LLVM API Documentation
00001 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This family of functions performs analyses on basic blocks, and instructions 00011 // contained within basic blocks. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "llvm/Analysis/CFG.h" 00016 #include "llvm/ADT/SmallSet.h" 00017 #include "llvm/Analysis/LoopInfo.h" 00018 #include "llvm/IR/Dominators.h" 00019 00020 using namespace llvm; 00021 00022 /// FindFunctionBackedges - Analyze the specified function to find all of the 00023 /// loop backedges in the function and return them. This is a relatively cheap 00024 /// (compared to computing dominators and loop info) analysis. 00025 /// 00026 /// The output is added to Result, as pairs of <from,to> edge info. 00027 void llvm::FindFunctionBackedges(const Function &F, 00028 SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { 00029 const BasicBlock *BB = &F.getEntryBlock(); 00030 if (succ_begin(BB) == succ_end(BB)) 00031 return; 00032 00033 SmallPtrSet<const BasicBlock*, 8> Visited; 00034 SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack; 00035 SmallPtrSet<const BasicBlock*, 8> InStack; 00036 00037 Visited.insert(BB); 00038 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 00039 InStack.insert(BB); 00040 do { 00041 std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back(); 00042 const BasicBlock *ParentBB = Top.first; 00043 succ_const_iterator &I = Top.second; 00044 00045 bool FoundNew = false; 00046 while (I != succ_end(ParentBB)) { 00047 BB = *I++; 00048 if (Visited.insert(BB)) { 00049 FoundNew = true; 00050 break; 00051 } 00052 // Successor is in VisitStack, it's a back edge. 00053 if (InStack.count(BB)) 00054 Result.push_back(std::make_pair(ParentBB, BB)); 00055 } 00056 00057 if (FoundNew) { 00058 // Go down one level if there is a unvisited successor. 00059 InStack.insert(BB); 00060 VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); 00061 } else { 00062 // Go up one level. 00063 InStack.erase(VisitStack.pop_back_val().first); 00064 } 00065 } while (!VisitStack.empty()); 00066 } 00067 00068 /// GetSuccessorNumber - Search for the specified successor of basic block BB 00069 /// and return its position in the terminator instruction's list of 00070 /// successors. It is an error to call this with a block that is not a 00071 /// successor. 00072 unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) { 00073 TerminatorInst *Term = BB->getTerminator(); 00074 #ifndef NDEBUG 00075 unsigned e = Term->getNumSuccessors(); 00076 #endif 00077 for (unsigned i = 0; ; ++i) { 00078 assert(i != e && "Didn't find edge?"); 00079 if (Term->getSuccessor(i) == Succ) 00080 return i; 00081 } 00082 } 00083 00084 /// isCriticalEdge - Return true if the specified edge is a critical edge. 00085 /// Critical edges are edges from a block with multiple successors to a block 00086 /// with multiple predecessors. 00087 bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum, 00088 bool AllowIdenticalEdges) { 00089 assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!"); 00090 if (TI->getNumSuccessors() == 1) return false; 00091 00092 const BasicBlock *Dest = TI->getSuccessor(SuccNum); 00093 const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest); 00094 00095 // If there is more than one predecessor, this is a critical edge... 00096 assert(I != E && "No preds, but we have an edge to the block?"); 00097 const BasicBlock *FirstPred = *I; 00098 ++I; // Skip one edge due to the incoming arc from TI. 00099 if (!AllowIdenticalEdges) 00100 return I != E; 00101 00102 // If AllowIdenticalEdges is true, then we allow this edge to be considered 00103 // non-critical iff all preds come from TI's block. 00104 for (; I != E; ++I) 00105 if (*I != FirstPred) 00106 return true; 00107 return false; 00108 } 00109 00110 // LoopInfo contains a mapping from basic block to the innermost loop. Find 00111 // the outermost loop in the loop nest that contains BB. 00112 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) { 00113 const Loop *L = LI->getLoopFor(BB); 00114 if (L) { 00115 while (const Loop *Parent = L->getParentLoop()) 00116 L = Parent; 00117 } 00118 return L; 00119 } 00120 00121 // True if there is a loop which contains both BB1 and BB2. 00122 static bool loopContainsBoth(const LoopInfo *LI, 00123 const BasicBlock *BB1, const BasicBlock *BB2) { 00124 const Loop *L1 = getOutermostLoop(LI, BB1); 00125 const Loop *L2 = getOutermostLoop(LI, BB2); 00126 return L1 != nullptr && L1 == L2; 00127 } 00128 00129 static bool isPotentiallyReachableInner(SmallVectorImpl<BasicBlock *> &Worklist, 00130 BasicBlock *StopBB, 00131 const DominatorTree *DT, 00132 const LoopInfo *LI) { 00133 // When the stop block is unreachable, it's dominated from everywhere, 00134 // regardless of whether there's a path between the two blocks. 00135 if (DT && !DT->isReachableFromEntry(StopBB)) 00136 DT = nullptr; 00137 00138 // Limit the number of blocks we visit. The goal is to avoid run-away compile 00139 // times on large CFGs without hampering sensible code. Arbitrarily chosen. 00140 unsigned Limit = 32; 00141 SmallSet<const BasicBlock*, 64> Visited; 00142 do { 00143 BasicBlock *BB = Worklist.pop_back_val(); 00144 if (!Visited.insert(BB)) 00145 continue; 00146 if (BB == StopBB) 00147 return true; 00148 if (DT && DT->dominates(BB, StopBB)) 00149 return true; 00150 if (LI && loopContainsBoth(LI, BB, StopBB)) 00151 return true; 00152 00153 if (!--Limit) { 00154 // We haven't been able to prove it one way or the other. Conservatively 00155 // answer true -- that there is potentially a path. 00156 return true; 00157 } 00158 00159 if (const Loop *Outer = LI ? getOutermostLoop(LI, BB) : nullptr) { 00160 // All blocks in a single loop are reachable from all other blocks. From 00161 // any of these blocks, we can skip directly to the exits of the loop, 00162 // ignoring any other blocks inside the loop body. 00163 Outer->getExitBlocks(Worklist); 00164 } else { 00165 Worklist.append(succ_begin(BB), succ_end(BB)); 00166 } 00167 } while (!Worklist.empty()); 00168 00169 // We have exhausted all possible paths and are certain that 'To' can not be 00170 // reached from 'From'. 00171 return false; 00172 } 00173 00174 bool llvm::isPotentiallyReachable(const BasicBlock *A, const BasicBlock *B, 00175 const DominatorTree *DT, const LoopInfo *LI) { 00176 assert(A->getParent() == B->getParent() && 00177 "This analysis is function-local!"); 00178 00179 SmallVector<BasicBlock*, 32> Worklist; 00180 Worklist.push_back(const_cast<BasicBlock*>(A)); 00181 00182 return isPotentiallyReachableInner(Worklist, const_cast<BasicBlock*>(B), 00183 DT, LI); 00184 } 00185 00186 bool llvm::isPotentiallyReachable(const Instruction *A, const Instruction *B, 00187 const DominatorTree *DT, const LoopInfo *LI) { 00188 assert(A->getParent()->getParent() == B->getParent()->getParent() && 00189 "This analysis is function-local!"); 00190 00191 SmallVector<BasicBlock*, 32> Worklist; 00192 00193 if (A->getParent() == B->getParent()) { 00194 // The same block case is special because it's the only time we're looking 00195 // within a single block to see which instruction comes first. Once we 00196 // start looking at multiple blocks, the first instruction of the block is 00197 // reachable, so we only need to determine reachability between whole 00198 // blocks. 00199 BasicBlock *BB = const_cast<BasicBlock *>(A->getParent()); 00200 00201 // If the block is in a loop then we can reach any instruction in the block 00202 // from any other instruction in the block by going around a backedge. 00203 if (LI && LI->getLoopFor(BB) != nullptr) 00204 return true; 00205 00206 // Linear scan, start at 'A', see whether we hit 'B' or the end first. 00207 for (BasicBlock::const_iterator I = A, E = BB->end(); I != E; ++I) { 00208 if (&*I == B) 00209 return true; 00210 } 00211 00212 // Can't be in a loop if it's the entry block -- the entry block may not 00213 // have predecessors. 00214 if (BB == &BB->getParent()->getEntryBlock()) 00215 return false; 00216 00217 // Otherwise, continue doing the normal per-BB CFG walk. 00218 Worklist.append(succ_begin(BB), succ_end(BB)); 00219 00220 if (Worklist.empty()) { 00221 // We've proven that there's no path! 00222 return false; 00223 } 00224 } else { 00225 Worklist.push_back(const_cast<BasicBlock*>(A->getParent())); 00226 } 00227 00228 if (A->getParent() == &A->getParent()->getParent()->getEntryBlock()) 00229 return true; 00230 if (B->getParent() == &A->getParent()->getParent()->getEntryBlock()) 00231 return false; 00232 00233 return isPotentiallyReachableInner(Worklist, 00234 const_cast<BasicBlock*>(B->getParent()), 00235 DT, LI); 00236 }