LLVM API Documentation

AArch64PromoteConstant.cpp
Go to the documentation of this file.
00001 //=- AArch64PromoteConstant.cpp --- Promote constant to global for AArch64 -==//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements the AArch64PromoteConstant pass which promotes constants
00011 // to global variables when this is likely to be more efficient. Currently only
00012 // types related to constant vector (i.e., constant vector, array of constant
00013 // vectors, constant structure with a constant vector field, etc.) are promoted
00014 // to global variables. Constant vectors are likely to be lowered in target
00015 // constant pool during instruction selection already; therefore, the access
00016 // will remain the same (memory load), but the structure types are not split
00017 // into different constant pool accesses for each field. A bonus side effect is
00018 // that created globals may be merged by the global merge pass.
00019 //
00020 // FIXME: This pass may be useful for other targets too.
00021 //===----------------------------------------------------------------------===//
00022 
00023 #include "AArch64.h"
00024 #include "llvm/ADT/DenseMap.h"
00025 #include "llvm/ADT/SmallSet.h"
00026 #include "llvm/ADT/SmallVector.h"
00027 #include "llvm/ADT/Statistic.h"
00028 #include "llvm/IR/Constants.h"
00029 #include "llvm/IR/Dominators.h"
00030 #include "llvm/IR/Function.h"
00031 #include "llvm/IR/GlobalVariable.h"
00032 #include "llvm/IR/IRBuilder.h"
00033 #include "llvm/IR/InlineAsm.h"
00034 #include "llvm/IR/Instructions.h"
00035 #include "llvm/IR/IntrinsicInst.h"
00036 #include "llvm/IR/Module.h"
00037 #include "llvm/Pass.h"
00038 #include "llvm/Support/CommandLine.h"
00039 #include "llvm/Support/Debug.h"
00040 
00041 using namespace llvm;
00042 
00043 #define DEBUG_TYPE "aarch64-promote-const"
00044 
00045 // Stress testing mode - disable heuristics.
00046 static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
00047                             cl::desc("Promote all vector constants"));
00048 
00049 STATISTIC(NumPromoted, "Number of promoted constants");
00050 STATISTIC(NumPromotedUses, "Number of promoted constants uses");
00051 
00052 //===----------------------------------------------------------------------===//
00053 //                       AArch64PromoteConstant
00054 //===----------------------------------------------------------------------===//
00055 
00056 namespace {
00057 /// Promotes interesting constant into global variables.
00058 /// The motivating example is:
00059 /// static const uint16_t TableA[32] = {
00060 ///   41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
00061 ///   31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
00062 ///   25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
00063 ///   21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
00064 /// };
00065 ///
00066 /// uint8x16x4_t LoadStatic(void) {
00067 ///   uint8x16x4_t ret;
00068 ///   ret.val[0] = vld1q_u16(TableA +  0);
00069 ///   ret.val[1] = vld1q_u16(TableA +  8);
00070 ///   ret.val[2] = vld1q_u16(TableA + 16);
00071 ///   ret.val[3] = vld1q_u16(TableA + 24);
00072 ///   return ret;
00073 /// }
00074 ///
00075 /// The constants in this example are folded into the uses. Thus, 4 different
00076 /// constants are created.
00077 ///
00078 /// As their type is vector the cheapest way to create them is to load them
00079 /// for the memory.
00080 ///
00081 /// Therefore the final assembly final has 4 different loads. With this pass
00082 /// enabled, only one load is issued for the constants.
00083 class AArch64PromoteConstant : public ModulePass {
00084 
00085 public:
00086   static char ID;
00087   AArch64PromoteConstant() : ModulePass(ID) {}
00088 
00089   const char *getPassName() const override { return "AArch64 Promote Constant"; }
00090 
00091   /// Iterate over the functions and promote the interesting constants into
00092   /// global variables with module scope.
00093   bool runOnModule(Module &M) override {
00094     DEBUG(dbgs() << getPassName() << '\n');
00095     bool Changed = false;
00096     for (auto &MF : M) {
00097       Changed |= runOnFunction(MF);
00098     }
00099     return Changed;
00100   }
00101 
00102 private:
00103   /// Look for interesting constants used within the given function.
00104   /// Promote them into global variables, load these global variables within
00105   /// the related function, so that the number of inserted load is minimal.
00106   bool runOnFunction(Function &F);
00107 
00108   // This transformation requires dominator info
00109   void getAnalysisUsage(AnalysisUsage &AU) const override {
00110     AU.setPreservesCFG();
00111     AU.addRequired<DominatorTreeWrapperPass>();
00112     AU.addPreserved<DominatorTreeWrapperPass>();
00113   }
00114 
00115   /// Type to store a list of User.
00116   typedef SmallVector<Value::user_iterator, 4> Users;
00117   /// Map an insertion point to all the uses it dominates.
00118   typedef DenseMap<Instruction *, Users> InsertionPoints;
00119   /// Map a function to the required insertion point of load for a
00120   /// global variable.
00121   typedef DenseMap<Function *, InsertionPoints> InsertionPointsPerFunc;
00122 
00123   /// Find the closest point that dominates the given Use.
00124   Instruction *findInsertionPoint(Value::user_iterator &Use);
00125 
00126   /// Check if the given insertion point is dominated by an existing
00127   /// insertion point.
00128   /// If true, the given use is added to the list of dominated uses for
00129   /// the related existing point.
00130   /// \param NewPt the insertion point to be checked
00131   /// \param UseIt the use to be added into the list of dominated uses
00132   /// \param InsertPts existing insertion points
00133   /// \pre NewPt and all instruction in InsertPts belong to the same function
00134   /// \return true if one of the insertion point in InsertPts dominates NewPt,
00135   ///         false otherwise
00136   bool isDominated(Instruction *NewPt, Value::user_iterator &UseIt,
00137                    InsertionPoints &InsertPts);
00138 
00139   /// Check if the given insertion point can be merged with an existing
00140   /// insertion point in a common dominator.
00141   /// If true, the given use is added to the list of the created insertion
00142   /// point.
00143   /// \param NewPt the insertion point to be checked
00144   /// \param UseIt the use to be added into the list of dominated uses
00145   /// \param InsertPts existing insertion points
00146   /// \pre NewPt and all instruction in InsertPts belong to the same function
00147   /// \pre isDominated returns false for the exact same parameters.
00148   /// \return true if it exists an insertion point in InsertPts that could
00149   ///         have been merged with NewPt in a common dominator,
00150   ///         false otherwise
00151   bool tryAndMerge(Instruction *NewPt, Value::user_iterator &UseIt,
00152                    InsertionPoints &InsertPts);
00153 
00154   /// Compute the minimal insertion points to dominates all the interesting
00155   /// uses of value.
00156   /// Insertion points are group per function and each insertion point
00157   /// contains a list of all the uses it dominates within the related function
00158   /// \param Val constant to be examined
00159   /// \param[out] InsPtsPerFunc output storage of the analysis
00160   void computeInsertionPoints(Constant *Val,
00161                               InsertionPointsPerFunc &InsPtsPerFunc);
00162 
00163   /// Insert a definition of a new global variable at each point contained in
00164   /// InsPtsPerFunc and update the related uses (also contained in
00165   /// InsPtsPerFunc).
00166   bool insertDefinitions(Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc);
00167 
00168   /// Compute the minimal insertion points to dominate all the interesting
00169   /// uses of Val and insert a definition of a new global variable
00170   /// at these points.
00171   /// Also update the uses of Val accordingly.
00172   /// Currently a use of Val is considered interesting if:
00173   /// - Val is not UndefValue
00174   /// - Val is not zeroinitialized
00175   /// - Replacing Val per a load of a global variable is valid.
00176   /// \see shouldConvert for more details
00177   bool computeAndInsertDefinitions(Constant *Val);
00178 
00179   /// Promote the given constant into a global variable if it is expected to
00180   /// be profitable.
00181   /// \return true if Cst has been promoted
00182   bool promoteConstant(Constant *Cst);
00183 
00184   /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
00185   /// Append UseIt to this list and delete the entry of IPI in InsertPts.
00186   static void appendAndTransferDominatedUses(Instruction *NewPt,
00187                                              Value::user_iterator &UseIt,
00188                                              InsertionPoints::iterator &IPI,
00189                                              InsertionPoints &InsertPts) {
00190     // Record the dominated use.
00191     IPI->second.push_back(UseIt);
00192     // Transfer the dominated uses of IPI to NewPt
00193     // Inserting into the DenseMap may invalidate existing iterator.
00194     // Keep a copy of the key to find the iterator to erase.
00195     Instruction *OldInstr = IPI->first;
00196     InsertPts.insert(InsertionPoints::value_type(NewPt, IPI->second));
00197     // Erase IPI.
00198     IPI = InsertPts.find(OldInstr);
00199     InsertPts.erase(IPI);
00200   }
00201 };
00202 } // end anonymous namespace
00203 
00204 char AArch64PromoteConstant::ID = 0;
00205 
00206 namespace llvm {
00207 void initializeAArch64PromoteConstantPass(PassRegistry &);
00208 }
00209 
00210 INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
00211                       "AArch64 Promote Constant Pass", false, false)
00212 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
00213 INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
00214                     "AArch64 Promote Constant Pass", false, false)
00215 
00216 ModulePass *llvm::createAArch64PromoteConstantPass() {
00217   return new AArch64PromoteConstant();
00218 }
00219 
00220 /// Check if the given type uses a vector type.
00221 static bool isConstantUsingVectorTy(const Type *CstTy) {
00222   if (CstTy->isVectorTy())
00223     return true;
00224   if (CstTy->isStructTy()) {
00225     for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
00226          EltIdx < EndEltIdx; ++EltIdx)
00227       if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
00228         return true;
00229   } else if (CstTy->isArrayTy())
00230     return isConstantUsingVectorTy(CstTy->getArrayElementType());
00231   return false;
00232 }
00233 
00234 /// Check if the given use (Instruction + OpIdx) of Cst should be converted into
00235 /// a load of a global variable initialized with Cst.
00236 /// A use should be converted if it is legal to do so.
00237 /// For instance, it is not legal to turn the mask operand of a shuffle vector
00238 /// into a load of a global variable.
00239 static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
00240                              unsigned OpIdx) {
00241   // shufflevector instruction expects a const for the mask argument, i.e., the
00242   // third argument. Do not promote this use in that case.
00243   if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
00244     return false;
00245 
00246   // extractvalue instruction expects a const idx.
00247   if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
00248     return false;
00249 
00250   // extractvalue instruction expects a const idx.
00251   if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
00252     return false;
00253 
00254   if (isa<const AllocaInst>(Instr) && OpIdx > 0)
00255     return false;
00256 
00257   // Alignment argument must be constant.
00258   if (isa<const LoadInst>(Instr) && OpIdx > 0)
00259     return false;
00260 
00261   // Alignment argument must be constant.
00262   if (isa<const StoreInst>(Instr) && OpIdx > 1)
00263     return false;
00264 
00265   // Index must be constant.
00266   if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
00267     return false;
00268 
00269   // Personality function and filters must be constant.
00270   // Give up on that instruction.
00271   if (isa<const LandingPadInst>(Instr))
00272     return false;
00273 
00274   // Switch instruction expects constants to compare to.
00275   if (isa<const SwitchInst>(Instr))
00276     return false;
00277 
00278   // Expected address must be a constant.
00279   if (isa<const IndirectBrInst>(Instr))
00280     return false;
00281 
00282   // Do not mess with intrinsics.
00283   if (isa<const IntrinsicInst>(Instr))
00284     return false;
00285 
00286   // Do not mess with inline asm.
00287   const CallInst *CI = dyn_cast<const CallInst>(Instr);
00288   if (CI && isa<const InlineAsm>(CI->getCalledValue()))
00289     return false;
00290 
00291   return true;
00292 }
00293 
00294 /// Check if the given Cst should be converted into
00295 /// a load of a global variable initialized with Cst.
00296 /// A constant should be converted if it is likely that the materialization of
00297 /// the constant will be tricky. Thus, we give up on zero or undef values.
00298 ///
00299 /// \todo Currently, accept only vector related types.
00300 /// Also we give up on all simple vector type to keep the existing
00301 /// behavior. Otherwise, we should push here all the check of the lowering of
00302 /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
00303 /// constant via global merge and the fact that the same constant is stored
00304 /// only once with this method (versus, as many function that uses the constant
00305 /// for the regular approach, even for float).
00306 /// Again, the simplest solution would be to promote every
00307 /// constant and rematerialize them when they are actually cheap to create.
00308 static bool shouldConvert(const Constant *Cst) {
00309   if (isa<const UndefValue>(Cst))
00310     return false;
00311 
00312   // FIXME: In some cases, it may be interesting to promote in memory
00313   // a zero initialized constant.
00314   // E.g., when the type of Cst require more instructions than the
00315   // adrp/add/load sequence or when this sequence can be shared by several
00316   // instances of Cst.
00317   // Ideally, we could promote this into a global and rematerialize the constant
00318   // when it was a bad idea.
00319   if (Cst->isZeroValue())
00320     return false;
00321 
00322   if (Stress)
00323     return true;
00324 
00325   // FIXME: see function \todo
00326   if (Cst->getType()->isVectorTy())
00327     return false;
00328   return isConstantUsingVectorTy(Cst->getType());
00329 }
00330 
00331 Instruction *
00332 AArch64PromoteConstant::findInsertionPoint(Value::user_iterator &Use) {
00333   // If this user is a phi, the insertion point is in the related
00334   // incoming basic block.
00335   PHINode *PhiInst = dyn_cast<PHINode>(*Use);
00336   Instruction *InsertionPoint;
00337   if (PhiInst)
00338     InsertionPoint =
00339         PhiInst->getIncomingBlock(Use.getOperandNo())->getTerminator();
00340   else
00341     InsertionPoint = dyn_cast<Instruction>(*Use);
00342   assert(InsertionPoint && "User is not an instruction!");
00343   return InsertionPoint;
00344 }
00345 
00346 bool AArch64PromoteConstant::isDominated(Instruction *NewPt,
00347                                          Value::user_iterator &UseIt,
00348                                          InsertionPoints &InsertPts) {
00349 
00350   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
00351       *NewPt->getParent()->getParent()).getDomTree();
00352 
00353   // Traverse all the existing insertion points and check if one is dominating
00354   // NewPt. If it is, remember that.
00355   for (auto &IPI : InsertPts) {
00356     if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
00357         // When IPI.first is a terminator instruction, DT may think that
00358         // the result is defined on the edge.
00359         // Here we are testing the insertion point, not the definition.
00360         (IPI.first->getParent() != NewPt->getParent() &&
00361          DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
00362       // No need to insert this point. Just record the dominated use.
00363       DEBUG(dbgs() << "Insertion point dominated by:\n");
00364       DEBUG(IPI.first->print(dbgs()));
00365       DEBUG(dbgs() << '\n');
00366       IPI.second.push_back(UseIt);
00367       return true;
00368     }
00369   }
00370   return false;
00371 }
00372 
00373 bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt,
00374                                          Value::user_iterator &UseIt,
00375                                          InsertionPoints &InsertPts) {
00376   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
00377       *NewPt->getParent()->getParent()).getDomTree();
00378   BasicBlock *NewBB = NewPt->getParent();
00379 
00380   // Traverse all the existing insertion point and check if one is dominated by
00381   // NewPt and thus useless or can be combined with NewPt into a common
00382   // dominator.
00383   for (InsertionPoints::iterator IPI = InsertPts.begin(),
00384                                  EndIPI = InsertPts.end();
00385        IPI != EndIPI; ++IPI) {
00386     BasicBlock *CurBB = IPI->first->getParent();
00387     if (NewBB == CurBB) {
00388       // Instructions are in the same block.
00389       // By construction, NewPt is dominating the other.
00390       // Indeed, isDominated returned false with the exact same arguments.
00391       DEBUG(dbgs() << "Merge insertion point with:\n");
00392       DEBUG(IPI->first->print(dbgs()));
00393       DEBUG(dbgs() << "\nat considered insertion point.\n");
00394       appendAndTransferDominatedUses(NewPt, UseIt, IPI, InsertPts);
00395       return true;
00396     }
00397 
00398     // Look for a common dominator
00399     BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
00400     // If none exists, we cannot merge these two points.
00401     if (!CommonDominator)
00402       continue;
00403 
00404     if (CommonDominator != NewBB) {
00405       // By construction, the CommonDominator cannot be CurBB.
00406       assert(CommonDominator != CurBB &&
00407              "Instruction has not been rejected during isDominated check!");
00408       // Take the last instruction of the CommonDominator as insertion point
00409       NewPt = CommonDominator->getTerminator();
00410     }
00411     // else, CommonDominator is the block of NewBB, hence NewBB is the last
00412     // possible insertion point in that block.
00413     DEBUG(dbgs() << "Merge insertion point with:\n");
00414     DEBUG(IPI->first->print(dbgs()));
00415     DEBUG(dbgs() << '\n');
00416     DEBUG(NewPt->print(dbgs()));
00417     DEBUG(dbgs() << '\n');
00418     appendAndTransferDominatedUses(NewPt, UseIt, IPI, InsertPts);
00419     return true;
00420   }
00421   return false;
00422 }
00423 
00424 void AArch64PromoteConstant::computeInsertionPoints(
00425     Constant *Val, InsertionPointsPerFunc &InsPtsPerFunc) {
00426   DEBUG(dbgs() << "** Compute insertion points **\n");
00427   for (Value::user_iterator UseIt = Val->user_begin(),
00428                             EndUseIt = Val->user_end();
00429        UseIt != EndUseIt; ++UseIt) {
00430     // If the user is not an Instruction, we cannot modify it.
00431     if (!isa<Instruction>(*UseIt))
00432       continue;
00433 
00434     // Filter out uses that should not be converted.
00435     if (!shouldConvertUse(Val, cast<Instruction>(*UseIt), UseIt.getOperandNo()))
00436       continue;
00437 
00438     DEBUG(dbgs() << "Considered use, opidx " << UseIt.getOperandNo() << ":\n");
00439     DEBUG((*UseIt)->print(dbgs()));
00440     DEBUG(dbgs() << '\n');
00441 
00442     Instruction *InsertionPoint = findInsertionPoint(UseIt);
00443 
00444     DEBUG(dbgs() << "Considered insertion point:\n");
00445     DEBUG(InsertionPoint->print(dbgs()));
00446     DEBUG(dbgs() << '\n');
00447 
00448     // Check if the current insertion point is useless, i.e., it is dominated
00449     // by another one.
00450     InsertionPoints &InsertPts =
00451         InsPtsPerFunc[InsertionPoint->getParent()->getParent()];
00452     if (isDominated(InsertionPoint, UseIt, InsertPts))
00453       continue;
00454     // This insertion point is useful, check if we can merge some insertion
00455     // point in a common dominator or if NewPt dominates an existing one.
00456     if (tryAndMerge(InsertionPoint, UseIt, InsertPts))
00457       continue;
00458 
00459     DEBUG(dbgs() << "Keep considered insertion point\n");
00460 
00461     // It is definitely useful by its own
00462     InsertPts[InsertionPoint].push_back(UseIt);
00463   }
00464 }
00465 
00466 bool AArch64PromoteConstant::insertDefinitions(
00467     Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc) {
00468   // We will create one global variable per Module.
00469   DenseMap<Module *, GlobalVariable *> ModuleToMergedGV;
00470   bool HasChanged = false;
00471 
00472   // Traverse all insertion points in all the function.
00473   for (InsertionPointsPerFunc::iterator FctToInstPtsIt = InsPtsPerFunc.begin(),
00474                                         EndIt = InsPtsPerFunc.end();
00475        FctToInstPtsIt != EndIt; ++FctToInstPtsIt) {
00476     InsertionPoints &InsertPts = FctToInstPtsIt->second;
00477 // Do more checking for debug purposes.
00478 #ifndef NDEBUG
00479     DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
00480         *FctToInstPtsIt->first).getDomTree();
00481 #endif
00482     GlobalVariable *PromotedGV;
00483     assert(!InsertPts.empty() && "Empty uses does not need a definition");
00484 
00485     Module *M = FctToInstPtsIt->first->getParent();
00486     DenseMap<Module *, GlobalVariable *>::iterator MapIt =
00487         ModuleToMergedGV.find(M);
00488     if (MapIt == ModuleToMergedGV.end()) {
00489       PromotedGV = new GlobalVariable(
00490           *M, Cst->getType(), true, GlobalValue::InternalLinkage, nullptr,
00491           "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
00492       PromotedGV->setInitializer(Cst);
00493       ModuleToMergedGV[M] = PromotedGV;
00494       DEBUG(dbgs() << "Global replacement: ");
00495       DEBUG(PromotedGV->print(dbgs()));
00496       DEBUG(dbgs() << '\n');
00497       ++NumPromoted;
00498       HasChanged = true;
00499     } else {
00500       PromotedGV = MapIt->second;
00501     }
00502 
00503     for (InsertionPoints::iterator IPI = InsertPts.begin(),
00504                                    EndIPI = InsertPts.end();
00505          IPI != EndIPI; ++IPI) {
00506       // Create the load of the global variable.
00507       IRBuilder<> Builder(IPI->first->getParent(), IPI->first);
00508       LoadInst *LoadedCst = Builder.CreateLoad(PromotedGV);
00509       DEBUG(dbgs() << "**********\n");
00510       DEBUG(dbgs() << "New def: ");
00511       DEBUG(LoadedCst->print(dbgs()));
00512       DEBUG(dbgs() << '\n');
00513 
00514       // Update the dominated uses.
00515       Users &DominatedUsers = IPI->second;
00516       for (Value::user_iterator Use : DominatedUsers) {
00517 #ifndef NDEBUG
00518         assert((DT.dominates(LoadedCst, cast<Instruction>(*Use)) ||
00519                 (isa<PHINode>(*Use) &&
00520                  DT.dominates(LoadedCst, findInsertionPoint(Use)))) &&
00521                "Inserted definition does not dominate all its uses!");
00522 #endif
00523         DEBUG(dbgs() << "Use to update " << Use.getOperandNo() << ":");
00524         DEBUG(Use->print(dbgs()));
00525         DEBUG(dbgs() << '\n');
00526         Use->setOperand(Use.getOperandNo(), LoadedCst);
00527         ++NumPromotedUses;
00528       }
00529     }
00530   }
00531   return HasChanged;
00532 }
00533 
00534 bool AArch64PromoteConstant::computeAndInsertDefinitions(Constant *Val) {
00535   InsertionPointsPerFunc InsertPtsPerFunc;
00536   computeInsertionPoints(Val, InsertPtsPerFunc);
00537   return insertDefinitions(Val, InsertPtsPerFunc);
00538 }
00539 
00540 bool AArch64PromoteConstant::promoteConstant(Constant *Cst) {
00541   assert(Cst && "Given variable is not a valid constant.");
00542 
00543   if (!shouldConvert(Cst))
00544     return false;
00545 
00546   DEBUG(dbgs() << "******************************\n");
00547   DEBUG(dbgs() << "Candidate constant: ");
00548   DEBUG(Cst->print(dbgs()));
00549   DEBUG(dbgs() << '\n');
00550 
00551   return computeAndInsertDefinitions(Cst);
00552 }
00553 
00554 bool AArch64PromoteConstant::runOnFunction(Function &F) {
00555   // Look for instructions using constant vector. Promote that constant to a
00556   // global variable. Create as few loads of this variable as possible and
00557   // update the uses accordingly.
00558   bool LocalChange = false;
00559   SmallSet<Constant *, 8> AlreadyChecked;
00560 
00561   for (auto &MBB : F) {
00562     for (auto &MI : MBB) {
00563       // Traverse the operand, looking for constant vectors. Replace them by a
00564       // load of a global variable of constant vector type.
00565       for (unsigned OpIdx = 0, EndOpIdx = MI.getNumOperands();
00566            OpIdx != EndOpIdx; ++OpIdx) {
00567         Constant *Cst = dyn_cast<Constant>(MI.getOperand(OpIdx));
00568         // There is no point in promoting global values as they are already
00569         // global. Do not promote constant expressions either, as they may
00570         // require some code expansion.
00571         if (Cst && !isa<GlobalValue>(Cst) && !isa<ConstantExpr>(Cst) &&
00572             AlreadyChecked.insert(Cst))
00573           LocalChange |= promoteConstant(Cst);
00574       }
00575     }
00576   }
00577   return LocalChange;
00578 }