LLVM API Documentation

AliasAnalysis.cpp
Go to the documentation of this file.
00001 //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements the generic AliasAnalysis interface which is used as the
00011 // common interface used by all clients and implementations of alias analysis.
00012 //
00013 // This file also implements the default version of the AliasAnalysis interface
00014 // that is to be used when no other implementation is specified.  This does some
00015 // simple tests that detect obvious cases: two different global pointers cannot
00016 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
00017 // etc.
00018 //
00019 // This alias analysis implementation really isn't very good for anything, but
00020 // it is very fast, and makes a nice clean default implementation.  Because it
00021 // handles lots of little corner cases, other, more complex, alias analysis
00022 // implementations may choose to rely on this pass to resolve these simple and
00023 // easy cases.
00024 //
00025 //===----------------------------------------------------------------------===//
00026 
00027 #include "llvm/Analysis/AliasAnalysis.h"
00028 #include "llvm/Analysis/CFG.h"
00029 #include "llvm/Analysis/CaptureTracking.h"
00030 #include "llvm/Analysis/ValueTracking.h"
00031 #include "llvm/IR/BasicBlock.h"
00032 #include "llvm/IR/DataLayout.h"
00033 #include "llvm/IR/Dominators.h"
00034 #include "llvm/IR/Function.h"
00035 #include "llvm/IR/Instructions.h"
00036 #include "llvm/IR/IntrinsicInst.h"
00037 #include "llvm/IR/LLVMContext.h"
00038 #include "llvm/IR/Type.h"
00039 #include "llvm/Pass.h"
00040 #include "llvm/Target/TargetLibraryInfo.h"
00041 using namespace llvm;
00042 
00043 // Register the AliasAnalysis interface, providing a nice name to refer to.
00044 INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
00045 char AliasAnalysis::ID = 0;
00046 
00047 //===----------------------------------------------------------------------===//
00048 // Default chaining methods
00049 //===----------------------------------------------------------------------===//
00050 
00051 AliasAnalysis::AliasResult
00052 AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
00053   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
00054   return AA->alias(LocA, LocB);
00055 }
00056 
00057 bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
00058                                            bool OrLocal) {
00059   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
00060   return AA->pointsToConstantMemory(Loc, OrLocal);
00061 }
00062 
00063 AliasAnalysis::Location
00064 AliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
00065                               AliasAnalysis::ModRefResult &Mask) {
00066   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
00067   return AA->getArgLocation(CS, ArgIdx, Mask);
00068 }
00069 
00070 void AliasAnalysis::deleteValue(Value *V) {
00071   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
00072   AA->deleteValue(V);
00073 }
00074 
00075 void AliasAnalysis::copyValue(Value *From, Value *To) {
00076   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
00077   AA->copyValue(From, To);
00078 }
00079 
00080 void AliasAnalysis::addEscapingUse(Use &U) {
00081   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
00082   AA->addEscapingUse(U);
00083 }
00084 
00085 
00086 AliasAnalysis::ModRefResult
00087 AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
00088                              const Location &Loc) {
00089   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
00090 
00091   ModRefBehavior MRB = getModRefBehavior(CS);
00092   if (MRB == DoesNotAccessMemory)
00093     return NoModRef;
00094 
00095   ModRefResult Mask = ModRef;
00096   if (onlyReadsMemory(MRB))
00097     Mask = Ref;
00098 
00099   if (onlyAccessesArgPointees(MRB)) {
00100     bool doesAlias = false;
00101     ModRefResult AllArgsMask = NoModRef;
00102     if (doesAccessArgPointees(MRB)) {
00103       for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
00104            AI != AE; ++AI) {
00105         const Value *Arg = *AI;
00106         if (!Arg->getType()->isPointerTy())
00107           continue;
00108         ModRefResult ArgMask;
00109         Location CSLoc =
00110           getArgLocation(CS, (unsigned) std::distance(CS.arg_begin(), AI),
00111                          ArgMask);
00112         if (!isNoAlias(CSLoc, Loc)) {
00113           doesAlias = true;
00114           AllArgsMask = ModRefResult(AllArgsMask | ArgMask);
00115         }
00116       }
00117     }
00118     if (!doesAlias)
00119       return NoModRef;
00120     Mask = ModRefResult(Mask & AllArgsMask);
00121   }
00122 
00123   // If Loc is a constant memory location, the call definitely could not
00124   // modify the memory location.
00125   if ((Mask & Mod) && pointsToConstantMemory(Loc))
00126     Mask = ModRefResult(Mask & ~Mod);
00127 
00128   // If this is the end of the chain, don't forward.
00129   if (!AA) return Mask;
00130 
00131   // Otherwise, fall back to the next AA in the chain. But we can merge
00132   // in any mask we've managed to compute.
00133   return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
00134 }
00135 
00136 AliasAnalysis::ModRefResult
00137 AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
00138   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
00139 
00140   // If CS1 or CS2 are readnone, they don't interact.
00141   ModRefBehavior CS1B = getModRefBehavior(CS1);
00142   if (CS1B == DoesNotAccessMemory) return NoModRef;
00143 
00144   ModRefBehavior CS2B = getModRefBehavior(CS2);
00145   if (CS2B == DoesNotAccessMemory) return NoModRef;
00146 
00147   // If they both only read from memory, there is no dependence.
00148   if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
00149     return NoModRef;
00150 
00151   AliasAnalysis::ModRefResult Mask = ModRef;
00152 
00153   // If CS1 only reads memory, the only dependence on CS2 can be
00154   // from CS1 reading memory written by CS2.
00155   if (onlyReadsMemory(CS1B))
00156     Mask = ModRefResult(Mask & Ref);
00157 
00158   // If CS2 only access memory through arguments, accumulate the mod/ref
00159   // information from CS1's references to the memory referenced by
00160   // CS2's arguments.
00161   if (onlyAccessesArgPointees(CS2B)) {
00162     AliasAnalysis::ModRefResult R = NoModRef;
00163     if (doesAccessArgPointees(CS2B)) {
00164       for (ImmutableCallSite::arg_iterator
00165            I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
00166         const Value *Arg = *I;
00167         if (!Arg->getType()->isPointerTy())
00168           continue;
00169         ModRefResult ArgMask;
00170         Location CS2Loc =
00171           getArgLocation(CS2, (unsigned) std::distance(CS2.arg_begin(), I),
00172                          ArgMask);
00173         // ArgMask indicates what CS2 might do to CS2Loc, and the dependence of
00174         // CS1 on that location is the inverse.
00175         if (ArgMask == Mod)
00176           ArgMask = ModRef;
00177         else if (ArgMask == Ref)
00178           ArgMask = Mod;
00179 
00180         R = ModRefResult((R | (getModRefInfo(CS1, CS2Loc) & ArgMask)) & Mask);
00181         if (R == Mask)
00182           break;
00183       }
00184     }
00185     return R;
00186   }
00187 
00188   // If CS1 only accesses memory through arguments, check if CS2 references
00189   // any of the memory referenced by CS1's arguments. If not, return NoModRef.
00190   if (onlyAccessesArgPointees(CS1B)) {
00191     AliasAnalysis::ModRefResult R = NoModRef;
00192     if (doesAccessArgPointees(CS1B)) {
00193       for (ImmutableCallSite::arg_iterator
00194            I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
00195         const Value *Arg = *I;
00196         if (!Arg->getType()->isPointerTy())
00197           continue;
00198         ModRefResult ArgMask;
00199         Location CS1Loc =
00200           getArgLocation(CS1, (unsigned) std::distance(CS1.arg_begin(), I),
00201                          ArgMask);
00202   // ArgMask indicates what CS1 might do to CS1Loc; if CS1 might Mod
00203   // CS1Loc, then we care about either a Mod or a Ref by CS2. If CS1
00204   // might Ref, then we care only about a Mod by CS2.
00205         ModRefResult ArgR = getModRefInfo(CS2, CS1Loc);
00206         if (((ArgMask & Mod) != NoModRef && (ArgR & ModRef) != NoModRef) ||
00207             ((ArgMask & Ref) != NoModRef && (ArgR & Mod)    != NoModRef))
00208           R = ModRefResult((R | ArgMask) & Mask);
00209 
00210         if (R == Mask)
00211           break;
00212       }
00213     }
00214     return R;
00215   }
00216 
00217   // If this is the end of the chain, don't forward.
00218   if (!AA) return Mask;
00219 
00220   // Otherwise, fall back to the next AA in the chain. But we can merge
00221   // in any mask we've managed to compute.
00222   return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
00223 }
00224 
00225 AliasAnalysis::ModRefBehavior
00226 AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
00227   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
00228 
00229   ModRefBehavior Min = UnknownModRefBehavior;
00230 
00231   // Call back into the alias analysis with the other form of getModRefBehavior
00232   // to see if it can give a better response.
00233   if (const Function *F = CS.getCalledFunction())
00234     Min = getModRefBehavior(F);
00235 
00236   // If this is the end of the chain, don't forward.
00237   if (!AA) return Min;
00238 
00239   // Otherwise, fall back to the next AA in the chain. But we can merge
00240   // in any result we've managed to compute.
00241   return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
00242 }
00243 
00244 AliasAnalysis::ModRefBehavior
00245 AliasAnalysis::getModRefBehavior(const Function *F) {
00246   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
00247   return AA->getModRefBehavior(F);
00248 }
00249 
00250 //===----------------------------------------------------------------------===//
00251 // AliasAnalysis non-virtual helper method implementation
00252 //===----------------------------------------------------------------------===//
00253 
00254 AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
00255   AAMDNodes AATags;
00256   LI->getAAMetadata(AATags);
00257 
00258   return Location(LI->getPointerOperand(),
00259                   getTypeStoreSize(LI->getType()), AATags);
00260 }
00261 
00262 AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
00263   AAMDNodes AATags;
00264   SI->getAAMetadata(AATags);
00265 
00266   return Location(SI->getPointerOperand(),
00267                   getTypeStoreSize(SI->getValueOperand()->getType()), AATags);
00268 }
00269 
00270 AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
00271   AAMDNodes AATags;
00272   VI->getAAMetadata(AATags);
00273 
00274   return Location(VI->getPointerOperand(), UnknownSize, AATags);
00275 }
00276 
00277 AliasAnalysis::Location
00278 AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
00279   AAMDNodes AATags;
00280   CXI->getAAMetadata(AATags);
00281 
00282   return Location(CXI->getPointerOperand(),
00283                   getTypeStoreSize(CXI->getCompareOperand()->getType()),
00284                   AATags);
00285 }
00286 
00287 AliasAnalysis::Location
00288 AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
00289   AAMDNodes AATags;
00290   RMWI->getAAMetadata(AATags);
00291 
00292   return Location(RMWI->getPointerOperand(),
00293                   getTypeStoreSize(RMWI->getValOperand()->getType()), AATags);
00294 }
00295 
00296 AliasAnalysis::Location 
00297 AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
00298   uint64_t Size = UnknownSize;
00299   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
00300     Size = C->getValue().getZExtValue();
00301 
00302   // memcpy/memmove can have AA tags. For memcpy, they apply
00303   // to both the source and the destination.
00304   AAMDNodes AATags;
00305   MTI->getAAMetadata(AATags);
00306   
00307   return Location(MTI->getRawSource(), Size, AATags);
00308 }
00309 
00310 AliasAnalysis::Location 
00311 AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
00312   uint64_t Size = UnknownSize;
00313   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
00314     Size = C->getValue().getZExtValue();
00315 
00316   // memcpy/memmove can have AA tags. For memcpy, they apply
00317   // to both the source and the destination.
00318   AAMDNodes AATags;
00319   MTI->getMetadata(AATags);
00320  
00321   return Location(MTI->getRawDest(), Size, AATags);
00322 }
00323 
00324 
00325 
00326 AliasAnalysis::ModRefResult
00327 AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
00328   // Be conservative in the face of volatile/atomic.
00329   if (!L->isUnordered())
00330     return ModRef;
00331 
00332   // If the load address doesn't alias the given address, it doesn't read
00333   // or write the specified memory.
00334   if (!alias(getLocation(L), Loc))
00335     return NoModRef;
00336 
00337   // Otherwise, a load just reads.
00338   return Ref;
00339 }
00340 
00341 AliasAnalysis::ModRefResult
00342 AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
00343   // Be conservative in the face of volatile/atomic.
00344   if (!S->isUnordered())
00345     return ModRef;
00346 
00347   // If the store address cannot alias the pointer in question, then the
00348   // specified memory cannot be modified by the store.
00349   if (!alias(getLocation(S), Loc))
00350     return NoModRef;
00351 
00352   // If the pointer is a pointer to constant memory, then it could not have been
00353   // modified by this store.
00354   if (pointsToConstantMemory(Loc))
00355     return NoModRef;
00356 
00357   // Otherwise, a store just writes.
00358   return Mod;
00359 }
00360 
00361 AliasAnalysis::ModRefResult
00362 AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
00363   // If the va_arg address cannot alias the pointer in question, then the
00364   // specified memory cannot be accessed by the va_arg.
00365   if (!alias(getLocation(V), Loc))
00366     return NoModRef;
00367 
00368   // If the pointer is a pointer to constant memory, then it could not have been
00369   // modified by this va_arg.
00370   if (pointsToConstantMemory(Loc))
00371     return NoModRef;
00372 
00373   // Otherwise, a va_arg reads and writes.
00374   return ModRef;
00375 }
00376 
00377 AliasAnalysis::ModRefResult
00378 AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
00379   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
00380   if (CX->getSuccessOrdering() > Monotonic)
00381     return ModRef;
00382 
00383   // If the cmpxchg address does not alias the location, it does not access it.
00384   if (!alias(getLocation(CX), Loc))
00385     return NoModRef;
00386 
00387   return ModRef;
00388 }
00389 
00390 AliasAnalysis::ModRefResult
00391 AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
00392   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
00393   if (RMW->getOrdering() > Monotonic)
00394     return ModRef;
00395 
00396   // If the atomicrmw address does not alias the location, it does not access it.
00397   if (!alias(getLocation(RMW), Loc))
00398     return NoModRef;
00399 
00400   return ModRef;
00401 }
00402 
00403 // FIXME: this is really just shoring-up a deficiency in alias analysis.
00404 // BasicAA isn't willing to spend linear time determining whether an alloca
00405 // was captured before or after this particular call, while we are. However,
00406 // with a smarter AA in place, this test is just wasting compile time.
00407 AliasAnalysis::ModRefResult
00408 AliasAnalysis::callCapturesBefore(const Instruction *I,
00409                                   const AliasAnalysis::Location &MemLoc,
00410                                   DominatorTree *DT) {
00411   if (!DT || !DL) return AliasAnalysis::ModRef;
00412 
00413   const Value *Object = GetUnderlyingObject(MemLoc.Ptr, DL);
00414   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
00415       isa<Constant>(Object))
00416     return AliasAnalysis::ModRef;
00417 
00418   ImmutableCallSite CS(I);
00419   if (!CS.getInstruction() || CS.getInstruction() == Object)
00420     return AliasAnalysis::ModRef;
00421 
00422   if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
00423                                        /* StoreCaptures */ true, I, DT,
00424                                        /* include Object */ true))
00425     return AliasAnalysis::ModRef;
00426 
00427   unsigned ArgNo = 0;
00428   AliasAnalysis::ModRefResult R = AliasAnalysis::NoModRef;
00429   for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
00430        CI != CE; ++CI, ++ArgNo) {
00431     // Only look at the no-capture or byval pointer arguments.  If this
00432     // pointer were passed to arguments that were neither of these, then it
00433     // couldn't be no-capture.
00434     if (!(*CI)->getType()->isPointerTy() ||
00435         (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
00436       continue;
00437 
00438     // If this is a no-capture pointer argument, see if we can tell that it
00439     // is impossible to alias the pointer we're checking.  If not, we have to
00440     // assume that the call could touch the pointer, even though it doesn't
00441     // escape.
00442     if (isNoAlias(AliasAnalysis::Location(*CI),
00443       AliasAnalysis::Location(Object)))
00444       continue;
00445     if (CS.doesNotAccessMemory(ArgNo))
00446       continue;
00447     if (CS.onlyReadsMemory(ArgNo)) {
00448       R = AliasAnalysis::Ref;
00449       continue;
00450     }
00451     return AliasAnalysis::ModRef;
00452   }
00453   return R;
00454 }
00455 
00456 // AliasAnalysis destructor: DO NOT move this to the header file for
00457 // AliasAnalysis or else clients of the AliasAnalysis class may not depend on
00458 // the AliasAnalysis.o file in the current .a file, causing alias analysis
00459 // support to not be included in the tool correctly!
00460 //
00461 AliasAnalysis::~AliasAnalysis() {}
00462 
00463 /// InitializeAliasAnalysis - Subclasses must call this method to initialize the
00464 /// AliasAnalysis interface before any other methods are called.
00465 ///
00466 void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
00467   DataLayoutPass *DLP = P->getAnalysisIfAvailable<DataLayoutPass>();
00468   DL = DLP ? &DLP->getDataLayout() : nullptr;
00469   TLI = P->getAnalysisIfAvailable<TargetLibraryInfo>();
00470   AA = &P->getAnalysis<AliasAnalysis>();
00471 }
00472 
00473 // getAnalysisUsage - All alias analysis implementations should invoke this
00474 // directly (using AliasAnalysis::getAnalysisUsage(AU)).
00475 void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
00476   AU.addRequired<AliasAnalysis>();         // All AA's chain
00477 }
00478 
00479 /// getTypeStoreSize - Return the DataLayout store size for the given type,
00480 /// if known, or a conservative value otherwise.
00481 ///
00482 uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
00483   return DL ? DL->getTypeStoreSize(Ty) : UnknownSize;
00484 }
00485 
00486 /// canBasicBlockModify - Return true if it is possible for execution of the
00487 /// specified basic block to modify the value pointed to by Ptr.
00488 ///
00489 bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
00490                                         const Location &Loc) {
00491   return canInstructionRangeModify(BB.front(), BB.back(), Loc);
00492 }
00493 
00494 /// canInstructionRangeModify - Return true if it is possible for the execution
00495 /// of the specified instructions to modify the value pointed to by Ptr.  The
00496 /// instructions to consider are all of the instructions in the range of [I1,I2]
00497 /// INCLUSIVE.  I1 and I2 must be in the same basic block.
00498 ///
00499 bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
00500                                               const Instruction &I2,
00501                                               const Location &Loc) {
00502   assert(I1.getParent() == I2.getParent() &&
00503          "Instructions not in same basic block!");
00504   BasicBlock::const_iterator I = &I1;
00505   BasicBlock::const_iterator E = &I2;
00506   ++E;  // Convert from inclusive to exclusive range.
00507 
00508   for (; I != E; ++I) // Check every instruction in range
00509     if (getModRefInfo(I, Loc) & Mod)
00510       return true;
00511   return false;
00512 }
00513 
00514 /// isNoAliasCall - Return true if this pointer is returned by a noalias
00515 /// function.
00516 bool llvm::isNoAliasCall(const Value *V) {
00517   if (isa<CallInst>(V) || isa<InvokeInst>(V))
00518     return ImmutableCallSite(cast<Instruction>(V))
00519       .paramHasAttr(0, Attribute::NoAlias);
00520   return false;
00521 }
00522 
00523 /// isNoAliasArgument - Return true if this is an argument with the noalias
00524 /// attribute.
00525 bool llvm::isNoAliasArgument(const Value *V)
00526 {
00527   if (const Argument *A = dyn_cast<Argument>(V))
00528     return A->hasNoAliasAttr();
00529   return false;
00530 }
00531 
00532 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
00533 /// identifiable object.  This returns true for:
00534 ///    Global Variables and Functions (but not Global Aliases)
00535 ///    Allocas and Mallocs
00536 ///    ByVal and NoAlias Arguments
00537 ///    NoAlias returns
00538 ///
00539 bool llvm::isIdentifiedObject(const Value *V) {
00540   if (isa<AllocaInst>(V))
00541     return true;
00542   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
00543     return true;
00544   if (isNoAliasCall(V))
00545     return true;
00546   if (const Argument *A = dyn_cast<Argument>(V))
00547     return A->hasNoAliasAttr() || A->hasByValAttr();
00548   return false;
00549 }
00550 
00551 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified
00552 /// at the function-level. Different IdentifiedFunctionLocals can't alias.
00553 /// Further, an IdentifiedFunctionLocal can not alias with any function
00554 /// arguments other than itself, which is not necessarily true for
00555 /// IdentifiedObjects.
00556 bool llvm::isIdentifiedFunctionLocal(const Value *V)
00557 {
00558   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
00559 }
00560