LLVM API Documentation
00001 //===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This header defines the BitstreamReader class. This class can be used to 00011 // read an arbitrary bitstream, regardless of its contents. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #ifndef LLVM_BITCODE_BITSTREAMREADER_H 00016 #define LLVM_BITCODE_BITSTREAMREADER_H 00017 00018 #include "llvm/Bitcode/BitCodes.h" 00019 #include "llvm/Support/Endian.h" 00020 #include "llvm/Support/StreamableMemoryObject.h" 00021 #include <climits> 00022 #include <string> 00023 #include <vector> 00024 00025 namespace llvm { 00026 00027 class Deserializer; 00028 00029 /// BitstreamReader - This class is used to read from an LLVM bitcode stream, 00030 /// maintaining information that is global to decoding the entire file. While 00031 /// a file is being read, multiple cursors can be independently advanced or 00032 /// skipped around within the file. These are represented by the 00033 /// BitstreamCursor class. 00034 class BitstreamReader { 00035 public: 00036 /// BlockInfo - This contains information emitted to BLOCKINFO_BLOCK blocks. 00037 /// These describe abbreviations that all blocks of the specified ID inherit. 00038 struct BlockInfo { 00039 unsigned BlockID; 00040 std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> Abbrevs; 00041 std::string Name; 00042 00043 std::vector<std::pair<unsigned, std::string> > RecordNames; 00044 }; 00045 private: 00046 std::unique_ptr<StreamableMemoryObject> BitcodeBytes; 00047 00048 std::vector<BlockInfo> BlockInfoRecords; 00049 00050 /// IgnoreBlockInfoNames - This is set to true if we don't care about the 00051 /// block/record name information in the BlockInfo block. Only llvm-bcanalyzer 00052 /// uses this. 00053 bool IgnoreBlockInfoNames; 00054 00055 BitstreamReader(const BitstreamReader&) LLVM_DELETED_FUNCTION; 00056 void operator=(const BitstreamReader&) LLVM_DELETED_FUNCTION; 00057 public: 00058 BitstreamReader() : IgnoreBlockInfoNames(true) { 00059 } 00060 00061 BitstreamReader(const unsigned char *Start, const unsigned char *End) 00062 : IgnoreBlockInfoNames(true) { 00063 init(Start, End); 00064 } 00065 00066 BitstreamReader(StreamableMemoryObject *bytes) : IgnoreBlockInfoNames(true) { 00067 BitcodeBytes.reset(bytes); 00068 } 00069 00070 BitstreamReader(BitstreamReader &&Other) { 00071 *this = std::move(Other); 00072 } 00073 00074 BitstreamReader &operator=(BitstreamReader &&Other) { 00075 BitcodeBytes = std::move(Other.BitcodeBytes); 00076 // Explicitly swap block info, so that nothing gets destroyed twice. 00077 std::swap(BlockInfoRecords, Other.BlockInfoRecords); 00078 IgnoreBlockInfoNames = Other.IgnoreBlockInfoNames; 00079 return *this; 00080 } 00081 00082 void init(const unsigned char *Start, const unsigned char *End) { 00083 assert(((End-Start) & 3) == 0 &&"Bitcode stream not a multiple of 4 bytes"); 00084 BitcodeBytes.reset(getNonStreamedMemoryObject(Start, End)); 00085 } 00086 00087 StreamableMemoryObject &getBitcodeBytes() { return *BitcodeBytes; } 00088 00089 /// CollectBlockInfoNames - This is called by clients that want block/record 00090 /// name information. 00091 void CollectBlockInfoNames() { IgnoreBlockInfoNames = false; } 00092 bool isIgnoringBlockInfoNames() { return IgnoreBlockInfoNames; } 00093 00094 //===--------------------------------------------------------------------===// 00095 // Block Manipulation 00096 //===--------------------------------------------------------------------===// 00097 00098 /// hasBlockInfoRecords - Return true if we've already read and processed the 00099 /// block info block for this Bitstream. We only process it for the first 00100 /// cursor that walks over it. 00101 bool hasBlockInfoRecords() const { return !BlockInfoRecords.empty(); } 00102 00103 /// getBlockInfo - If there is block info for the specified ID, return it, 00104 /// otherwise return null. 00105 const BlockInfo *getBlockInfo(unsigned BlockID) const { 00106 // Common case, the most recent entry matches BlockID. 00107 if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID) 00108 return &BlockInfoRecords.back(); 00109 00110 for (unsigned i = 0, e = static_cast<unsigned>(BlockInfoRecords.size()); 00111 i != e; ++i) 00112 if (BlockInfoRecords[i].BlockID == BlockID) 00113 return &BlockInfoRecords[i]; 00114 return nullptr; 00115 } 00116 00117 BlockInfo &getOrCreateBlockInfo(unsigned BlockID) { 00118 if (const BlockInfo *BI = getBlockInfo(BlockID)) 00119 return *const_cast<BlockInfo*>(BI); 00120 00121 // Otherwise, add a new record. 00122 BlockInfoRecords.push_back(BlockInfo()); 00123 BlockInfoRecords.back().BlockID = BlockID; 00124 return BlockInfoRecords.back(); 00125 } 00126 00127 /// Takes block info from the other bitstream reader. 00128 /// 00129 /// This is a "take" operation because BlockInfo records are non-trivial, and 00130 /// indeed rather expensive. 00131 void takeBlockInfo(BitstreamReader &&Other) { 00132 assert(!hasBlockInfoRecords()); 00133 BlockInfoRecords = std::move(Other.BlockInfoRecords); 00134 } 00135 }; 00136 00137 00138 /// BitstreamEntry - When advancing through a bitstream cursor, each advance can 00139 /// discover a few different kinds of entries: 00140 /// Error - Malformed bitcode was found. 00141 /// EndBlock - We've reached the end of the current block, (or the end of the 00142 /// file, which is treated like a series of EndBlock records. 00143 /// SubBlock - This is the start of a new subblock of a specific ID. 00144 /// Record - This is a record with a specific AbbrevID. 00145 /// 00146 struct BitstreamEntry { 00147 enum { 00148 Error, 00149 EndBlock, 00150 SubBlock, 00151 Record 00152 } Kind; 00153 00154 unsigned ID; 00155 00156 static BitstreamEntry getError() { 00157 BitstreamEntry E; E.Kind = Error; return E; 00158 } 00159 static BitstreamEntry getEndBlock() { 00160 BitstreamEntry E; E.Kind = EndBlock; return E; 00161 } 00162 static BitstreamEntry getSubBlock(unsigned ID) { 00163 BitstreamEntry E; E.Kind = SubBlock; E.ID = ID; return E; 00164 } 00165 static BitstreamEntry getRecord(unsigned AbbrevID) { 00166 BitstreamEntry E; E.Kind = Record; E.ID = AbbrevID; return E; 00167 } 00168 }; 00169 00170 /// BitstreamCursor - This represents a position within a bitcode file. There 00171 /// may be multiple independent cursors reading within one bitstream, each 00172 /// maintaining their own local state. 00173 /// 00174 /// Unlike iterators, BitstreamCursors are heavy-weight objects that should not 00175 /// be passed by value. 00176 class BitstreamCursor { 00177 friend class Deserializer; 00178 BitstreamReader *BitStream; 00179 size_t NextChar; 00180 00181 00182 /// CurWord/word_t - This is the current data we have pulled from the stream 00183 /// but have not returned to the client. This is specifically and 00184 /// intentionally defined to follow the word size of the host machine for 00185 /// efficiency. We use word_t in places that are aware of this to make it 00186 /// perfectly explicit what is going on. 00187 typedef uint32_t word_t; 00188 word_t CurWord; 00189 00190 /// BitsInCurWord - This is the number of bits in CurWord that are valid. This 00191 /// is always from [0...31/63] inclusive (depending on word size). 00192 unsigned BitsInCurWord; 00193 00194 // CurCodeSize - This is the declared size of code values used for the current 00195 // block, in bits. 00196 unsigned CurCodeSize; 00197 00198 /// CurAbbrevs - Abbrevs installed at in this block. 00199 std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> CurAbbrevs; 00200 00201 struct Block { 00202 unsigned PrevCodeSize; 00203 std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> PrevAbbrevs; 00204 explicit Block(unsigned PCS) : PrevCodeSize(PCS) {} 00205 }; 00206 00207 /// BlockScope - This tracks the codesize of parent blocks. 00208 SmallVector<Block, 8> BlockScope; 00209 00210 00211 public: 00212 BitstreamCursor() : BitStream(nullptr), NextChar(0) {} 00213 00214 explicit BitstreamCursor(BitstreamReader &R) : BitStream(&R) { 00215 NextChar = 0; 00216 CurWord = 0; 00217 BitsInCurWord = 0; 00218 CurCodeSize = 2; 00219 } 00220 00221 void init(BitstreamReader &R) { 00222 freeState(); 00223 00224 BitStream = &R; 00225 NextChar = 0; 00226 CurWord = 0; 00227 BitsInCurWord = 0; 00228 CurCodeSize = 2; 00229 } 00230 00231 void freeState(); 00232 00233 bool isEndPos(size_t pos) { 00234 return BitStream->getBitcodeBytes().isObjectEnd(static_cast<uint64_t>(pos)); 00235 } 00236 00237 bool canSkipToPos(size_t pos) const { 00238 // pos can be skipped to if it is a valid address or one byte past the end. 00239 return pos == 0 || BitStream->getBitcodeBytes().isValidAddress( 00240 static_cast<uint64_t>(pos - 1)); 00241 } 00242 00243 uint32_t getWord(size_t pos) { 00244 uint8_t buf[4] = { 0xFF, 0xFF, 0xFF, 0xFF }; 00245 BitStream->getBitcodeBytes().readBytes(pos, sizeof(buf), buf); 00246 return *reinterpret_cast<support::ulittle32_t *>(buf); 00247 } 00248 00249 bool AtEndOfStream() { 00250 return BitsInCurWord == 0 && isEndPos(NextChar); 00251 } 00252 00253 /// getAbbrevIDWidth - Return the number of bits used to encode an abbrev #. 00254 unsigned getAbbrevIDWidth() const { return CurCodeSize; } 00255 00256 /// GetCurrentBitNo - Return the bit # of the bit we are reading. 00257 uint64_t GetCurrentBitNo() const { 00258 return NextChar*CHAR_BIT - BitsInCurWord; 00259 } 00260 00261 BitstreamReader *getBitStreamReader() { 00262 return BitStream; 00263 } 00264 const BitstreamReader *getBitStreamReader() const { 00265 return BitStream; 00266 } 00267 00268 /// Flags that modify the behavior of advance(). 00269 enum { 00270 /// AF_DontPopBlockAtEnd - If this flag is used, the advance() method does 00271 /// not automatically pop the block scope when the end of a block is 00272 /// reached. 00273 AF_DontPopBlockAtEnd = 1, 00274 00275 /// AF_DontAutoprocessAbbrevs - If this flag is used, abbrev entries are 00276 /// returned just like normal records. 00277 AF_DontAutoprocessAbbrevs = 2 00278 }; 00279 00280 /// advance - Advance the current bitstream, returning the next entry in the 00281 /// stream. 00282 BitstreamEntry advance(unsigned Flags = 0) { 00283 while (1) { 00284 unsigned Code = ReadCode(); 00285 if (Code == bitc::END_BLOCK) { 00286 // Pop the end of the block unless Flags tells us not to. 00287 if (!(Flags & AF_DontPopBlockAtEnd) && ReadBlockEnd()) 00288 return BitstreamEntry::getError(); 00289 return BitstreamEntry::getEndBlock(); 00290 } 00291 00292 if (Code == bitc::ENTER_SUBBLOCK) 00293 return BitstreamEntry::getSubBlock(ReadSubBlockID()); 00294 00295 if (Code == bitc::DEFINE_ABBREV && 00296 !(Flags & AF_DontAutoprocessAbbrevs)) { 00297 // We read and accumulate abbrev's, the client can't do anything with 00298 // them anyway. 00299 ReadAbbrevRecord(); 00300 continue; 00301 } 00302 00303 return BitstreamEntry::getRecord(Code); 00304 } 00305 } 00306 00307 /// advanceSkippingSubblocks - This is a convenience function for clients that 00308 /// don't expect any subblocks. This just skips over them automatically. 00309 BitstreamEntry advanceSkippingSubblocks(unsigned Flags = 0) { 00310 while (1) { 00311 // If we found a normal entry, return it. 00312 BitstreamEntry Entry = advance(Flags); 00313 if (Entry.Kind != BitstreamEntry::SubBlock) 00314 return Entry; 00315 00316 // If we found a sub-block, just skip over it and check the next entry. 00317 if (SkipBlock()) 00318 return BitstreamEntry::getError(); 00319 } 00320 } 00321 00322 /// JumpToBit - Reset the stream to the specified bit number. 00323 void JumpToBit(uint64_t BitNo) { 00324 uintptr_t ByteNo = uintptr_t(BitNo/8) & ~(sizeof(word_t)-1); 00325 unsigned WordBitNo = unsigned(BitNo & (sizeof(word_t)*8-1)); 00326 assert(canSkipToPos(ByteNo) && "Invalid location"); 00327 00328 // Move the cursor to the right word. 00329 NextChar = ByteNo; 00330 BitsInCurWord = 0; 00331 CurWord = 0; 00332 00333 // Skip over any bits that are already consumed. 00334 if (WordBitNo) { 00335 if (sizeof(word_t) > 4) 00336 Read64(WordBitNo); 00337 else 00338 Read(WordBitNo); 00339 } 00340 } 00341 00342 00343 uint32_t Read(unsigned NumBits) { 00344 assert(NumBits && NumBits <= 32 && 00345 "Cannot return zero or more than 32 bits!"); 00346 00347 // If the field is fully contained by CurWord, return it quickly. 00348 if (BitsInCurWord >= NumBits) { 00349 uint32_t R = uint32_t(CurWord) & (~0U >> (32-NumBits)); 00350 CurWord >>= NumBits; 00351 BitsInCurWord -= NumBits; 00352 return R; 00353 } 00354 00355 // If we run out of data, stop at the end of the stream. 00356 if (isEndPos(NextChar)) { 00357 CurWord = 0; 00358 BitsInCurWord = 0; 00359 return 0; 00360 } 00361 00362 uint32_t R = uint32_t(CurWord); 00363 00364 // Read the next word from the stream. 00365 uint8_t Array[sizeof(word_t)] = {0}; 00366 00367 BitStream->getBitcodeBytes().readBytes(NextChar, sizeof(Array), Array); 00368 00369 // Handle big-endian byte-swapping if necessary. 00370 support::detail::packed_endian_specific_integral 00371 <word_t, support::little, support::unaligned> EndianValue; 00372 memcpy(&EndianValue, Array, sizeof(Array)); 00373 00374 CurWord = EndianValue; 00375 00376 NextChar += sizeof(word_t); 00377 00378 // Extract NumBits-BitsInCurWord from what we just read. 00379 unsigned BitsLeft = NumBits-BitsInCurWord; 00380 00381 // Be careful here, BitsLeft is in the range [1..32]/[1..64] inclusive. 00382 R |= uint32_t((CurWord & (word_t(~0ULL) >> (sizeof(word_t)*8-BitsLeft))) 00383 << BitsInCurWord); 00384 00385 // BitsLeft bits have just been used up from CurWord. BitsLeft is in the 00386 // range [1..32]/[1..64] so be careful how we shift. 00387 if (BitsLeft != sizeof(word_t)*8) 00388 CurWord >>= BitsLeft; 00389 else 00390 CurWord = 0; 00391 BitsInCurWord = sizeof(word_t)*8-BitsLeft; 00392 return R; 00393 } 00394 00395 uint64_t Read64(unsigned NumBits) { 00396 if (NumBits <= 32) return Read(NumBits); 00397 00398 uint64_t V = Read(32); 00399 return V | (uint64_t)Read(NumBits-32) << 32; 00400 } 00401 00402 uint32_t ReadVBR(unsigned NumBits) { 00403 uint32_t Piece = Read(NumBits); 00404 if ((Piece & (1U << (NumBits-1))) == 0) 00405 return Piece; 00406 00407 uint32_t Result = 0; 00408 unsigned NextBit = 0; 00409 while (1) { 00410 Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit; 00411 00412 if ((Piece & (1U << (NumBits-1))) == 0) 00413 return Result; 00414 00415 NextBit += NumBits-1; 00416 Piece = Read(NumBits); 00417 } 00418 } 00419 00420 // ReadVBR64 - Read a VBR that may have a value up to 64-bits in size. The 00421 // chunk size of the VBR must still be <= 32 bits though. 00422 uint64_t ReadVBR64(unsigned NumBits) { 00423 uint32_t Piece = Read(NumBits); 00424 if ((Piece & (1U << (NumBits-1))) == 0) 00425 return uint64_t(Piece); 00426 00427 uint64_t Result = 0; 00428 unsigned NextBit = 0; 00429 while (1) { 00430 Result |= uint64_t(Piece & ((1U << (NumBits-1))-1)) << NextBit; 00431 00432 if ((Piece & (1U << (NumBits-1))) == 0) 00433 return Result; 00434 00435 NextBit += NumBits-1; 00436 Piece = Read(NumBits); 00437 } 00438 } 00439 00440 private: 00441 void SkipToFourByteBoundary() { 00442 // If word_t is 64-bits and if we've read less than 32 bits, just dump 00443 // the bits we have up to the next 32-bit boundary. 00444 if (sizeof(word_t) > 4 && 00445 BitsInCurWord >= 32) { 00446 CurWord >>= BitsInCurWord-32; 00447 BitsInCurWord = 32; 00448 return; 00449 } 00450 00451 BitsInCurWord = 0; 00452 CurWord = 0; 00453 } 00454 public: 00455 00456 unsigned ReadCode() { 00457 return Read(CurCodeSize); 00458 } 00459 00460 00461 // Block header: 00462 // [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen] 00463 00464 /// ReadSubBlockID - Having read the ENTER_SUBBLOCK code, read the BlockID for 00465 /// the block. 00466 unsigned ReadSubBlockID() { 00467 return ReadVBR(bitc::BlockIDWidth); 00468 } 00469 00470 /// SkipBlock - Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip 00471 /// over the body of this block. If the block record is malformed, return 00472 /// true. 00473 bool SkipBlock() { 00474 // Read and ignore the codelen value. Since we are skipping this block, we 00475 // don't care what code widths are used inside of it. 00476 ReadVBR(bitc::CodeLenWidth); 00477 SkipToFourByteBoundary(); 00478 unsigned NumFourBytes = Read(bitc::BlockSizeWidth); 00479 00480 // Check that the block wasn't partially defined, and that the offset isn't 00481 // bogus. 00482 size_t SkipTo = GetCurrentBitNo() + NumFourBytes*4*8; 00483 if (AtEndOfStream() || !canSkipToPos(SkipTo/8)) 00484 return true; 00485 00486 JumpToBit(SkipTo); 00487 return false; 00488 } 00489 00490 /// EnterSubBlock - Having read the ENTER_SUBBLOCK abbrevid, enter 00491 /// the block, and return true if the block has an error. 00492 bool EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = nullptr); 00493 00494 bool ReadBlockEnd() { 00495 if (BlockScope.empty()) return true; 00496 00497 // Block tail: 00498 // [END_BLOCK, <align4bytes>] 00499 SkipToFourByteBoundary(); 00500 00501 popBlockScope(); 00502 return false; 00503 } 00504 00505 private: 00506 00507 void popBlockScope() { 00508 CurCodeSize = BlockScope.back().PrevCodeSize; 00509 00510 CurAbbrevs = std::move(BlockScope.back().PrevAbbrevs); 00511 BlockScope.pop_back(); 00512 } 00513 00514 //===--------------------------------------------------------------------===// 00515 // Record Processing 00516 //===--------------------------------------------------------------------===// 00517 00518 private: 00519 void readAbbreviatedLiteral(const BitCodeAbbrevOp &Op, 00520 SmallVectorImpl<uint64_t> &Vals); 00521 void readAbbreviatedField(const BitCodeAbbrevOp &Op, 00522 SmallVectorImpl<uint64_t> &Vals); 00523 void skipAbbreviatedField(const BitCodeAbbrevOp &Op); 00524 00525 public: 00526 00527 /// getAbbrev - Return the abbreviation for the specified AbbrevId. 00528 const BitCodeAbbrev *getAbbrev(unsigned AbbrevID) { 00529 unsigned AbbrevNo = AbbrevID-bitc::FIRST_APPLICATION_ABBREV; 00530 assert(AbbrevNo < CurAbbrevs.size() && "Invalid abbrev #!"); 00531 return CurAbbrevs[AbbrevNo].get(); 00532 } 00533 00534 /// skipRecord - Read the current record and discard it. 00535 void skipRecord(unsigned AbbrevID); 00536 00537 unsigned readRecord(unsigned AbbrevID, SmallVectorImpl<uint64_t> &Vals, 00538 StringRef *Blob = nullptr); 00539 00540 //===--------------------------------------------------------------------===// 00541 // Abbrev Processing 00542 //===--------------------------------------------------------------------===// 00543 void ReadAbbrevRecord(); 00544 00545 bool ReadBlockInfoBlock(); 00546 }; 00547 00548 } // End llvm namespace 00549 00550 #endif