LLVM API Documentation

BranchProbabilityInfo.cpp
Go to the documentation of this file.
00001 //===-- BranchProbabilityInfo.cpp - Branch Probability Analysis -----------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // Loops should be simplified before this analysis.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "llvm/Analysis/BranchProbabilityInfo.h"
00015 #include "llvm/ADT/PostOrderIterator.h"
00016 #include "llvm/Analysis/LoopInfo.h"
00017 #include "llvm/IR/CFG.h"
00018 #include "llvm/IR/Constants.h"
00019 #include "llvm/IR/Function.h"
00020 #include "llvm/IR/Instructions.h"
00021 #include "llvm/IR/LLVMContext.h"
00022 #include "llvm/IR/Metadata.h"
00023 #include "llvm/Support/Debug.h"
00024 
00025 using namespace llvm;
00026 
00027 #define DEBUG_TYPE "branch-prob"
00028 
00029 INITIALIZE_PASS_BEGIN(BranchProbabilityInfo, "branch-prob",
00030                       "Branch Probability Analysis", false, true)
00031 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
00032 INITIALIZE_PASS_END(BranchProbabilityInfo, "branch-prob",
00033                     "Branch Probability Analysis", false, true)
00034 
00035 char BranchProbabilityInfo::ID = 0;
00036 
00037 // Weights are for internal use only. They are used by heuristics to help to
00038 // estimate edges' probability. Example:
00039 //
00040 // Using "Loop Branch Heuristics" we predict weights of edges for the
00041 // block BB2.
00042 //         ...
00043 //          |
00044 //          V
00045 //         BB1<-+
00046 //          |   |
00047 //          |   | (Weight = 124)
00048 //          V   |
00049 //         BB2--+
00050 //          |
00051 //          | (Weight = 4)
00052 //          V
00053 //         BB3
00054 //
00055 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
00056 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
00057 static const uint32_t LBH_TAKEN_WEIGHT = 124;
00058 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
00059 
00060 /// \brief Unreachable-terminating branch taken weight.
00061 ///
00062 /// This is the weight for a branch being taken to a block that terminates
00063 /// (eventually) in unreachable. These are predicted as unlikely as possible.
00064 static const uint32_t UR_TAKEN_WEIGHT = 1;
00065 
00066 /// \brief Unreachable-terminating branch not-taken weight.
00067 ///
00068 /// This is the weight for a branch not being taken toward a block that
00069 /// terminates (eventually) in unreachable. Such a branch is essentially never
00070 /// taken. Set the weight to an absurdly high value so that nested loops don't
00071 /// easily subsume it.
00072 static const uint32_t UR_NONTAKEN_WEIGHT = 1024*1024 - 1;
00073 
00074 /// \brief Weight for a branch taken going into a cold block.
00075 ///
00076 /// This is the weight for a branch taken toward a block marked
00077 /// cold.  A block is marked cold if it's postdominated by a
00078 /// block containing a call to a cold function.  Cold functions
00079 /// are those marked with attribute 'cold'.
00080 static const uint32_t CC_TAKEN_WEIGHT = 4;
00081 
00082 /// \brief Weight for a branch not-taken into a cold block.
00083 ///
00084 /// This is the weight for a branch not taken toward a block marked
00085 /// cold.
00086 static const uint32_t CC_NONTAKEN_WEIGHT = 64;
00087 
00088 static const uint32_t PH_TAKEN_WEIGHT = 20;
00089 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
00090 
00091 static const uint32_t ZH_TAKEN_WEIGHT = 20;
00092 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
00093 
00094 static const uint32_t FPH_TAKEN_WEIGHT = 20;
00095 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
00096 
00097 /// \brief Invoke-terminating normal branch taken weight
00098 ///
00099 /// This is the weight for branching to the normal destination of an invoke
00100 /// instruction. We expect this to happen most of the time. Set the weight to an
00101 /// absurdly high value so that nested loops subsume it.
00102 static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
00103 
00104 /// \brief Invoke-terminating normal branch not-taken weight.
00105 ///
00106 /// This is the weight for branching to the unwind destination of an invoke
00107 /// instruction. This is essentially never taken.
00108 static const uint32_t IH_NONTAKEN_WEIGHT = 1;
00109 
00110 // Standard weight value. Used when none of the heuristics set weight for
00111 // the edge.
00112 static const uint32_t NORMAL_WEIGHT = 16;
00113 
00114 // Minimum weight of an edge. Please note, that weight is NEVER 0.
00115 static const uint32_t MIN_WEIGHT = 1;
00116 
00117 static uint32_t getMaxWeightFor(BasicBlock *BB) {
00118   return UINT32_MAX / BB->getTerminator()->getNumSuccessors();
00119 }
00120 
00121 
00122 /// \brief Calculate edge weights for successors lead to unreachable.
00123 ///
00124 /// Predict that a successor which leads necessarily to an
00125 /// unreachable-terminated block as extremely unlikely.
00126 bool BranchProbabilityInfo::calcUnreachableHeuristics(BasicBlock *BB) {
00127   TerminatorInst *TI = BB->getTerminator();
00128   if (TI->getNumSuccessors() == 0) {
00129     if (isa<UnreachableInst>(TI))
00130       PostDominatedByUnreachable.insert(BB);
00131     return false;
00132   }
00133 
00134   SmallVector<unsigned, 4> UnreachableEdges;
00135   SmallVector<unsigned, 4> ReachableEdges;
00136 
00137   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
00138     if (PostDominatedByUnreachable.count(*I))
00139       UnreachableEdges.push_back(I.getSuccessorIndex());
00140     else
00141       ReachableEdges.push_back(I.getSuccessorIndex());
00142   }
00143 
00144   // If all successors are in the set of blocks post-dominated by unreachable,
00145   // this block is too.
00146   if (UnreachableEdges.size() == TI->getNumSuccessors())
00147     PostDominatedByUnreachable.insert(BB);
00148 
00149   // Skip probabilities if this block has a single successor or if all were
00150   // reachable.
00151   if (TI->getNumSuccessors() == 1 || UnreachableEdges.empty())
00152     return false;
00153 
00154   uint32_t UnreachableWeight =
00155     std::max(UR_TAKEN_WEIGHT / (unsigned)UnreachableEdges.size(), MIN_WEIGHT);
00156   for (SmallVectorImpl<unsigned>::iterator I = UnreachableEdges.begin(),
00157                                            E = UnreachableEdges.end();
00158        I != E; ++I)
00159     setEdgeWeight(BB, *I, UnreachableWeight);
00160 
00161   if (ReachableEdges.empty())
00162     return true;
00163   uint32_t ReachableWeight =
00164     std::max(UR_NONTAKEN_WEIGHT / (unsigned)ReachableEdges.size(),
00165              NORMAL_WEIGHT);
00166   for (SmallVectorImpl<unsigned>::iterator I = ReachableEdges.begin(),
00167                                            E = ReachableEdges.end();
00168        I != E; ++I)
00169     setEdgeWeight(BB, *I, ReachableWeight);
00170 
00171   return true;
00172 }
00173 
00174 // Propagate existing explicit probabilities from either profile data or
00175 // 'expect' intrinsic processing.
00176 bool BranchProbabilityInfo::calcMetadataWeights(BasicBlock *BB) {
00177   TerminatorInst *TI = BB->getTerminator();
00178   if (TI->getNumSuccessors() == 1)
00179     return false;
00180   if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
00181     return false;
00182 
00183   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
00184   if (!WeightsNode)
00185     return false;
00186 
00187   // Ensure there are weights for all of the successors. Note that the first
00188   // operand to the metadata node is a name, not a weight.
00189   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
00190     return false;
00191 
00192   // Build up the final weights that will be used in a temporary buffer, but
00193   // don't add them until all weihts are present. Each weight value is clamped
00194   // to [1, getMaxWeightFor(BB)].
00195   uint32_t WeightLimit = getMaxWeightFor(BB);
00196   SmallVector<uint32_t, 2> Weights;
00197   Weights.reserve(TI->getNumSuccessors());
00198   for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
00199     ConstantInt *Weight = dyn_cast<ConstantInt>(WeightsNode->getOperand(i));
00200     if (!Weight)
00201       return false;
00202     Weights.push_back(
00203       std::max<uint32_t>(1, Weight->getLimitedValue(WeightLimit)));
00204   }
00205   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
00206   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
00207     setEdgeWeight(BB, i, Weights[i]);
00208 
00209   return true;
00210 }
00211 
00212 /// \brief Calculate edge weights for edges leading to cold blocks.
00213 ///
00214 /// A cold block is one post-dominated by  a block with a call to a
00215 /// cold function.  Those edges are unlikely to be taken, so we give
00216 /// them relatively low weight.
00217 ///
00218 /// Return true if we could compute the weights for cold edges.
00219 /// Return false, otherwise.
00220 bool BranchProbabilityInfo::calcColdCallHeuristics(BasicBlock *BB) {
00221   TerminatorInst *TI = BB->getTerminator();
00222   if (TI->getNumSuccessors() == 0)
00223     return false;
00224 
00225   // Determine which successors are post-dominated by a cold block.
00226   SmallVector<unsigned, 4> ColdEdges;
00227   SmallVector<unsigned, 4> NormalEdges;
00228   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
00229     if (PostDominatedByColdCall.count(*I))
00230       ColdEdges.push_back(I.getSuccessorIndex());
00231     else
00232       NormalEdges.push_back(I.getSuccessorIndex());
00233 
00234   // If all successors are in the set of blocks post-dominated by cold calls,
00235   // this block is in the set post-dominated by cold calls.
00236   if (ColdEdges.size() == TI->getNumSuccessors())
00237     PostDominatedByColdCall.insert(BB);
00238   else {
00239     // Otherwise, if the block itself contains a cold function, add it to the
00240     // set of blocks postdominated by a cold call.
00241     assert(!PostDominatedByColdCall.count(BB));
00242     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
00243       if (CallInst *CI = dyn_cast<CallInst>(I))
00244         if (CI->hasFnAttr(Attribute::Cold)) {
00245           PostDominatedByColdCall.insert(BB);
00246           break;
00247         }
00248   }
00249 
00250   // Skip probabilities if this block has a single successor.
00251   if (TI->getNumSuccessors() == 1 || ColdEdges.empty())
00252     return false;
00253 
00254   uint32_t ColdWeight =
00255       std::max(CC_TAKEN_WEIGHT / (unsigned) ColdEdges.size(), MIN_WEIGHT);
00256   for (SmallVectorImpl<unsigned>::iterator I = ColdEdges.begin(),
00257                                            E = ColdEdges.end();
00258        I != E; ++I)
00259     setEdgeWeight(BB, *I, ColdWeight);
00260 
00261   if (NormalEdges.empty())
00262     return true;
00263   uint32_t NormalWeight = std::max(
00264       CC_NONTAKEN_WEIGHT / (unsigned) NormalEdges.size(), NORMAL_WEIGHT);
00265   for (SmallVectorImpl<unsigned>::iterator I = NormalEdges.begin(),
00266                                            E = NormalEdges.end();
00267        I != E; ++I)
00268     setEdgeWeight(BB, *I, NormalWeight);
00269 
00270   return true;
00271 }
00272 
00273 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
00274 // between two pointer or pointer and NULL will fail.
00275 bool BranchProbabilityInfo::calcPointerHeuristics(BasicBlock *BB) {
00276   BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
00277   if (!BI || !BI->isConditional())
00278     return false;
00279 
00280   Value *Cond = BI->getCondition();
00281   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
00282   if (!CI || !CI->isEquality())
00283     return false;
00284 
00285   Value *LHS = CI->getOperand(0);
00286 
00287   if (!LHS->getType()->isPointerTy())
00288     return false;
00289 
00290   assert(CI->getOperand(1)->getType()->isPointerTy());
00291 
00292   // p != 0   ->   isProb = true
00293   // p == 0   ->   isProb = false
00294   // p != q   ->   isProb = true
00295   // p == q   ->   isProb = false;
00296   unsigned TakenIdx = 0, NonTakenIdx = 1;
00297   bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
00298   if (!isProb)
00299     std::swap(TakenIdx, NonTakenIdx);
00300 
00301   setEdgeWeight(BB, TakenIdx, PH_TAKEN_WEIGHT);
00302   setEdgeWeight(BB, NonTakenIdx, PH_NONTAKEN_WEIGHT);
00303   return true;
00304 }
00305 
00306 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
00307 // as taken, exiting edges as not-taken.
00308 bool BranchProbabilityInfo::calcLoopBranchHeuristics(BasicBlock *BB) {
00309   Loop *L = LI->getLoopFor(BB);
00310   if (!L)
00311     return false;
00312 
00313   SmallVector<unsigned, 8> BackEdges;
00314   SmallVector<unsigned, 8> ExitingEdges;
00315   SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
00316 
00317   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
00318     if (!L->contains(*I))
00319       ExitingEdges.push_back(I.getSuccessorIndex());
00320     else if (L->getHeader() == *I)
00321       BackEdges.push_back(I.getSuccessorIndex());
00322     else
00323       InEdges.push_back(I.getSuccessorIndex());
00324   }
00325 
00326   if (BackEdges.empty() && ExitingEdges.empty())
00327     return false;
00328 
00329   if (uint32_t numBackEdges = BackEdges.size()) {
00330     uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges;
00331     if (backWeight < NORMAL_WEIGHT)
00332       backWeight = NORMAL_WEIGHT;
00333 
00334     for (SmallVectorImpl<unsigned>::iterator EI = BackEdges.begin(),
00335          EE = BackEdges.end(); EI != EE; ++EI) {
00336       setEdgeWeight(BB, *EI, backWeight);
00337     }
00338   }
00339 
00340   if (uint32_t numInEdges = InEdges.size()) {
00341     uint32_t inWeight = LBH_TAKEN_WEIGHT / numInEdges;
00342     if (inWeight < NORMAL_WEIGHT)
00343       inWeight = NORMAL_WEIGHT;
00344 
00345     for (SmallVectorImpl<unsigned>::iterator EI = InEdges.begin(),
00346          EE = InEdges.end(); EI != EE; ++EI) {
00347       setEdgeWeight(BB, *EI, inWeight);
00348     }
00349   }
00350 
00351   if (uint32_t numExitingEdges = ExitingEdges.size()) {
00352     uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numExitingEdges;
00353     if (exitWeight < MIN_WEIGHT)
00354       exitWeight = MIN_WEIGHT;
00355 
00356     for (SmallVectorImpl<unsigned>::iterator EI = ExitingEdges.begin(),
00357          EE = ExitingEdges.end(); EI != EE; ++EI) {
00358       setEdgeWeight(BB, *EI, exitWeight);
00359     }
00360   }
00361 
00362   return true;
00363 }
00364 
00365 bool BranchProbabilityInfo::calcZeroHeuristics(BasicBlock *BB) {
00366   BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
00367   if (!BI || !BI->isConditional())
00368     return false;
00369 
00370   Value *Cond = BI->getCondition();
00371   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
00372   if (!CI)
00373     return false;
00374 
00375   Value *RHS = CI->getOperand(1);
00376   ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
00377   if (!CV)
00378     return false;
00379 
00380   bool isProb;
00381   if (CV->isZero()) {
00382     switch (CI->getPredicate()) {
00383     case CmpInst::ICMP_EQ:
00384       // X == 0   ->  Unlikely
00385       isProb = false;
00386       break;
00387     case CmpInst::ICMP_NE:
00388       // X != 0   ->  Likely
00389       isProb = true;
00390       break;
00391     case CmpInst::ICMP_SLT:
00392       // X < 0   ->  Unlikely
00393       isProb = false;
00394       break;
00395     case CmpInst::ICMP_SGT:
00396       // X > 0   ->  Likely
00397       isProb = true;
00398       break;
00399     default:
00400       return false;
00401     }
00402   } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
00403     // InstCombine canonicalizes X <= 0 into X < 1.
00404     // X <= 0   ->  Unlikely
00405     isProb = false;
00406   } else if (CV->isAllOnesValue()) {
00407     switch (CI->getPredicate()) {
00408     case CmpInst::ICMP_EQ:
00409       // X == -1  ->  Unlikely
00410       isProb = false;
00411       break;
00412     case CmpInst::ICMP_NE:
00413       // X != -1  ->  Likely
00414       isProb = true;
00415       break;
00416     case CmpInst::ICMP_SGT:
00417       // InstCombine canonicalizes X >= 0 into X > -1.
00418       // X >= 0   ->  Likely
00419       isProb = true;
00420       break;
00421     default:
00422       return false;
00423     }
00424   } else {
00425     return false;
00426   }
00427 
00428   unsigned TakenIdx = 0, NonTakenIdx = 1;
00429 
00430   if (!isProb)
00431     std::swap(TakenIdx, NonTakenIdx);
00432 
00433   setEdgeWeight(BB, TakenIdx, ZH_TAKEN_WEIGHT);
00434   setEdgeWeight(BB, NonTakenIdx, ZH_NONTAKEN_WEIGHT);
00435 
00436   return true;
00437 }
00438 
00439 bool BranchProbabilityInfo::calcFloatingPointHeuristics(BasicBlock *BB) {
00440   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
00441   if (!BI || !BI->isConditional())
00442     return false;
00443 
00444   Value *Cond = BI->getCondition();
00445   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
00446   if (!FCmp)
00447     return false;
00448 
00449   bool isProb;
00450   if (FCmp->isEquality()) {
00451     // f1 == f2 -> Unlikely
00452     // f1 != f2 -> Likely
00453     isProb = !FCmp->isTrueWhenEqual();
00454   } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
00455     // !isnan -> Likely
00456     isProb = true;
00457   } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
00458     // isnan -> Unlikely
00459     isProb = false;
00460   } else {
00461     return false;
00462   }
00463 
00464   unsigned TakenIdx = 0, NonTakenIdx = 1;
00465 
00466   if (!isProb)
00467     std::swap(TakenIdx, NonTakenIdx);
00468 
00469   setEdgeWeight(BB, TakenIdx, FPH_TAKEN_WEIGHT);
00470   setEdgeWeight(BB, NonTakenIdx, FPH_NONTAKEN_WEIGHT);
00471 
00472   return true;
00473 }
00474 
00475 bool BranchProbabilityInfo::calcInvokeHeuristics(BasicBlock *BB) {
00476   InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
00477   if (!II)
00478     return false;
00479 
00480   setEdgeWeight(BB, 0/*Index for Normal*/, IH_TAKEN_WEIGHT);
00481   setEdgeWeight(BB, 1/*Index for Unwind*/, IH_NONTAKEN_WEIGHT);
00482   return true;
00483 }
00484 
00485 void BranchProbabilityInfo::getAnalysisUsage(AnalysisUsage &AU) const {
00486   AU.addRequired<LoopInfo>();
00487   AU.setPreservesAll();
00488 }
00489 
00490 bool BranchProbabilityInfo::runOnFunction(Function &F) {
00491   DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
00492                << " ----\n\n");
00493   LastF = &F; // Store the last function we ran on for printing.
00494   LI = &getAnalysis<LoopInfo>();
00495   assert(PostDominatedByUnreachable.empty());
00496   assert(PostDominatedByColdCall.empty());
00497 
00498   // Walk the basic blocks in post-order so that we can build up state about
00499   // the successors of a block iteratively.
00500   for (po_iterator<BasicBlock *> I = po_begin(&F.getEntryBlock()),
00501                                  E = po_end(&F.getEntryBlock());
00502        I != E; ++I) {
00503     DEBUG(dbgs() << "Computing probabilities for " << I->getName() << "\n");
00504     if (calcUnreachableHeuristics(*I))
00505       continue;
00506     if (calcMetadataWeights(*I))
00507       continue;
00508     if (calcColdCallHeuristics(*I))
00509       continue;
00510     if (calcLoopBranchHeuristics(*I))
00511       continue;
00512     if (calcPointerHeuristics(*I))
00513       continue;
00514     if (calcZeroHeuristics(*I))
00515       continue;
00516     if (calcFloatingPointHeuristics(*I))
00517       continue;
00518     calcInvokeHeuristics(*I);
00519   }
00520 
00521   PostDominatedByUnreachable.clear();
00522   PostDominatedByColdCall.clear();
00523   return false;
00524 }
00525 
00526 void BranchProbabilityInfo::print(raw_ostream &OS, const Module *) const {
00527   OS << "---- Branch Probabilities ----\n";
00528   // We print the probabilities from the last function the analysis ran over,
00529   // or the function it is currently running over.
00530   assert(LastF && "Cannot print prior to running over a function");
00531   for (Function::const_iterator BI = LastF->begin(), BE = LastF->end();
00532        BI != BE; ++BI) {
00533     for (succ_const_iterator SI = succ_begin(BI), SE = succ_end(BI);
00534          SI != SE; ++SI) {
00535       printEdgeProbability(OS << "  ", BI, *SI);
00536     }
00537   }
00538 }
00539 
00540 uint32_t BranchProbabilityInfo::getSumForBlock(const BasicBlock *BB) const {
00541   uint32_t Sum = 0;
00542 
00543   for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
00544     uint32_t Weight = getEdgeWeight(BB, I.getSuccessorIndex());
00545     uint32_t PrevSum = Sum;
00546 
00547     Sum += Weight;
00548     assert(Sum > PrevSum); (void) PrevSum;
00549   }
00550 
00551   return Sum;
00552 }
00553 
00554 bool BranchProbabilityInfo::
00555 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
00556   // Hot probability is at least 4/5 = 80%
00557   // FIXME: Compare against a static "hot" BranchProbability.
00558   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
00559 }
00560 
00561 BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const {
00562   uint32_t Sum = 0;
00563   uint32_t MaxWeight = 0;
00564   BasicBlock *MaxSucc = nullptr;
00565 
00566   for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
00567     BasicBlock *Succ = *I;
00568     uint32_t Weight = getEdgeWeight(BB, Succ);
00569     uint32_t PrevSum = Sum;
00570 
00571     Sum += Weight;
00572     assert(Sum > PrevSum); (void) PrevSum;
00573 
00574     if (Weight > MaxWeight) {
00575       MaxWeight = Weight;
00576       MaxSucc = Succ;
00577     }
00578   }
00579 
00580   // Hot probability is at least 4/5 = 80%
00581   if (BranchProbability(MaxWeight, Sum) > BranchProbability(4, 5))
00582     return MaxSucc;
00583 
00584   return nullptr;
00585 }
00586 
00587 /// Get the raw edge weight for the edge. If can't find it, return
00588 /// DEFAULT_WEIGHT value. Here an edge is specified using PredBlock and an index
00589 /// to the successors.
00590 uint32_t BranchProbabilityInfo::
00591 getEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors) const {
00592   DenseMap<Edge, uint32_t>::const_iterator I =
00593       Weights.find(std::make_pair(Src, IndexInSuccessors));
00594 
00595   if (I != Weights.end())
00596     return I->second;
00597 
00598   return DEFAULT_WEIGHT;
00599 }
00600 
00601 uint32_t BranchProbabilityInfo::getEdgeWeight(const BasicBlock *Src,
00602                                               succ_const_iterator Dst) const {
00603   return getEdgeWeight(Src, Dst.getSuccessorIndex());
00604 }
00605 
00606 /// Get the raw edge weight calculated for the block pair. This returns the sum
00607 /// of all raw edge weights from Src to Dst.
00608 uint32_t BranchProbabilityInfo::
00609 getEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst) const {
00610   uint32_t Weight = 0;
00611   DenseMap<Edge, uint32_t>::const_iterator MapI;
00612   for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
00613     if (*I == Dst) {
00614       MapI = Weights.find(std::make_pair(Src, I.getSuccessorIndex()));
00615       if (MapI != Weights.end())
00616         Weight += MapI->second;
00617     }
00618   return (Weight == 0) ? DEFAULT_WEIGHT : Weight;
00619 }
00620 
00621 /// Set the edge weight for a given edge specified by PredBlock and an index
00622 /// to the successors.
00623 void BranchProbabilityInfo::
00624 setEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors,
00625               uint32_t Weight) {
00626   Weights[std::make_pair(Src, IndexInSuccessors)] = Weight;
00627   DEBUG(dbgs() << "set edge " << Src->getName() << " -> "
00628                << IndexInSuccessors << " successor weight to "
00629                << Weight << "\n");
00630 }
00631 
00632 /// Get an edge's probability, relative to other out-edges from Src.
00633 BranchProbability BranchProbabilityInfo::
00634 getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const {
00635   uint32_t N = getEdgeWeight(Src, IndexInSuccessors);
00636   uint32_t D = getSumForBlock(Src);
00637 
00638   return BranchProbability(N, D);
00639 }
00640 
00641 /// Get the probability of going from Src to Dst. It returns the sum of all
00642 /// probabilities for edges from Src to Dst.
00643 BranchProbability BranchProbabilityInfo::
00644 getEdgeProbability(const BasicBlock *Src, const BasicBlock *Dst) const {
00645 
00646   uint32_t N = getEdgeWeight(Src, Dst);
00647   uint32_t D = getSumForBlock(Src);
00648 
00649   return BranchProbability(N, D);
00650 }
00651 
00652 raw_ostream &
00653 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
00654                                             const BasicBlock *Src,
00655                                             const BasicBlock *Dst) const {
00656 
00657   const BranchProbability Prob = getEdgeProbability(Src, Dst);
00658   OS << "edge " << Src->getName() << " -> " << Dst->getName()
00659      << " probability is " << Prob
00660      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
00661 
00662   return OS;
00663 }