfs_buf_t *bp)
714 {
715  xfs_buf_log_item_t *bip = bp->b_fspriv;
716 
717  ASSERT(bp->b_transp == tp);
718  ASSERT(bip != NULL);
719  ASSERT(atomic_read(&bip->bli_refcount) > 0);
720 
721  bip->bli_flags |= XFS_BLI_STALE_INODE;
722  bip->bli_item.li_cb = xfs_buf_iodone;
723 }
724 
725 /*
726  * Mark the buffer as being one which contains newly allocated
727  * inodes. We need to make sure that even if this buffer is
728  * relogged as an 'inode buf' we still recover all of the inode
729  * images in the face of a crash. This works in coordination with
730  * xfs_buf_item_committed() to ensure that the buffer remains in the
731  * AIL at its original location even after it has been relogged.
732  */
733 /* ARGSUSED */
734 void
736  xfs_trans_t *tp,
737  xfs_buf_t *bp)
738 {
739  xfs_buf_log_item_t *bip = bp->b_fspriv;
740 
741  ASSERT(bp->b_transp == tp);
742  ASSERT(bip != NULL);
743  ASSERT(atomic_read(&bip->bli_refcount) > 0);
744 
745  bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
746 }
747 
748 
749 /*
750  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
751  * dquots. However, unlike in inode buffer recovery, dquot buffers get
752  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
753  * The only thing that makes dquot buffers different from regular
754  * buffers is that we must not replay dquot bufs when recovering
755  * if a _corresponding_ quotaoff has happened. We also have to distinguish
756  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
757  * can be turned off independently.
758  */
759 /* ARGSUSED */
760 void
762  xfs_trans_t *tp,
763  xfs_buf_t *bp,
764  uint type)
765 {
766  xfs_buf_log_item_t *bip = bp->b_fspriv;
767 
768  ASSERT(bp->b_transp == tp);
769  ASSERT(bip != NULL);
770  ASSERT(type == XFS_BLF_UDQUOT_BUF ||
771  type == XFS_BLF_PDQUOT_BUF ||
772  type == XFS_BLF_GDQUOT_BUF);
773  ASSERT(atomic_read(&bip->bli_refcount) > 0);
774 
775  bip->bli_format.blf_flags |= type;
776 }