LLVM API Documentation
00001 //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains the ARM addressing mode implementation stuff. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H 00015 #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H 00016 00017 #include "llvm/ADT/APFloat.h" 00018 #include "llvm/ADT/APInt.h" 00019 #include "llvm/Support/ErrorHandling.h" 00020 #include "llvm/Support/MathExtras.h" 00021 #include <cassert> 00022 00023 namespace llvm { 00024 00025 /// ARM_AM - ARM Addressing Mode Stuff 00026 namespace ARM_AM { 00027 enum ShiftOpc { 00028 no_shift = 0, 00029 asr, 00030 lsl, 00031 lsr, 00032 ror, 00033 rrx 00034 }; 00035 00036 enum AddrOpc { 00037 sub = 0, 00038 add 00039 }; 00040 00041 static inline const char *getAddrOpcStr(AddrOpc Op) { 00042 return Op == sub ? "-" : ""; 00043 } 00044 00045 static inline const char *getShiftOpcStr(ShiftOpc Op) { 00046 switch (Op) { 00047 default: llvm_unreachable("Unknown shift opc!"); 00048 case ARM_AM::asr: return "asr"; 00049 case ARM_AM::lsl: return "lsl"; 00050 case ARM_AM::lsr: return "lsr"; 00051 case ARM_AM::ror: return "ror"; 00052 case ARM_AM::rrx: return "rrx"; 00053 } 00054 } 00055 00056 static inline unsigned getShiftOpcEncoding(ShiftOpc Op) { 00057 switch (Op) { 00058 default: llvm_unreachable("Unknown shift opc!"); 00059 case ARM_AM::asr: return 2; 00060 case ARM_AM::lsl: return 0; 00061 case ARM_AM::lsr: return 1; 00062 case ARM_AM::ror: return 3; 00063 } 00064 } 00065 00066 enum AMSubMode { 00067 bad_am_submode = 0, 00068 ia, 00069 ib, 00070 da, 00071 db 00072 }; 00073 00074 static inline const char *getAMSubModeStr(AMSubMode Mode) { 00075 switch (Mode) { 00076 default: llvm_unreachable("Unknown addressing sub-mode!"); 00077 case ARM_AM::ia: return "ia"; 00078 case ARM_AM::ib: return "ib"; 00079 case ARM_AM::da: return "da"; 00080 case ARM_AM::db: return "db"; 00081 } 00082 } 00083 00084 /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits. 00085 /// 00086 static inline unsigned rotr32(unsigned Val, unsigned Amt) { 00087 assert(Amt < 32 && "Invalid rotate amount"); 00088 return (Val >> Amt) | (Val << ((32-Amt)&31)); 00089 } 00090 00091 /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits. 00092 /// 00093 static inline unsigned rotl32(unsigned Val, unsigned Amt) { 00094 assert(Amt < 32 && "Invalid rotate amount"); 00095 return (Val << Amt) | (Val >> ((32-Amt)&31)); 00096 } 00097 00098 //===--------------------------------------------------------------------===// 00099 // Addressing Mode #1: shift_operand with registers 00100 //===--------------------------------------------------------------------===// 00101 // 00102 // This 'addressing mode' is used for arithmetic instructions. It can 00103 // represent things like: 00104 // reg 00105 // reg [asr|lsl|lsr|ror|rrx] reg 00106 // reg [asr|lsl|lsr|ror|rrx] imm 00107 // 00108 // This is stored three operands [rega, regb, opc]. The first is the base 00109 // reg, the second is the shift amount (or reg0 if not present or imm). The 00110 // third operand encodes the shift opcode and the imm if a reg isn't present. 00111 // 00112 static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) { 00113 return ShOp | (Imm << 3); 00114 } 00115 static inline unsigned getSORegOffset(unsigned Op) { 00116 return Op >> 3; 00117 } 00118 static inline ShiftOpc getSORegShOp(unsigned Op) { 00119 return (ShiftOpc)(Op & 7); 00120 } 00121 00122 /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return 00123 /// the 8-bit imm value. 00124 static inline unsigned getSOImmValImm(unsigned Imm) { 00125 return Imm & 0xFF; 00126 } 00127 /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return 00128 /// the rotate amount. 00129 static inline unsigned getSOImmValRot(unsigned Imm) { 00130 return (Imm >> 8) * 2; 00131 } 00132 00133 /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, 00134 /// computing the rotate amount to use. If this immediate value cannot be 00135 /// handled with a single shifter-op, determine a good rotate amount that will 00136 /// take a maximal chunk of bits out of the immediate. 00137 static inline unsigned getSOImmValRotate(unsigned Imm) { 00138 // 8-bit (or less) immediates are trivially shifter_operands with a rotate 00139 // of zero. 00140 if ((Imm & ~255U) == 0) return 0; 00141 00142 // Use CTZ to compute the rotate amount. 00143 unsigned TZ = countTrailingZeros(Imm); 00144 00145 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, 00146 // not 9. 00147 unsigned RotAmt = TZ & ~1; 00148 00149 // If we can handle this spread, return it. 00150 if ((rotr32(Imm, RotAmt) & ~255U) == 0) 00151 return (32-RotAmt)&31; // HW rotates right, not left. 00152 00153 // For values like 0xF000000F, we should ignore the low 6 bits, then 00154 // retry the hunt. 00155 if (Imm & 63U) { 00156 unsigned TZ2 = countTrailingZeros(Imm & ~63U); 00157 unsigned RotAmt2 = TZ2 & ~1; 00158 if ((rotr32(Imm, RotAmt2) & ~255U) == 0) 00159 return (32-RotAmt2)&31; // HW rotates right, not left. 00160 } 00161 00162 // Otherwise, we have no way to cover this span of bits with a single 00163 // shifter_op immediate. Return a chunk of bits that will be useful to 00164 // handle. 00165 return (32-RotAmt)&31; // HW rotates right, not left. 00166 } 00167 00168 /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit 00169 /// into an shifter_operand immediate operand, return the 12-bit encoding for 00170 /// it. If not, return -1. 00171 static inline int getSOImmVal(unsigned Arg) { 00172 // 8-bit (or less) immediates are trivially shifter_operands with a rotate 00173 // of zero. 00174 if ((Arg & ~255U) == 0) return Arg; 00175 00176 unsigned RotAmt = getSOImmValRotate(Arg); 00177 00178 // If this cannot be handled with a single shifter_op, bail out. 00179 if (rotr32(~255U, RotAmt) & Arg) 00180 return -1; 00181 00182 // Encode this correctly. 00183 return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8); 00184 } 00185 00186 /// isSOImmTwoPartVal - Return true if the specified value can be obtained by 00187 /// or'ing together two SOImmVal's. 00188 static inline bool isSOImmTwoPartVal(unsigned V) { 00189 // If this can be handled with a single shifter_op, bail out. 00190 V = rotr32(~255U, getSOImmValRotate(V)) & V; 00191 if (V == 0) 00192 return false; 00193 00194 // If this can be handled with two shifter_op's, accept. 00195 V = rotr32(~255U, getSOImmValRotate(V)) & V; 00196 return V == 0; 00197 } 00198 00199 /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, 00200 /// return the first chunk of it. 00201 static inline unsigned getSOImmTwoPartFirst(unsigned V) { 00202 return rotr32(255U, getSOImmValRotate(V)) & V; 00203 } 00204 00205 /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, 00206 /// return the second chunk of it. 00207 static inline unsigned getSOImmTwoPartSecond(unsigned V) { 00208 // Mask out the first hunk. 00209 V = rotr32(~255U, getSOImmValRotate(V)) & V; 00210 00211 // Take what's left. 00212 assert(V == (rotr32(255U, getSOImmValRotate(V)) & V)); 00213 return V; 00214 } 00215 00216 /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed 00217 /// by a left shift. Returns the shift amount to use. 00218 static inline unsigned getThumbImmValShift(unsigned Imm) { 00219 // 8-bit (or less) immediates are trivially immediate operand with a shift 00220 // of zero. 00221 if ((Imm & ~255U) == 0) return 0; 00222 00223 // Use CTZ to compute the shift amount. 00224 return countTrailingZeros(Imm); 00225 } 00226 00227 /// isThumbImmShiftedVal - Return true if the specified value can be obtained 00228 /// by left shifting a 8-bit immediate. 00229 static inline bool isThumbImmShiftedVal(unsigned V) { 00230 // If this can be handled with 00231 V = (~255U << getThumbImmValShift(V)) & V; 00232 return V == 0; 00233 } 00234 00235 /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed 00236 /// by a left shift. Returns the shift amount to use. 00237 static inline unsigned getThumbImm16ValShift(unsigned Imm) { 00238 // 16-bit (or less) immediates are trivially immediate operand with a shift 00239 // of zero. 00240 if ((Imm & ~65535U) == 0) return 0; 00241 00242 // Use CTZ to compute the shift amount. 00243 return countTrailingZeros(Imm); 00244 } 00245 00246 /// isThumbImm16ShiftedVal - Return true if the specified value can be 00247 /// obtained by left shifting a 16-bit immediate. 00248 static inline bool isThumbImm16ShiftedVal(unsigned V) { 00249 // If this can be handled with 00250 V = (~65535U << getThumbImm16ValShift(V)) & V; 00251 return V == 0; 00252 } 00253 00254 /// getThumbImmNonShiftedVal - If V is a value that satisfies 00255 /// isThumbImmShiftedVal, return the non-shiftd value. 00256 static inline unsigned getThumbImmNonShiftedVal(unsigned V) { 00257 return V >> getThumbImmValShift(V); 00258 } 00259 00260 00261 /// getT2SOImmValSplat - Return the 12-bit encoded representation 00262 /// if the specified value can be obtained by splatting the low 8 bits 00263 /// into every other byte or every byte of a 32-bit value. i.e., 00264 /// 00000000 00000000 00000000 abcdefgh control = 0 00265 /// 00000000 abcdefgh 00000000 abcdefgh control = 1 00266 /// abcdefgh 00000000 abcdefgh 00000000 control = 2 00267 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3 00268 /// Return -1 if none of the above apply. 00269 /// See ARM Reference Manual A6.3.2. 00270 static inline int getT2SOImmValSplatVal(unsigned V) { 00271 unsigned u, Vs, Imm; 00272 // control = 0 00273 if ((V & 0xffffff00) == 0) 00274 return V; 00275 00276 // If the value is zeroes in the first byte, just shift those off 00277 Vs = ((V & 0xff) == 0) ? V >> 8 : V; 00278 // Any passing value only has 8 bits of payload, splatted across the word 00279 Imm = Vs & 0xff; 00280 // Likewise, any passing values have the payload splatted into the 3rd byte 00281 u = Imm | (Imm << 16); 00282 00283 // control = 1 or 2 00284 if (Vs == u) 00285 return (((Vs == V) ? 1 : 2) << 8) | Imm; 00286 00287 // control = 3 00288 if (Vs == (u | (u << 8))) 00289 return (3 << 8) | Imm; 00290 00291 return -1; 00292 } 00293 00294 /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the 00295 /// specified value is a rotated 8-bit value. Return -1 if no rotation 00296 /// encoding is possible. 00297 /// See ARM Reference Manual A6.3.2. 00298 static inline int getT2SOImmValRotateVal(unsigned V) { 00299 unsigned RotAmt = countLeadingZeros(V); 00300 if (RotAmt >= 24) 00301 return -1; 00302 00303 // If 'Arg' can be handled with a single shifter_op return the value. 00304 if ((rotr32(0xff000000U, RotAmt) & V) == V) 00305 return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7); 00306 00307 return -1; 00308 } 00309 00310 /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit 00311 /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit 00312 /// encoding for it. If not, return -1. 00313 /// See ARM Reference Manual A6.3.2. 00314 static inline int getT2SOImmVal(unsigned Arg) { 00315 // If 'Arg' is an 8-bit splat, then get the encoded value. 00316 int Splat = getT2SOImmValSplatVal(Arg); 00317 if (Splat != -1) 00318 return Splat; 00319 00320 // If 'Arg' can be handled with a single shifter_op return the value. 00321 int Rot = getT2SOImmValRotateVal(Arg); 00322 if (Rot != -1) 00323 return Rot; 00324 00325 return -1; 00326 } 00327 00328 static inline unsigned getT2SOImmValRotate(unsigned V) { 00329 if ((V & ~255U) == 0) return 0; 00330 // Use CTZ to compute the rotate amount. 00331 unsigned RotAmt = countTrailingZeros(V); 00332 return (32 - RotAmt) & 31; 00333 } 00334 00335 static inline bool isT2SOImmTwoPartVal (unsigned Imm) { 00336 unsigned V = Imm; 00337 // Passing values can be any combination of splat values and shifter 00338 // values. If this can be handled with a single shifter or splat, bail 00339 // out. Those should be handled directly, not with a two-part val. 00340 if (getT2SOImmValSplatVal(V) != -1) 00341 return false; 00342 V = rotr32 (~255U, getT2SOImmValRotate(V)) & V; 00343 if (V == 0) 00344 return false; 00345 00346 // If this can be handled as an immediate, accept. 00347 if (getT2SOImmVal(V) != -1) return true; 00348 00349 // Likewise, try masking out a splat value first. 00350 V = Imm; 00351 if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1) 00352 V &= ~0xff00ff00U; 00353 else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1) 00354 V &= ~0x00ff00ffU; 00355 // If what's left can be handled as an immediate, accept. 00356 if (getT2SOImmVal(V) != -1) return true; 00357 00358 // Otherwise, do not accept. 00359 return false; 00360 } 00361 00362 static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) { 00363 assert (isT2SOImmTwoPartVal(Imm) && 00364 "Immedate cannot be encoded as two part immediate!"); 00365 // Try a shifter operand as one part 00366 unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm; 00367 // If the rest is encodable as an immediate, then return it. 00368 if (getT2SOImmVal(V) != -1) return V; 00369 00370 // Try masking out a splat value first. 00371 if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1) 00372 return Imm & 0xff00ff00U; 00373 00374 // The other splat is all that's left as an option. 00375 assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1); 00376 return Imm & 0x00ff00ffU; 00377 } 00378 00379 static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) { 00380 // Mask out the first hunk 00381 Imm ^= getT2SOImmTwoPartFirst(Imm); 00382 // Return what's left 00383 assert (getT2SOImmVal(Imm) != -1 && 00384 "Unable to encode second part of T2 two part SO immediate"); 00385 return Imm; 00386 } 00387 00388 00389 //===--------------------------------------------------------------------===// 00390 // Addressing Mode #2 00391 //===--------------------------------------------------------------------===// 00392 // 00393 // This is used for most simple load/store instructions. 00394 // 00395 // addrmode2 := reg +/- reg shop imm 00396 // addrmode2 := reg +/- imm12 00397 // 00398 // The first operand is always a Reg. The second operand is a reg if in 00399 // reg/reg form, otherwise it's reg#0. The third field encodes the operation 00400 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The 00401 // fourth operand 16-17 encodes the index mode. 00402 // 00403 // If this addressing mode is a frame index (before prolog/epilog insertion 00404 // and code rewriting), this operand will have the form: FI#, reg0, <offs> 00405 // with no shift amount for the frame offset. 00406 // 00407 static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO, 00408 unsigned IdxMode = 0) { 00409 assert(Imm12 < (1 << 12) && "Imm too large!"); 00410 bool isSub = Opc == sub; 00411 return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ; 00412 } 00413 static inline unsigned getAM2Offset(unsigned AM2Opc) { 00414 return AM2Opc & ((1 << 12)-1); 00415 } 00416 static inline AddrOpc getAM2Op(unsigned AM2Opc) { 00417 return ((AM2Opc >> 12) & 1) ? sub : add; 00418 } 00419 static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) { 00420 return (ShiftOpc)((AM2Opc >> 13) & 7); 00421 } 00422 static inline unsigned getAM2IdxMode(unsigned AM2Opc) { 00423 return (AM2Opc >> 16); 00424 } 00425 00426 00427 //===--------------------------------------------------------------------===// 00428 // Addressing Mode #3 00429 //===--------------------------------------------------------------------===// 00430 // 00431 // This is used for sign-extending loads, and load/store-pair instructions. 00432 // 00433 // addrmode3 := reg +/- reg 00434 // addrmode3 := reg +/- imm8 00435 // 00436 // The first operand is always a Reg. The second operand is a reg if in 00437 // reg/reg form, otherwise it's reg#0. The third field encodes the operation 00438 // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the 00439 // index mode. 00440 00441 /// getAM3Opc - This function encodes the addrmode3 opc field. 00442 static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset, 00443 unsigned IdxMode = 0) { 00444 bool isSub = Opc == sub; 00445 return ((int)isSub << 8) | Offset | (IdxMode << 9); 00446 } 00447 static inline unsigned char getAM3Offset(unsigned AM3Opc) { 00448 return AM3Opc & 0xFF; 00449 } 00450 static inline AddrOpc getAM3Op(unsigned AM3Opc) { 00451 return ((AM3Opc >> 8) & 1) ? sub : add; 00452 } 00453 static inline unsigned getAM3IdxMode(unsigned AM3Opc) { 00454 return (AM3Opc >> 9); 00455 } 00456 00457 //===--------------------------------------------------------------------===// 00458 // Addressing Mode #4 00459 //===--------------------------------------------------------------------===// 00460 // 00461 // This is used for load / store multiple instructions. 00462 // 00463 // addrmode4 := reg, <mode> 00464 // 00465 // The four modes are: 00466 // IA - Increment after 00467 // IB - Increment before 00468 // DA - Decrement after 00469 // DB - Decrement before 00470 // For VFP instructions, only the IA and DB modes are valid. 00471 00472 static inline AMSubMode getAM4SubMode(unsigned Mode) { 00473 return (AMSubMode)(Mode & 0x7); 00474 } 00475 00476 static inline unsigned getAM4ModeImm(AMSubMode SubMode) { 00477 return (int)SubMode; 00478 } 00479 00480 //===--------------------------------------------------------------------===// 00481 // Addressing Mode #5 00482 //===--------------------------------------------------------------------===// 00483 // 00484 // This is used for coprocessor instructions, such as FP load/stores. 00485 // 00486 // addrmode5 := reg +/- imm8*4 00487 // 00488 // The first operand is always a Reg. The second operand encodes the 00489 // operation in bit 8 and the immediate in bits 0-7. 00490 00491 /// getAM5Opc - This function encodes the addrmode5 opc field. 00492 static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) { 00493 bool isSub = Opc == sub; 00494 return ((int)isSub << 8) | Offset; 00495 } 00496 static inline unsigned char getAM5Offset(unsigned AM5Opc) { 00497 return AM5Opc & 0xFF; 00498 } 00499 static inline AddrOpc getAM5Op(unsigned AM5Opc) { 00500 return ((AM5Opc >> 8) & 1) ? sub : add; 00501 } 00502 00503 //===--------------------------------------------------------------------===// 00504 // Addressing Mode #6 00505 //===--------------------------------------------------------------------===// 00506 // 00507 // This is used for NEON load / store instructions. 00508 // 00509 // addrmode6 := reg with optional alignment 00510 // 00511 // This is stored in two operands [regaddr, align]. The first is the 00512 // address register. The second operand is the value of the alignment 00513 // specifier in bytes or zero if no explicit alignment. 00514 // Valid alignments depend on the specific instruction. 00515 00516 //===--------------------------------------------------------------------===// 00517 // NEON Modified Immediates 00518 //===--------------------------------------------------------------------===// 00519 // 00520 // Several NEON instructions (e.g., VMOV) take a "modified immediate" 00521 // vector operand, where a small immediate encoded in the instruction 00522 // specifies a full NEON vector value. These modified immediates are 00523 // represented here as encoded integers. The low 8 bits hold the immediate 00524 // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold 00525 // the "Cmode" field of the instruction. The interfaces below treat the 00526 // Op and Cmode values as a single 5-bit value. 00527 00528 static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) { 00529 return (OpCmode << 8) | Val; 00530 } 00531 static inline unsigned getNEONModImmOpCmode(unsigned ModImm) { 00532 return (ModImm >> 8) & 0x1f; 00533 } 00534 static inline unsigned getNEONModImmVal(unsigned ModImm) { 00535 return ModImm & 0xff; 00536 } 00537 00538 /// decodeNEONModImm - Decode a NEON modified immediate value into the 00539 /// element value and the element size in bits. (If the element size is 00540 /// smaller than the vector, it is splatted into all the elements.) 00541 static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) { 00542 unsigned OpCmode = getNEONModImmOpCmode(ModImm); 00543 unsigned Imm8 = getNEONModImmVal(ModImm); 00544 uint64_t Val = 0; 00545 00546 if (OpCmode == 0xe) { 00547 // 8-bit vector elements 00548 Val = Imm8; 00549 EltBits = 8; 00550 } else if ((OpCmode & 0xc) == 0x8) { 00551 // 16-bit vector elements 00552 unsigned ByteNum = (OpCmode & 0x6) >> 1; 00553 Val = Imm8 << (8 * ByteNum); 00554 EltBits = 16; 00555 } else if ((OpCmode & 0x8) == 0) { 00556 // 32-bit vector elements, zero with one byte set 00557 unsigned ByteNum = (OpCmode & 0x6) >> 1; 00558 Val = Imm8 << (8 * ByteNum); 00559 EltBits = 32; 00560 } else if ((OpCmode & 0xe) == 0xc) { 00561 // 32-bit vector elements, one byte with low bits set 00562 unsigned ByteNum = 1 + (OpCmode & 0x1); 00563 Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum))); 00564 EltBits = 32; 00565 } else if (OpCmode == 0x1e) { 00566 // 64-bit vector elements 00567 for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) { 00568 if ((ModImm >> ByteNum) & 1) 00569 Val |= (uint64_t)0xff << (8 * ByteNum); 00570 } 00571 EltBits = 64; 00572 } else { 00573 llvm_unreachable("Unsupported NEON immediate"); 00574 } 00575 return Val; 00576 } 00577 00578 AMSubMode getLoadStoreMultipleSubMode(int Opcode); 00579 00580 //===--------------------------------------------------------------------===// 00581 // Floating-point Immediates 00582 // 00583 static inline float getFPImmFloat(unsigned Imm) { 00584 // We expect an 8-bit binary encoding of a floating-point number here. 00585 union { 00586 uint32_t I; 00587 float F; 00588 } FPUnion; 00589 00590 uint8_t Sign = (Imm >> 7) & 0x1; 00591 uint8_t Exp = (Imm >> 4) & 0x7; 00592 uint8_t Mantissa = Imm & 0xf; 00593 00594 // 8-bit FP iEEEE Float Encoding 00595 // abcd efgh aBbbbbbc defgh000 00000000 00000000 00596 // 00597 // where B = NOT(b); 00598 00599 FPUnion.I = 0; 00600 FPUnion.I |= Sign << 31; 00601 FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; 00602 FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; 00603 FPUnion.I |= (Exp & 0x3) << 23; 00604 FPUnion.I |= Mantissa << 19; 00605 return FPUnion.F; 00606 } 00607 00608 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit 00609 /// floating-point value. If the value cannot be represented as an 8-bit 00610 /// floating-point value, then return -1. 00611 static inline int getFP32Imm(const APInt &Imm) { 00612 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; 00613 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 00614 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits 00615 00616 // We can handle 4 bits of mantissa. 00617 // mantissa = (16+UInt(e:f:g:h))/16. 00618 if (Mantissa & 0x7ffff) 00619 return -1; 00620 Mantissa >>= 19; 00621 if ((Mantissa & 0xf) != Mantissa) 00622 return -1; 00623 00624 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 00625 if (Exp < -3 || Exp > 4) 00626 return -1; 00627 Exp = ((Exp+3) & 0x7) ^ 4; 00628 00629 return ((int)Sign << 7) | (Exp << 4) | Mantissa; 00630 } 00631 00632 static inline int getFP32Imm(const APFloat &FPImm) { 00633 return getFP32Imm(FPImm.bitcastToAPInt()); 00634 } 00635 00636 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit 00637 /// floating-point value. If the value cannot be represented as an 8-bit 00638 /// floating-point value, then return -1. 00639 static inline int getFP64Imm(const APInt &Imm) { 00640 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; 00641 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 00642 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; 00643 00644 // We can handle 4 bits of mantissa. 00645 // mantissa = (16+UInt(e:f:g:h))/16. 00646 if (Mantissa & 0xffffffffffffULL) 00647 return -1; 00648 Mantissa >>= 48; 00649 if ((Mantissa & 0xf) != Mantissa) 00650 return -1; 00651 00652 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 00653 if (Exp < -3 || Exp > 4) 00654 return -1; 00655 Exp = ((Exp+3) & 0x7) ^ 4; 00656 00657 return ((int)Sign << 7) | (Exp << 4) | Mantissa; 00658 } 00659 00660 static inline int getFP64Imm(const APFloat &FPImm) { 00661 return getFP64Imm(FPImm.bitcastToAPInt()); 00662 } 00663 00664 } // end namespace ARM_AM 00665 } // end namespace llvm 00666 00667 #endif 00668