LLVM API Documentation
00001 //===- CFLAliasAnalysis.cpp - CFL-Based Alias Analysis Implementation ------==// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements a CFL-based context-insensitive alias analysis 00011 // algorithm. It does not depend on types. The algorithm is a mixture of the one 00012 // described in "Demand-driven alias analysis for C" by Xin Zheng and Radu 00013 // Rugina, and "Fast algorithms for Dyck-CFL-reachability with applications to 00014 // Alias Analysis" by Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the 00015 // papers, we build a graph of the uses of a variable, where each node is a 00016 // memory location, and each edge is an action that happened on that memory 00017 // location. The "actions" can be one of Dereference, Reference, Assign, or 00018 // Assign. 00019 // 00020 // Two variables are considered as aliasing iff you can reach one value's node 00021 // from the other value's node and the language formed by concatenating all of 00022 // the edge labels (actions) conforms to a context-free grammar. 00023 // 00024 // Because this algorithm requires a graph search on each query, we execute the 00025 // algorithm outlined in "Fast algorithms..." (mentioned above) 00026 // in order to transform the graph into sets of variables that may alias in 00027 // ~nlogn time (n = number of variables.), which makes queries take constant 00028 // time. 00029 //===----------------------------------------------------------------------===// 00030 00031 #include "StratifiedSets.h" 00032 #include "llvm/Analysis/Passes.h" 00033 #include "llvm/ADT/BitVector.h" 00034 #include "llvm/ADT/DenseMap.h" 00035 #include "llvm/ADT/Optional.h" 00036 #include "llvm/ADT/None.h" 00037 #include "llvm/Analysis/AliasAnalysis.h" 00038 #include "llvm/IR/Constants.h" 00039 #include "llvm/IR/Function.h" 00040 #include "llvm/IR/Instructions.h" 00041 #include "llvm/IR/InstVisitor.h" 00042 #include "llvm/IR/ValueHandle.h" 00043 #include "llvm/Pass.h" 00044 #include "llvm/Support/Allocator.h" 00045 #include "llvm/Support/Compiler.h" 00046 #include "llvm/Support/ErrorHandling.h" 00047 #include <algorithm> 00048 #include <cassert> 00049 #include <forward_list> 00050 #include <tuple> 00051 00052 using namespace llvm; 00053 00054 // Try to go from a Value* to a Function*. Never returns nullptr. 00055 static Optional<Function *> parentFunctionOfValue(Value *); 00056 00057 // Returns possible functions called by the Inst* into the given 00058 // SmallVectorImpl. Returns true if targets found, false otherwise. 00059 // This is templated because InvokeInst/CallInst give us the same 00060 // set of functions that we care about, and I don't like repeating 00061 // myself. 00062 template <typename Inst> 00063 static bool getPossibleTargets(Inst *, SmallVectorImpl<Function *> &); 00064 00065 // Some instructions need to have their users tracked. Instructions like 00066 // `add` require you to get the users of the Instruction* itself, other 00067 // instructions like `store` require you to get the users of the first 00068 // operand. This function gets the "proper" value to track for each 00069 // type of instruction we support. 00070 static Optional<Value *> getTargetValue(Instruction *); 00071 00072 // There are certain instructions (i.e. FenceInst, etc.) that we ignore. 00073 // This notes that we should ignore those. 00074 static bool hasUsefulEdges(Instruction *); 00075 00076 const StratifiedIndex StratifiedLink::SetSentinel = 00077 std::numeric_limits<StratifiedIndex>::max(); 00078 00079 namespace { 00080 // StratifiedInfo Attribute things. 00081 typedef unsigned StratifiedAttr; 00082 LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs; 00083 LLVM_CONSTEXPR unsigned AttrAllIndex = 0; 00084 LLVM_CONSTEXPR unsigned AttrGlobalIndex = 1; 00085 LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 2; 00086 LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex; 00087 LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex; 00088 00089 LLVM_CONSTEXPR StratifiedAttr AttrNone = 0; 00090 LLVM_CONSTEXPR StratifiedAttr AttrAll = ~AttrNone; 00091 00092 // \brief StratifiedSets call for knowledge of "direction", so this is how we 00093 // represent that locally. 00094 enum class Level { Same, Above, Below }; 00095 00096 // \brief Edges can be one of four "weights" -- each weight must have an inverse 00097 // weight (Assign has Assign; Reference has Dereference). 00098 enum class EdgeType { 00099 // The weight assigned when assigning from or to a value. For example, in: 00100 // %b = getelementptr %a, 0 00101 // ...The relationships are %b assign %a, and %a assign %b. This used to be 00102 // two edges, but having a distinction bought us nothing. 00103 Assign, 00104 00105 // The edge used when we have an edge going from some handle to a Value. 00106 // Examples of this include: 00107 // %b = load %a (%b Dereference %a) 00108 // %b = extractelement %a, 0 (%a Dereference %b) 00109 Dereference, 00110 00111 // The edge used when our edge goes from a value to a handle that may have 00112 // contained it at some point. Examples: 00113 // %b = load %a (%a Reference %b) 00114 // %b = extractelement %a, 0 (%b Reference %a) 00115 Reference 00116 }; 00117 00118 // \brief Encodes the notion of a "use" 00119 struct Edge { 00120 // \brief Which value the edge is coming from 00121 Value *From; 00122 00123 // \brief Which value the edge is pointing to 00124 Value *To; 00125 00126 // \brief Edge weight 00127 EdgeType Weight; 00128 00129 // \brief Whether we aliased any external values along the way that may be 00130 // invisible to the analysis (i.e. landingpad for exceptions, calls for 00131 // interprocedural analysis, etc.) 00132 StratifiedAttrs AdditionalAttrs; 00133 00134 Edge(Value *From, Value *To, EdgeType W, StratifiedAttrs A) 00135 : From(From), To(To), Weight(W), AdditionalAttrs(A) {} 00136 }; 00137 00138 // \brief Information we have about a function and would like to keep around 00139 struct FunctionInfo { 00140 StratifiedSets<Value *> Sets; 00141 // Lots of functions have < 4 returns. Adjust as necessary. 00142 SmallVector<Value *, 4> ReturnedValues; 00143 00144 FunctionInfo(StratifiedSets<Value *> &&S, 00145 SmallVector<Value *, 4> &&RV) 00146 : Sets(std::move(S)), ReturnedValues(std::move(RV)) {} 00147 }; 00148 00149 struct CFLAliasAnalysis; 00150 00151 struct FunctionHandle : public CallbackVH { 00152 FunctionHandle(Function *Fn, CFLAliasAnalysis *CFLAA) 00153 : CallbackVH(Fn), CFLAA(CFLAA) { 00154 assert(Fn != nullptr); 00155 assert(CFLAA != nullptr); 00156 } 00157 00158 virtual ~FunctionHandle() {} 00159 00160 virtual void deleted() override { removeSelfFromCache(); } 00161 virtual void allUsesReplacedWith(Value *) override { removeSelfFromCache(); } 00162 00163 private: 00164 CFLAliasAnalysis *CFLAA; 00165 00166 void removeSelfFromCache(); 00167 }; 00168 00169 struct CFLAliasAnalysis : public ImmutablePass, public AliasAnalysis { 00170 private: 00171 /// \brief Cached mapping of Functions to their StratifiedSets. 00172 /// If a function's sets are currently being built, it is marked 00173 /// in the cache as an Optional without a value. This way, if we 00174 /// have any kind of recursion, it is discernable from a function 00175 /// that simply has empty sets. 00176 DenseMap<Function *, Optional<FunctionInfo>> Cache; 00177 std::forward_list<FunctionHandle> Handles; 00178 00179 public: 00180 static char ID; 00181 00182 CFLAliasAnalysis() : ImmutablePass(ID) { 00183 initializeCFLAliasAnalysisPass(*PassRegistry::getPassRegistry()); 00184 } 00185 00186 virtual ~CFLAliasAnalysis() {} 00187 00188 void getAnalysisUsage(AnalysisUsage &AU) const { 00189 AliasAnalysis::getAnalysisUsage(AU); 00190 } 00191 00192 void *getAdjustedAnalysisPointer(const void *ID) override { 00193 if (ID == &AliasAnalysis::ID) 00194 return (AliasAnalysis *)this; 00195 return this; 00196 } 00197 00198 /// \brief Inserts the given Function into the cache. 00199 void scan(Function *Fn); 00200 00201 void evict(Function *Fn) { Cache.erase(Fn); } 00202 00203 /// \brief Ensures that the given function is available in the cache. 00204 /// Returns the appropriate entry from the cache. 00205 const Optional<FunctionInfo> &ensureCached(Function *Fn) { 00206 auto Iter = Cache.find(Fn); 00207 if (Iter == Cache.end()) { 00208 scan(Fn); 00209 Iter = Cache.find(Fn); 00210 assert(Iter != Cache.end()); 00211 assert(Iter->second.hasValue()); 00212 } 00213 return Iter->second; 00214 } 00215 00216 AliasResult query(const Location &LocA, const Location &LocB); 00217 00218 AliasResult alias(const Location &LocA, const Location &LocB) override { 00219 if (LocA.Ptr == LocB.Ptr) { 00220 if (LocA.Size == LocB.Size) { 00221 return MustAlias; 00222 } else { 00223 return PartialAlias; 00224 } 00225 } 00226 00227 // Comparisons between global variables and other constants should be 00228 // handled by BasicAA. 00229 if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr)) { 00230 return MayAlias; 00231 } 00232 00233 return query(LocA, LocB); 00234 } 00235 00236 void initializePass() override { InitializeAliasAnalysis(this); } 00237 }; 00238 00239 void FunctionHandle::removeSelfFromCache() { 00240 assert(CFLAA != nullptr); 00241 auto *Val = getValPtr(); 00242 CFLAA->evict(cast<Function>(Val)); 00243 setValPtr(nullptr); 00244 } 00245 00246 // \brief Gets the edges our graph should have, based on an Instruction* 00247 class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> { 00248 CFLAliasAnalysis &AA; 00249 SmallVectorImpl<Edge> &Output; 00250 00251 public: 00252 GetEdgesVisitor(CFLAliasAnalysis &AA, SmallVectorImpl<Edge> &Output) 00253 : AA(AA), Output(Output) {} 00254 00255 void visitInstruction(Instruction &) { 00256 llvm_unreachable("Unsupported instruction encountered"); 00257 } 00258 00259 void visitCastInst(CastInst &Inst) { 00260 Output.push_back(Edge(&Inst, Inst.getOperand(0), EdgeType::Assign, 00261 AttrNone)); 00262 } 00263 00264 void visitBinaryOperator(BinaryOperator &Inst) { 00265 auto *Op1 = Inst.getOperand(0); 00266 auto *Op2 = Inst.getOperand(1); 00267 Output.push_back(Edge(&Inst, Op1, EdgeType::Assign, AttrNone)); 00268 Output.push_back(Edge(&Inst, Op2, EdgeType::Assign, AttrNone)); 00269 } 00270 00271 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) { 00272 auto *Ptr = Inst.getPointerOperand(); 00273 auto *Val = Inst.getNewValOperand(); 00274 Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone)); 00275 } 00276 00277 void visitAtomicRMWInst(AtomicRMWInst &Inst) { 00278 auto *Ptr = Inst.getPointerOperand(); 00279 auto *Val = Inst.getValOperand(); 00280 Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone)); 00281 } 00282 00283 void visitPHINode(PHINode &Inst) { 00284 for (unsigned I = 0, E = Inst.getNumIncomingValues(); I != E; ++I) { 00285 Value *Val = Inst.getIncomingValue(I); 00286 Output.push_back(Edge(&Inst, Val, EdgeType::Assign, AttrNone)); 00287 } 00288 } 00289 00290 void visitGetElementPtrInst(GetElementPtrInst &Inst) { 00291 auto *Op = Inst.getPointerOperand(); 00292 Output.push_back(Edge(&Inst, Op, EdgeType::Assign, AttrNone)); 00293 for (auto I = Inst.idx_begin(), E = Inst.idx_end(); I != E; ++I) 00294 Output.push_back(Edge(&Inst, *I, EdgeType::Assign, AttrNone)); 00295 } 00296 00297 void visitSelectInst(SelectInst &Inst) { 00298 auto *Condition = Inst.getCondition(); 00299 Output.push_back(Edge(&Inst, Condition, EdgeType::Assign, AttrNone)); 00300 auto *TrueVal = Inst.getTrueValue(); 00301 Output.push_back(Edge(&Inst, TrueVal, EdgeType::Assign, AttrNone)); 00302 auto *FalseVal = Inst.getFalseValue(); 00303 Output.push_back(Edge(&Inst, FalseVal, EdgeType::Assign, AttrNone)); 00304 } 00305 00306 void visitAllocaInst(AllocaInst &) {} 00307 00308 void visitLoadInst(LoadInst &Inst) { 00309 auto *Ptr = Inst.getPointerOperand(); 00310 auto *Val = &Inst; 00311 Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone)); 00312 } 00313 00314 void visitStoreInst(StoreInst &Inst) { 00315 auto *Ptr = Inst.getPointerOperand(); 00316 auto *Val = Inst.getValueOperand(); 00317 Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone)); 00318 } 00319 00320 static bool isFunctionExternal(Function *Fn) { 00321 return Fn->isDeclaration() || !Fn->hasLocalLinkage(); 00322 } 00323 00324 // Gets whether the sets at Index1 above, below, or equal to the sets at 00325 // Index2. Returns None if they are not in the same set chain. 00326 static Optional<Level> getIndexRelation(const StratifiedSets<Value *> &Sets, 00327 StratifiedIndex Index1, 00328 StratifiedIndex Index2) { 00329 if (Index1 == Index2) 00330 return Level::Same; 00331 00332 const auto *Current = &Sets.getLink(Index1); 00333 while (Current->hasBelow()) { 00334 if (Current->Below == Index2) 00335 return Level::Below; 00336 Current = &Sets.getLink(Current->Below); 00337 } 00338 00339 Current = &Sets.getLink(Index1); 00340 while (Current->hasAbove()) { 00341 if (Current->Above == Index2) 00342 return Level::Above; 00343 Current = &Sets.getLink(Current->Above); 00344 } 00345 00346 return NoneType(); 00347 } 00348 00349 bool 00350 tryInterproceduralAnalysis(const SmallVectorImpl<Function *> &Fns, 00351 Value *FuncValue, 00352 const iterator_range<User::op_iterator> &Args) { 00353 const unsigned ExpectedMaxArgs = 8; 00354 const unsigned MaxSupportedArgs = 50; 00355 assert(Fns.size() > 0); 00356 00357 // I put this here to give us an upper bound on time taken by IPA. Is it 00358 // really (realistically) needed? Keep in mind that we do have an n^2 algo. 00359 if (std::distance(Args.begin(), Args.end()) > (int) MaxSupportedArgs) 00360 return false; 00361 00362 // Exit early if we'll fail anyway 00363 for (auto *Fn : Fns) { 00364 if (isFunctionExternal(Fn) || Fn->isVarArg()) 00365 return false; 00366 auto &MaybeInfo = AA.ensureCached(Fn); 00367 if (!MaybeInfo.hasValue()) 00368 return false; 00369 } 00370 00371 SmallVector<Value *, ExpectedMaxArgs> Arguments(Args.begin(), Args.end()); 00372 SmallVector<StratifiedInfo, ExpectedMaxArgs> Parameters; 00373 for (auto *Fn : Fns) { 00374 auto &Info = *AA.ensureCached(Fn); 00375 auto &Sets = Info.Sets; 00376 auto &RetVals = Info.ReturnedValues; 00377 00378 Parameters.clear(); 00379 for (auto &Param : Fn->args()) { 00380 auto MaybeInfo = Sets.find(&Param); 00381 // Did a new parameter somehow get added to the function/slip by? 00382 if (!MaybeInfo.hasValue()) 00383 return false; 00384 Parameters.push_back(*MaybeInfo); 00385 } 00386 00387 // Adding an edge from argument -> return value for each parameter that 00388 // may alias the return value 00389 for (unsigned I = 0, E = Parameters.size(); I != E; ++I) { 00390 auto &ParamInfo = Parameters[I]; 00391 auto &ArgVal = Arguments[I]; 00392 bool AddEdge = false; 00393 StratifiedAttrs Externals; 00394 for (unsigned X = 0, XE = RetVals.size(); X != XE; ++X) { 00395 auto MaybeInfo = Sets.find(RetVals[X]); 00396 if (!MaybeInfo.hasValue()) 00397 return false; 00398 00399 auto &RetInfo = *MaybeInfo; 00400 auto RetAttrs = Sets.getLink(RetInfo.Index).Attrs; 00401 auto ParamAttrs = Sets.getLink(ParamInfo.Index).Attrs; 00402 auto MaybeRelation = 00403 getIndexRelation(Sets, ParamInfo.Index, RetInfo.Index); 00404 if (MaybeRelation.hasValue()) { 00405 AddEdge = true; 00406 Externals |= RetAttrs | ParamAttrs; 00407 } 00408 } 00409 if (AddEdge) 00410 Output.push_back(Edge(FuncValue, ArgVal, EdgeType::Assign, 00411 StratifiedAttrs().flip())); 00412 } 00413 00414 if (Parameters.size() != Arguments.size()) 00415 return false; 00416 00417 // Adding edges between arguments for arguments that may end up aliasing 00418 // each other. This is necessary for functions such as 00419 // void foo(int** a, int** b) { *a = *b; } 00420 // (Technically, the proper sets for this would be those below 00421 // Arguments[I] and Arguments[X], but our algorithm will produce 00422 // extremely similar, and equally correct, results either way) 00423 for (unsigned I = 0, E = Arguments.size(); I != E; ++I) { 00424 auto &MainVal = Arguments[I]; 00425 auto &MainInfo = Parameters[I]; 00426 auto &MainAttrs = Sets.getLink(MainInfo.Index).Attrs; 00427 for (unsigned X = I + 1; X != E; ++X) { 00428 auto &SubInfo = Parameters[X]; 00429 auto &SubVal = Arguments[X]; 00430 auto &SubAttrs = Sets.getLink(SubInfo.Index).Attrs; 00431 auto MaybeRelation = 00432 getIndexRelation(Sets, MainInfo.Index, SubInfo.Index); 00433 00434 if (!MaybeRelation.hasValue()) 00435 continue; 00436 00437 auto NewAttrs = SubAttrs | MainAttrs; 00438 Output.push_back(Edge(MainVal, SubVal, EdgeType::Assign, NewAttrs)); 00439 } 00440 } 00441 } 00442 return true; 00443 } 00444 00445 template <typename InstT> void visitCallLikeInst(InstT &Inst) { 00446 SmallVector<Function *, 4> Targets; 00447 if (getPossibleTargets(&Inst, Targets)) { 00448 if (tryInterproceduralAnalysis(Targets, &Inst, Inst.arg_operands())) 00449 return; 00450 // Cleanup from interprocedural analysis 00451 Output.clear(); 00452 } 00453 00454 for (Value *V : Inst.arg_operands()) 00455 Output.push_back(Edge(&Inst, V, EdgeType::Assign, AttrAll)); 00456 } 00457 00458 void visitCallInst(CallInst &Inst) { visitCallLikeInst(Inst); } 00459 00460 void visitInvokeInst(InvokeInst &Inst) { visitCallLikeInst(Inst); } 00461 00462 // Because vectors/aggregates are immutable and unaddressable, 00463 // there's nothing we can do to coax a value out of them, other 00464 // than calling Extract{Element,Value}. We can effectively treat 00465 // them as pointers to arbitrary memory locations we can store in 00466 // and load from. 00467 void visitExtractElementInst(ExtractElementInst &Inst) { 00468 auto *Ptr = Inst.getVectorOperand(); 00469 auto *Val = &Inst; 00470 Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone)); 00471 } 00472 00473 void visitInsertElementInst(InsertElementInst &Inst) { 00474 auto *Vec = Inst.getOperand(0); 00475 auto *Val = Inst.getOperand(1); 00476 Output.push_back(Edge(&Inst, Vec, EdgeType::Assign, AttrNone)); 00477 Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone)); 00478 } 00479 00480 void visitLandingPadInst(LandingPadInst &Inst) { 00481 // Exceptions come from "nowhere", from our analysis' perspective. 00482 // So we place the instruction its own group, noting that said group may 00483 // alias externals 00484 Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll)); 00485 } 00486 00487 void visitInsertValueInst(InsertValueInst &Inst) { 00488 auto *Agg = Inst.getOperand(0); 00489 auto *Val = Inst.getOperand(1); 00490 Output.push_back(Edge(&Inst, Agg, EdgeType::Assign, AttrNone)); 00491 Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone)); 00492 } 00493 00494 void visitExtractValueInst(ExtractValueInst &Inst) { 00495 auto *Ptr = Inst.getAggregateOperand(); 00496 Output.push_back(Edge(&Inst, Ptr, EdgeType::Reference, AttrNone)); 00497 } 00498 00499 void visitShuffleVectorInst(ShuffleVectorInst &Inst) { 00500 auto *From1 = Inst.getOperand(0); 00501 auto *From2 = Inst.getOperand(1); 00502 Output.push_back(Edge(&Inst, From1, EdgeType::Assign, AttrNone)); 00503 Output.push_back(Edge(&Inst, From2, EdgeType::Assign, AttrNone)); 00504 } 00505 }; 00506 00507 // For a given instruction, we need to know which Value* to get the 00508 // users of in order to build our graph. In some cases (i.e. add), 00509 // we simply need the Instruction*. In other cases (i.e. store), 00510 // finding the users of the Instruction* is useless; we need to find 00511 // the users of the first operand. This handles determining which 00512 // value to follow for us. 00513 // 00514 // Note: we *need* to keep this in sync with GetEdgesVisitor. Add 00515 // something to GetEdgesVisitor, add it here -- remove something from 00516 // GetEdgesVisitor, remove it here. 00517 class GetTargetValueVisitor 00518 : public InstVisitor<GetTargetValueVisitor, Value *> { 00519 public: 00520 Value *visitInstruction(Instruction &Inst) { return &Inst; } 00521 00522 Value *visitStoreInst(StoreInst &Inst) { return Inst.getPointerOperand(); } 00523 00524 Value *visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) { 00525 return Inst.getPointerOperand(); 00526 } 00527 00528 Value *visitAtomicRMWInst(AtomicRMWInst &Inst) { 00529 return Inst.getPointerOperand(); 00530 } 00531 00532 Value *visitInsertElementInst(InsertElementInst &Inst) { 00533 return Inst.getOperand(0); 00534 } 00535 00536 Value *visitInsertValueInst(InsertValueInst &Inst) { 00537 return Inst.getAggregateOperand(); 00538 } 00539 }; 00540 00541 // Set building requires a weighted bidirectional graph. 00542 template <typename EdgeTypeT> class WeightedBidirectionalGraph { 00543 public: 00544 typedef std::size_t Node; 00545 00546 private: 00547 const static Node StartNode = Node(0); 00548 00549 struct Edge { 00550 EdgeTypeT Weight; 00551 Node Other; 00552 00553 Edge(const EdgeTypeT &W, const Node &N) 00554 : Weight(W), Other(N) {} 00555 00556 bool operator==(const Edge &E) const { 00557 return Weight == E.Weight && Other == E.Other; 00558 } 00559 00560 bool operator!=(const Edge &E) const { return !operator==(E); } 00561 }; 00562 00563 struct NodeImpl { 00564 std::vector<Edge> Edges; 00565 }; 00566 00567 std::vector<NodeImpl> NodeImpls; 00568 00569 bool inbounds(Node NodeIndex) const { return NodeIndex < NodeImpls.size(); } 00570 00571 const NodeImpl &getNode(Node N) const { return NodeImpls[N]; } 00572 NodeImpl &getNode(Node N) { return NodeImpls[N]; } 00573 00574 public: 00575 // ----- Various Edge iterators for the graph ----- // 00576 00577 // \brief Iterator for edges. Because this graph is bidirected, we don't 00578 // allow modificaiton of the edges using this iterator. Additionally, the 00579 // iterator becomes invalid if you add edges to or from the node you're 00580 // getting the edges of. 00581 struct EdgeIterator : public std::iterator<std::forward_iterator_tag, 00582 std::tuple<EdgeTypeT, Node *>> { 00583 EdgeIterator(const typename std::vector<Edge>::const_iterator &Iter) 00584 : Current(Iter) {} 00585 00586 EdgeIterator(NodeImpl &Impl) : Current(Impl.begin()) {} 00587 00588 EdgeIterator &operator++() { 00589 ++Current; 00590 return *this; 00591 } 00592 00593 EdgeIterator operator++(int) { 00594 EdgeIterator Copy(Current); 00595 operator++(); 00596 return Copy; 00597 } 00598 00599 std::tuple<EdgeTypeT, Node> &operator*() { 00600 Store = std::make_tuple(Current->Weight, Current->Other); 00601 return Store; 00602 } 00603 00604 bool operator==(const EdgeIterator &Other) const { 00605 return Current == Other.Current; 00606 } 00607 00608 bool operator!=(const EdgeIterator &Other) const { 00609 return !operator==(Other); 00610 } 00611 00612 private: 00613 typename std::vector<Edge>::const_iterator Current; 00614 std::tuple<EdgeTypeT, Node> Store; 00615 }; 00616 00617 // Wrapper for EdgeIterator with begin()/end() calls. 00618 struct EdgeIterable { 00619 EdgeIterable(const std::vector<Edge> &Edges) 00620 : BeginIter(Edges.begin()), EndIter(Edges.end()) {} 00621 00622 EdgeIterator begin() { return EdgeIterator(BeginIter); } 00623 00624 EdgeIterator end() { return EdgeIterator(EndIter); } 00625 00626 private: 00627 typename std::vector<Edge>::const_iterator BeginIter; 00628 typename std::vector<Edge>::const_iterator EndIter; 00629 }; 00630 00631 // ----- Actual graph-related things ----- // 00632 00633 WeightedBidirectionalGraph() {} 00634 00635 WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> &&Other) 00636 : NodeImpls(std::move(Other.NodeImpls)) {} 00637 00638 WeightedBidirectionalGraph<EdgeTypeT> & 00639 operator=(WeightedBidirectionalGraph<EdgeTypeT> &&Other) { 00640 NodeImpls = std::move(Other.NodeImpls); 00641 return *this; 00642 } 00643 00644 Node addNode() { 00645 auto Index = NodeImpls.size(); 00646 auto NewNode = Node(Index); 00647 NodeImpls.push_back(NodeImpl()); 00648 return NewNode; 00649 } 00650 00651 void addEdge(Node From, Node To, const EdgeTypeT &Weight, 00652 const EdgeTypeT &ReverseWeight) { 00653 assert(inbounds(From)); 00654 assert(inbounds(To)); 00655 auto &FromNode = getNode(From); 00656 auto &ToNode = getNode(To); 00657 FromNode.Edges.push_back(Edge(Weight, To)); 00658 ToNode.Edges.push_back(Edge(ReverseWeight, From)); 00659 } 00660 00661 EdgeIterable edgesFor(const Node &N) const { 00662 const auto &Node = getNode(N); 00663 return EdgeIterable(Node.Edges); 00664 } 00665 00666 bool empty() const { return NodeImpls.empty(); } 00667 std::size_t size() const { return NodeImpls.size(); } 00668 00669 // \brief Gets an arbitrary node in the graph as a starting point for 00670 // traversal. 00671 Node getEntryNode() { 00672 assert(inbounds(StartNode)); 00673 return StartNode; 00674 } 00675 }; 00676 00677 typedef WeightedBidirectionalGraph<std::pair<EdgeType, StratifiedAttrs>> GraphT; 00678 typedef DenseMap<Value *, GraphT::Node> NodeMapT; 00679 } 00680 00681 // -- Setting up/registering CFLAA pass -- // 00682 char CFLAliasAnalysis::ID = 0; 00683 00684 INITIALIZE_AG_PASS(CFLAliasAnalysis, AliasAnalysis, "cfl-aa", 00685 "CFL-Based AA implementation", false, true, false) 00686 00687 ImmutablePass *llvm::createCFLAliasAnalysisPass() { 00688 return new CFLAliasAnalysis(); 00689 } 00690 00691 //===----------------------------------------------------------------------===// 00692 // Function declarations that require types defined in the namespace above 00693 //===----------------------------------------------------------------------===// 00694 00695 // Given an argument number, returns the appropriate Attr index to set. 00696 static StratifiedAttr argNumberToAttrIndex(StratifiedAttr); 00697 00698 // Given a Value, potentially return which AttrIndex it maps to. 00699 static Optional<StratifiedAttr> valueToAttrIndex(Value *Val); 00700 00701 // Gets the inverse of a given EdgeType. 00702 static EdgeType flipWeight(EdgeType); 00703 00704 // Gets edges of the given Instruction*, writing them to the SmallVector*. 00705 static void argsToEdges(CFLAliasAnalysis &, Instruction *, 00706 SmallVectorImpl<Edge> &); 00707 00708 // Gets the "Level" that one should travel in StratifiedSets 00709 // given an EdgeType. 00710 static Level directionOfEdgeType(EdgeType); 00711 00712 // Builds the graph needed for constructing the StratifiedSets for the 00713 // given function 00714 static void buildGraphFrom(CFLAliasAnalysis &, Function *, 00715 SmallVectorImpl<Value *> &, NodeMapT &, GraphT &); 00716 00717 // Builds the graph + StratifiedSets for a function. 00718 static FunctionInfo buildSetsFrom(CFLAliasAnalysis &, Function *); 00719 00720 static Optional<Function *> parentFunctionOfValue(Value *Val) { 00721 if (auto *Inst = dyn_cast<Instruction>(Val)) { 00722 auto *Bb = Inst->getParent(); 00723 return Bb->getParent(); 00724 } 00725 00726 if (auto *Arg = dyn_cast<Argument>(Val)) 00727 return Arg->getParent(); 00728 return NoneType(); 00729 } 00730 00731 template <typename Inst> 00732 static bool getPossibleTargets(Inst *Call, 00733 SmallVectorImpl<Function *> &Output) { 00734 if (auto *Fn = Call->getCalledFunction()) { 00735 Output.push_back(Fn); 00736 return true; 00737 } 00738 00739 // TODO: If the call is indirect, we might be able to enumerate all potential 00740 // targets of the call and return them, rather than just failing. 00741 return false; 00742 } 00743 00744 static Optional<Value *> getTargetValue(Instruction *Inst) { 00745 GetTargetValueVisitor V; 00746 return V.visit(Inst); 00747 } 00748 00749 static bool hasUsefulEdges(Instruction *Inst) { 00750 bool IsNonInvokeTerminator = 00751 isa<TerminatorInst>(Inst) && !isa<InvokeInst>(Inst); 00752 return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && !IsNonInvokeTerminator; 00753 } 00754 00755 static Optional<StratifiedAttr> valueToAttrIndex(Value *Val) { 00756 if (isa<GlobalValue>(Val)) 00757 return AttrGlobalIndex; 00758 00759 if (auto *Arg = dyn_cast<Argument>(Val)) 00760 if (!Arg->hasNoAliasAttr()) 00761 return argNumberToAttrIndex(Arg->getArgNo()); 00762 return NoneType(); 00763 } 00764 00765 static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum) { 00766 if (ArgNum > AttrMaxNumArgs) 00767 return AttrAllIndex; 00768 return ArgNum + AttrFirstArgIndex; 00769 } 00770 00771 static EdgeType flipWeight(EdgeType Initial) { 00772 switch (Initial) { 00773 case EdgeType::Assign: 00774 return EdgeType::Assign; 00775 case EdgeType::Dereference: 00776 return EdgeType::Reference; 00777 case EdgeType::Reference: 00778 return EdgeType::Dereference; 00779 } 00780 llvm_unreachable("Incomplete coverage of EdgeType enum"); 00781 } 00782 00783 static void argsToEdges(CFLAliasAnalysis &Analysis, Instruction *Inst, 00784 SmallVectorImpl<Edge> &Output) { 00785 GetEdgesVisitor v(Analysis, Output); 00786 v.visit(Inst); 00787 } 00788 00789 static Level directionOfEdgeType(EdgeType Weight) { 00790 switch (Weight) { 00791 case EdgeType::Reference: 00792 return Level::Above; 00793 case EdgeType::Dereference: 00794 return Level::Below; 00795 case EdgeType::Assign: 00796 return Level::Same; 00797 } 00798 llvm_unreachable("Incomplete switch coverage"); 00799 } 00800 00801 // Aside: We may remove graph construction entirely, because it doesn't really 00802 // buy us much that we don't already have. I'd like to add interprocedural 00803 // analysis prior to this however, in case that somehow requires the graph 00804 // produced by this for efficient execution 00805 static void buildGraphFrom(CFLAliasAnalysis &Analysis, Function *Fn, 00806 SmallVectorImpl<Value *> &ReturnedValues, 00807 NodeMapT &Map, GraphT &Graph) { 00808 const auto findOrInsertNode = [&Map, &Graph](Value *Val) { 00809 auto Pair = Map.insert(std::make_pair(Val, GraphT::Node())); 00810 auto &Iter = Pair.first; 00811 if (Pair.second) { 00812 auto NewNode = Graph.addNode(); 00813 Iter->second = NewNode; 00814 } 00815 return Iter->second; 00816 }; 00817 00818 SmallVector<Edge, 8> Edges; 00819 for (auto &Bb : Fn->getBasicBlockList()) { 00820 for (auto &Inst : Bb.getInstList()) { 00821 // We don't want the edges of most "return" instructions, but we *do* want 00822 // to know what can be returned. 00823 if (auto *Ret = dyn_cast<ReturnInst>(&Inst)) 00824 ReturnedValues.push_back(Ret); 00825 00826 if (!hasUsefulEdges(&Inst)) 00827 continue; 00828 00829 Edges.clear(); 00830 argsToEdges(Analysis, &Inst, Edges); 00831 00832 // In the case of an unused alloca (or similar), edges may be empty. Note 00833 // that it exists so we can potentially answer NoAlias. 00834 if (Edges.empty()) { 00835 auto MaybeVal = getTargetValue(&Inst); 00836 assert(MaybeVal.hasValue()); 00837 auto *Target = *MaybeVal; 00838 findOrInsertNode(Target); 00839 continue; 00840 } 00841 00842 for (const Edge &E : Edges) { 00843 auto To = findOrInsertNode(E.To); 00844 auto From = findOrInsertNode(E.From); 00845 auto FlippedWeight = flipWeight(E.Weight); 00846 auto Attrs = E.AdditionalAttrs; 00847 Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs), 00848 std::make_pair(FlippedWeight, Attrs)); 00849 } 00850 } 00851 } 00852 } 00853 00854 static FunctionInfo buildSetsFrom(CFLAliasAnalysis &Analysis, Function *Fn) { 00855 NodeMapT Map; 00856 GraphT Graph; 00857 SmallVector<Value *, 4> ReturnedValues; 00858 00859 buildGraphFrom(Analysis, Fn, ReturnedValues, Map, Graph); 00860 00861 DenseMap<GraphT::Node, Value *> NodeValueMap; 00862 NodeValueMap.resize(Map.size()); 00863 for (const auto &Pair : Map) 00864 NodeValueMap.insert(std::make_pair(Pair.second, Pair.first)); 00865 00866 const auto findValueOrDie = [&NodeValueMap](GraphT::Node Node) { 00867 auto ValIter = NodeValueMap.find(Node); 00868 assert(ValIter != NodeValueMap.end()); 00869 return ValIter->second; 00870 }; 00871 00872 StratifiedSetsBuilder<Value *> Builder; 00873 00874 SmallVector<GraphT::Node, 16> Worklist; 00875 for (auto &Pair : Map) { 00876 Worklist.clear(); 00877 00878 auto *Value = Pair.first; 00879 Builder.add(Value); 00880 auto InitialNode = Pair.second; 00881 Worklist.push_back(InitialNode); 00882 while (!Worklist.empty()) { 00883 auto Node = Worklist.pop_back_val(); 00884 auto *CurValue = findValueOrDie(Node); 00885 if (isa<Constant>(CurValue) && !isa<GlobalValue>(CurValue)) 00886 continue; 00887 00888 for (const auto &EdgeTuple : Graph.edgesFor(Node)) { 00889 auto Weight = std::get<0>(EdgeTuple); 00890 auto Label = Weight.first; 00891 auto &OtherNode = std::get<1>(EdgeTuple); 00892 auto *OtherValue = findValueOrDie(OtherNode); 00893 00894 if (isa<Constant>(OtherValue) && !isa<GlobalValue>(OtherValue)) 00895 continue; 00896 00897 bool Added; 00898 switch (directionOfEdgeType(Label)) { 00899 case Level::Above: 00900 Added = Builder.addAbove(CurValue, OtherValue); 00901 break; 00902 case Level::Below: 00903 Added = Builder.addBelow(CurValue, OtherValue); 00904 break; 00905 case Level::Same: 00906 Added = Builder.addWith(CurValue, OtherValue); 00907 break; 00908 } 00909 00910 if (Added) { 00911 auto Aliasing = Weight.second; 00912 if (auto MaybeCurIndex = valueToAttrIndex(CurValue)) 00913 Aliasing.set(*MaybeCurIndex); 00914 if (auto MaybeOtherIndex = valueToAttrIndex(OtherValue)) 00915 Aliasing.set(*MaybeOtherIndex); 00916 Builder.noteAttributes(CurValue, Aliasing); 00917 Builder.noteAttributes(OtherValue, Aliasing); 00918 Worklist.push_back(OtherNode); 00919 } 00920 } 00921 } 00922 } 00923 00924 // There are times when we end up with parameters not in our graph (i.e. if 00925 // it's only used as the condition of a branch). Other bits of code depend on 00926 // things that were present during construction being present in the graph. 00927 // So, we add all present arguments here. 00928 for (auto &Arg : Fn->args()) { 00929 Builder.add(&Arg); 00930 } 00931 00932 return FunctionInfo(Builder.build(), std::move(ReturnedValues)); 00933 } 00934 00935 void CFLAliasAnalysis::scan(Function *Fn) { 00936 auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>())); 00937 (void)InsertPair; 00938 assert(InsertPair.second && 00939 "Trying to scan a function that has already been cached"); 00940 00941 FunctionInfo Info(buildSetsFrom(*this, Fn)); 00942 Cache[Fn] = std::move(Info); 00943 Handles.push_front(FunctionHandle(Fn, this)); 00944 } 00945 00946 AliasAnalysis::AliasResult 00947 CFLAliasAnalysis::query(const AliasAnalysis::Location &LocA, 00948 const AliasAnalysis::Location &LocB) { 00949 auto *ValA = const_cast<Value *>(LocA.Ptr); 00950 auto *ValB = const_cast<Value *>(LocB.Ptr); 00951 00952 Function *Fn = nullptr; 00953 auto MaybeFnA = parentFunctionOfValue(ValA); 00954 auto MaybeFnB = parentFunctionOfValue(ValB); 00955 if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) { 00956 llvm_unreachable("Don't know how to extract the parent function " 00957 "from values A or B"); 00958 } 00959 00960 if (MaybeFnA.hasValue()) { 00961 Fn = *MaybeFnA; 00962 assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) && 00963 "Interprocedural queries not supported"); 00964 } else { 00965 Fn = *MaybeFnB; 00966 } 00967 00968 assert(Fn != nullptr); 00969 auto &MaybeInfo = ensureCached(Fn); 00970 assert(MaybeInfo.hasValue()); 00971 00972 auto &Sets = MaybeInfo->Sets; 00973 auto MaybeA = Sets.find(ValA); 00974 if (!MaybeA.hasValue()) 00975 return AliasAnalysis::MayAlias; 00976 00977 auto MaybeB = Sets.find(ValB); 00978 if (!MaybeB.hasValue()) 00979 return AliasAnalysis::MayAlias; 00980 00981 auto SetA = *MaybeA; 00982 auto SetB = *MaybeB; 00983 00984 if (SetA.Index == SetB.Index) 00985 return AliasAnalysis::PartialAlias; 00986 00987 auto AttrsA = Sets.getLink(SetA.Index).Attrs; 00988 auto AttrsB = Sets.getLink(SetB.Index).Attrs; 00989 auto CombinedAttrs = AttrsA | AttrsB; 00990 if (CombinedAttrs.any()) 00991 return AliasAnalysis::PartialAlias; 00992 00993 return AliasAnalysis::NoAlias; 00994 }