LLVM API Documentation
00001 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by 00011 // inserting a dummy basic block. This pass may be "required" by passes that 00012 // cannot deal with critical edges. For this usage, the structure type is 00013 // forward declared. This pass obviously invalidates the CFG, but can update 00014 // dominator trees. 00015 // 00016 //===----------------------------------------------------------------------===// 00017 00018 #include "llvm/Transforms/Scalar.h" 00019 #include "llvm/ADT/SmallVector.h" 00020 #include "llvm/ADT/Statistic.h" 00021 #include "llvm/Analysis/CFG.h" 00022 #include "llvm/Analysis/LoopInfo.h" 00023 #include "llvm/IR/CFG.h" 00024 #include "llvm/IR/Dominators.h" 00025 #include "llvm/IR/Function.h" 00026 #include "llvm/IR/Instructions.h" 00027 #include "llvm/IR/Type.h" 00028 #include "llvm/Support/ErrorHandling.h" 00029 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 00030 using namespace llvm; 00031 00032 #define DEBUG_TYPE "break-crit-edges" 00033 00034 STATISTIC(NumBroken, "Number of blocks inserted"); 00035 00036 namespace { 00037 struct BreakCriticalEdges : public FunctionPass { 00038 static char ID; // Pass identification, replacement for typeid 00039 BreakCriticalEdges() : FunctionPass(ID) { 00040 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry()); 00041 } 00042 00043 bool runOnFunction(Function &F) override; 00044 00045 void getAnalysisUsage(AnalysisUsage &AU) const override { 00046 AU.addPreserved<DominatorTreeWrapperPass>(); 00047 AU.addPreserved<LoopInfo>(); 00048 00049 // No loop canonicalization guarantees are broken by this pass. 00050 AU.addPreservedID(LoopSimplifyID); 00051 } 00052 }; 00053 } 00054 00055 char BreakCriticalEdges::ID = 0; 00056 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges", 00057 "Break critical edges in CFG", false, false) 00058 00059 // Publicly exposed interface to pass... 00060 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID; 00061 FunctionPass *llvm::createBreakCriticalEdgesPass() { 00062 return new BreakCriticalEdges(); 00063 } 00064 00065 // runOnFunction - Loop over all of the edges in the CFG, breaking critical 00066 // edges as they are found. 00067 // 00068 bool BreakCriticalEdges::runOnFunction(Function &F) { 00069 bool Changed = false; 00070 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { 00071 TerminatorInst *TI = I->getTerminator(); 00072 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 00073 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 00074 if (SplitCriticalEdge(TI, i, this)) { 00075 ++NumBroken; 00076 Changed = true; 00077 } 00078 } 00079 00080 return Changed; 00081 } 00082 00083 //===----------------------------------------------------------------------===// 00084 // Implementation of the external critical edge manipulation functions 00085 //===----------------------------------------------------------------------===// 00086 00087 /// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form 00088 /// may require new PHIs in the new exit block. This function inserts the 00089 /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB 00090 /// is the new loop exit block, and DestBB is the old loop exit, now the 00091 /// successor of SplitBB. 00092 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 00093 BasicBlock *SplitBB, 00094 BasicBlock *DestBB) { 00095 // SplitBB shouldn't have anything non-trivial in it yet. 00096 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 00097 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!"); 00098 00099 // For each PHI in the destination block. 00100 for (BasicBlock::iterator I = DestBB->begin(); 00101 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 00102 unsigned Idx = PN->getBasicBlockIndex(SplitBB); 00103 Value *V = PN->getIncomingValue(Idx); 00104 00105 // If the input is a PHI which already satisfies LCSSA, don't create 00106 // a new one. 00107 if (const PHINode *VP = dyn_cast<PHINode>(V)) 00108 if (VP->getParent() == SplitBB) 00109 continue; 00110 00111 // Otherwise a new PHI is needed. Create one and populate it. 00112 PHINode *NewPN = 00113 PHINode::Create(PN->getType(), Preds.size(), "split", 00114 SplitBB->isLandingPad() ? 00115 SplitBB->begin() : SplitBB->getTerminator()); 00116 for (unsigned i = 0, e = Preds.size(); i != e; ++i) 00117 NewPN->addIncoming(V, Preds[i]); 00118 00119 // Update the original PHI. 00120 PN->setIncomingValue(Idx, NewPN); 00121 } 00122 } 00123 00124 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to 00125 /// split the critical edge. This will update DominatorTree information if it 00126 /// is available, thus calling this pass will not invalidate either of them. 00127 /// This returns the new block if the edge was split, null otherwise. 00128 /// 00129 /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the 00130 /// specified successor will be merged into the same critical edge block. 00131 /// This is most commonly interesting with switch instructions, which may 00132 /// have many edges to any one destination. This ensures that all edges to that 00133 /// dest go to one block instead of each going to a different block, but isn't 00134 /// the standard definition of a "critical edge". 00135 /// 00136 /// It is invalid to call this function on a critical edge that starts at an 00137 /// IndirectBrInst. Splitting these edges will almost always create an invalid 00138 /// program because the address of the new block won't be the one that is jumped 00139 /// to. 00140 /// 00141 BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, 00142 Pass *P, bool MergeIdenticalEdges, 00143 bool DontDeleteUselessPhis, 00144 bool SplitLandingPads) { 00145 if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return nullptr; 00146 00147 assert(!isa<IndirectBrInst>(TI) && 00148 "Cannot split critical edge from IndirectBrInst"); 00149 00150 BasicBlock *TIBB = TI->getParent(); 00151 BasicBlock *DestBB = TI->getSuccessor(SuccNum); 00152 00153 // Splitting the critical edge to a landing pad block is non-trivial. Don't do 00154 // it in this generic function. 00155 if (DestBB->isLandingPad()) return nullptr; 00156 00157 // Create a new basic block, linking it into the CFG. 00158 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(), 00159 TIBB->getName() + "." + DestBB->getName() + "_crit_edge"); 00160 // Create our unconditional branch. 00161 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB); 00162 NewBI->setDebugLoc(TI->getDebugLoc()); 00163 00164 // Branch to the new block, breaking the edge. 00165 TI->setSuccessor(SuccNum, NewBB); 00166 00167 // Insert the block into the function... right after the block TI lives in. 00168 Function &F = *TIBB->getParent(); 00169 Function::iterator FBBI = TIBB; 00170 F.getBasicBlockList().insert(++FBBI, NewBB); 00171 00172 // If there are any PHI nodes in DestBB, we need to update them so that they 00173 // merge incoming values from NewBB instead of from TIBB. 00174 { 00175 unsigned BBIdx = 0; 00176 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) { 00177 // We no longer enter through TIBB, now we come in through NewBB. 00178 // Revector exactly one entry in the PHI node that used to come from 00179 // TIBB to come from NewBB. 00180 PHINode *PN = cast<PHINode>(I); 00181 00182 // Reuse the previous value of BBIdx if it lines up. In cases where we 00183 // have multiple phi nodes with *lots* of predecessors, this is a speed 00184 // win because we don't have to scan the PHI looking for TIBB. This 00185 // happens because the BB list of PHI nodes are usually in the same 00186 // order. 00187 if (PN->getIncomingBlock(BBIdx) != TIBB) 00188 BBIdx = PN->getBasicBlockIndex(TIBB); 00189 PN->setIncomingBlock(BBIdx, NewBB); 00190 } 00191 } 00192 00193 // If there are any other edges from TIBB to DestBB, update those to go 00194 // through the split block, making those edges non-critical as well (and 00195 // reducing the number of phi entries in the DestBB if relevant). 00196 if (MergeIdenticalEdges) { 00197 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) { 00198 if (TI->getSuccessor(i) != DestBB) continue; 00199 00200 // Remove an entry for TIBB from DestBB phi nodes. 00201 DestBB->removePredecessor(TIBB, DontDeleteUselessPhis); 00202 00203 // We found another edge to DestBB, go to NewBB instead. 00204 TI->setSuccessor(i, NewBB); 00205 } 00206 } 00207 00208 00209 00210 // If we don't have a pass object, we can't update anything... 00211 if (!P) return NewBB; 00212 00213 DominatorTreeWrapperPass *DTWP = 00214 P->getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 00215 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 00216 LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>(); 00217 00218 // If we have nothing to update, just return. 00219 if (!DT && !LI) 00220 return NewBB; 00221 00222 // Now update analysis information. Since the only predecessor of NewBB is 00223 // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate 00224 // anything, as there are other successors of DestBB. However, if all other 00225 // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a 00226 // loop header) then NewBB dominates DestBB. 00227 SmallVector<BasicBlock*, 8> OtherPreds; 00228 00229 // If there is a PHI in the block, loop over predecessors with it, which is 00230 // faster than iterating pred_begin/end. 00231 if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 00232 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 00233 if (PN->getIncomingBlock(i) != NewBB) 00234 OtherPreds.push_back(PN->getIncomingBlock(i)); 00235 } else { 00236 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); 00237 I != E; ++I) { 00238 BasicBlock *P = *I; 00239 if (P != NewBB) 00240 OtherPreds.push_back(P); 00241 } 00242 } 00243 00244 bool NewBBDominatesDestBB = true; 00245 00246 // Should we update DominatorTree information? 00247 if (DT) { 00248 DomTreeNode *TINode = DT->getNode(TIBB); 00249 00250 // The new block is not the immediate dominator for any other nodes, but 00251 // TINode is the immediate dominator for the new node. 00252 // 00253 if (TINode) { // Don't break unreachable code! 00254 DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB); 00255 DomTreeNode *DestBBNode = nullptr; 00256 00257 // If NewBBDominatesDestBB hasn't been computed yet, do so with DT. 00258 if (!OtherPreds.empty()) { 00259 DestBBNode = DT->getNode(DestBB); 00260 while (!OtherPreds.empty() && NewBBDominatesDestBB) { 00261 if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back())) 00262 NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode); 00263 OtherPreds.pop_back(); 00264 } 00265 OtherPreds.clear(); 00266 } 00267 00268 // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it 00269 // doesn't dominate anything. 00270 if (NewBBDominatesDestBB) { 00271 if (!DestBBNode) DestBBNode = DT->getNode(DestBB); 00272 DT->changeImmediateDominator(DestBBNode, NewBBNode); 00273 } 00274 } 00275 } 00276 00277 // Update LoopInfo if it is around. 00278 if (LI) { 00279 if (Loop *TIL = LI->getLoopFor(TIBB)) { 00280 // If one or the other blocks were not in a loop, the new block is not 00281 // either, and thus LI doesn't need to be updated. 00282 if (Loop *DestLoop = LI->getLoopFor(DestBB)) { 00283 if (TIL == DestLoop) { 00284 // Both in the same loop, the NewBB joins loop. 00285 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase()); 00286 } else if (TIL->contains(DestLoop)) { 00287 // Edge from an outer loop to an inner loop. Add to the outer loop. 00288 TIL->addBasicBlockToLoop(NewBB, LI->getBase()); 00289 } else if (DestLoop->contains(TIL)) { 00290 // Edge from an inner loop to an outer loop. Add to the outer loop. 00291 DestLoop->addBasicBlockToLoop(NewBB, LI->getBase()); 00292 } else { 00293 // Edge from two loops with no containment relation. Because these 00294 // are natural loops, we know that the destination block must be the 00295 // header of its loop (adding a branch into a loop elsewhere would 00296 // create an irreducible loop). 00297 assert(DestLoop->getHeader() == DestBB && 00298 "Should not create irreducible loops!"); 00299 if (Loop *P = DestLoop->getParentLoop()) 00300 P->addBasicBlockToLoop(NewBB, LI->getBase()); 00301 } 00302 } 00303 // If TIBB is in a loop and DestBB is outside of that loop, we may need 00304 // to update LoopSimplify form and LCSSA form. 00305 if (!TIL->contains(DestBB) && 00306 P->mustPreserveAnalysisID(LoopSimplifyID)) { 00307 assert(!TIL->contains(NewBB) && 00308 "Split point for loop exit is contained in loop!"); 00309 00310 // Update LCSSA form in the newly created exit block. 00311 if (P->mustPreserveAnalysisID(LCSSAID)) 00312 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB); 00313 00314 // The only that we can break LoopSimplify form by splitting a critical 00315 // edge is if after the split there exists some edge from TIL to DestBB 00316 // *and* the only edge into DestBB from outside of TIL is that of 00317 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB 00318 // is the new exit block and it has no non-loop predecessors. If the 00319 // second isn't true, then DestBB was not in LoopSimplify form prior to 00320 // the split as it had a non-loop predecessor. In both of these cases, 00321 // the predecessor must be directly in TIL, not in a subloop, or again 00322 // LoopSimplify doesn't hold. 00323 SmallVector<BasicBlock *, 4> LoopPreds; 00324 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; 00325 ++I) { 00326 BasicBlock *P = *I; 00327 if (P == NewBB) 00328 continue; // The new block is known. 00329 if (LI->getLoopFor(P) != TIL) { 00330 // No need to re-simplify, it wasn't to start with. 00331 LoopPreds.clear(); 00332 break; 00333 } 00334 LoopPreds.push_back(P); 00335 } 00336 if (!LoopPreds.empty()) { 00337 assert(!DestBB->isLandingPad() && 00338 "We don't split edges to landing pads!"); 00339 BasicBlock *NewExitBB = 00340 SplitBlockPredecessors(DestBB, LoopPreds, "split", P); 00341 if (P->mustPreserveAnalysisID(LCSSAID)) 00342 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB); 00343 } 00344 } 00345 // LCSSA form was updated above for the case where LoopSimplify is 00346 // available, which means that all predecessors of loop exit blocks 00347 // are within the loop. Without LoopSimplify form, it would be 00348 // necessary to insert a new phi. 00349 assert((!P->mustPreserveAnalysisID(LCSSAID) || 00350 P->mustPreserveAnalysisID(LoopSimplifyID)) && 00351 "SplitCriticalEdge doesn't know how to update LCCSA form " 00352 "without LoopSimplify!"); 00353 } 00354 } 00355 00356 return NewBB; 00357 }