LLVM API Documentation

Constants.h
Go to the documentation of this file.
00001 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 /// @file
00011 /// This file contains the declarations for the subclasses of Constant,
00012 /// which represent the different flavors of constant values that live in LLVM.
00013 /// Note that Constants are immutable (once created they never change) and are
00014 /// fully shared by structural equivalence.  This means that two structurally
00015 /// equivalent constants will always have the same address.  Constant's are
00016 /// created on demand as needed and never deleted: thus clients don't have to
00017 /// worry about the lifetime of the objects.
00018 //
00019 //===----------------------------------------------------------------------===//
00020 
00021 #ifndef LLVM_IR_CONSTANTS_H
00022 #define LLVM_IR_CONSTANTS_H
00023 
00024 #include "llvm/ADT/APFloat.h"
00025 #include "llvm/ADT/APInt.h"
00026 #include "llvm/ADT/ArrayRef.h"
00027 #include "llvm/IR/Constant.h"
00028 #include "llvm/IR/DerivedTypes.h"
00029 #include "llvm/IR/OperandTraits.h"
00030 
00031 namespace llvm {
00032 
00033 class ArrayType;
00034 class IntegerType;
00035 class StructType;
00036 class PointerType;
00037 class VectorType;
00038 class SequentialType;
00039 
00040 struct ConstantExprKeyType;
00041 template <class ConstantClass> struct ConstantAggrKeyType;
00042 
00043 //===----------------------------------------------------------------------===//
00044 /// This is the shared class of boolean and integer constants. This class
00045 /// represents both boolean and integral constants.
00046 /// @brief Class for constant integers.
00047 class ConstantInt : public Constant {
00048   void anchor() override;
00049   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
00050   ConstantInt(const ConstantInt &) LLVM_DELETED_FUNCTION;
00051   ConstantInt(IntegerType *Ty, const APInt& V);
00052   APInt Val;
00053 protected:
00054   // allocate space for exactly zero operands
00055   void *operator new(size_t s) {
00056     return User::operator new(s, 0);
00057   }
00058 public:
00059   static ConstantInt *getTrue(LLVMContext &Context);
00060   static ConstantInt *getFalse(LLVMContext &Context);
00061   static Constant *getTrue(Type *Ty);
00062   static Constant *getFalse(Type *Ty);
00063 
00064   /// If Ty is a vector type, return a Constant with a splat of the given
00065   /// value. Otherwise return a ConstantInt for the given value.
00066   static Constant *get(Type *Ty, uint64_t V, bool isSigned = false);
00067 
00068   /// Return a ConstantInt with the specified integer value for the specified
00069   /// type. If the type is wider than 64 bits, the value will be zero-extended
00070   /// to fit the type, unless isSigned is true, in which case the value will
00071   /// be interpreted as a 64-bit signed integer and sign-extended to fit
00072   /// the type.
00073   /// @brief Get a ConstantInt for a specific value.
00074   static ConstantInt *get(IntegerType *Ty, uint64_t V,
00075                           bool isSigned = false);
00076 
00077   /// Return a ConstantInt with the specified value for the specified type. The
00078   /// value V will be canonicalized to a an unsigned APInt. Accessing it with
00079   /// either getSExtValue() or getZExtValue() will yield a correctly sized and
00080   /// signed value for the type Ty.
00081   /// @brief Get a ConstantInt for a specific signed value.
00082   static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
00083   static Constant *getSigned(Type *Ty, int64_t V);
00084 
00085   /// Return a ConstantInt with the specified value and an implied Type. The
00086   /// type is the integer type that corresponds to the bit width of the value.
00087   static ConstantInt *get(LLVMContext &Context, const APInt &V);
00088 
00089   /// Return a ConstantInt constructed from the string strStart with the given
00090   /// radix.
00091   static ConstantInt *get(IntegerType *Ty, StringRef Str,
00092                           uint8_t radix);
00093 
00094   /// If Ty is a vector type, return a Constant with a splat of the given
00095   /// value. Otherwise return a ConstantInt for the given value.
00096   static Constant *get(Type* Ty, const APInt& V);
00097 
00098   /// Return the constant as an APInt value reference. This allows clients to
00099   /// obtain a copy of the value, with all its precision in tact.
00100   /// @brief Return the constant's value.
00101   inline const APInt &getValue() const {
00102     return Val;
00103   }
00104 
00105   /// getBitWidth - Return the bitwidth of this constant.
00106   unsigned getBitWidth() const { return Val.getBitWidth(); }
00107 
00108   /// Return the constant as a 64-bit unsigned integer value after it
00109   /// has been zero extended as appropriate for the type of this constant. Note
00110   /// that this method can assert if the value does not fit in 64 bits.
00111   /// @brief Return the zero extended value.
00112   inline uint64_t getZExtValue() const {
00113     return Val.getZExtValue();
00114   }
00115 
00116   /// Return the constant as a 64-bit integer value after it has been sign
00117   /// extended as appropriate for the type of this constant. Note that
00118   /// this method can assert if the value does not fit in 64 bits.
00119   /// @brief Return the sign extended value.
00120   inline int64_t getSExtValue() const {
00121     return Val.getSExtValue();
00122   }
00123 
00124   /// A helper method that can be used to determine if the constant contained
00125   /// within is equal to a constant.  This only works for very small values,
00126   /// because this is all that can be represented with all types.
00127   /// @brief Determine if this constant's value is same as an unsigned char.
00128   bool equalsInt(uint64_t V) const {
00129     return Val == V;
00130   }
00131 
00132   /// getType - Specialize the getType() method to always return an IntegerType,
00133   /// which reduces the amount of casting needed in parts of the compiler.
00134   ///
00135   inline IntegerType *getType() const {
00136     return cast<IntegerType>(Value::getType());
00137   }
00138 
00139   /// This static method returns true if the type Ty is big enough to
00140   /// represent the value V. This can be used to avoid having the get method
00141   /// assert when V is larger than Ty can represent. Note that there are two
00142   /// versions of this method, one for unsigned and one for signed integers.
00143   /// Although ConstantInt canonicalizes everything to an unsigned integer,
00144   /// the signed version avoids callers having to convert a signed quantity
00145   /// to the appropriate unsigned type before calling the method.
00146   /// @returns true if V is a valid value for type Ty
00147   /// @brief Determine if the value is in range for the given type.
00148   static bool isValueValidForType(Type *Ty, uint64_t V);
00149   static bool isValueValidForType(Type *Ty, int64_t V);
00150 
00151   bool isNegative() const { return Val.isNegative(); }
00152 
00153   /// This is just a convenience method to make client code smaller for a
00154   /// common code. It also correctly performs the comparison without the
00155   /// potential for an assertion from getZExtValue().
00156   bool isZero() const {
00157     return Val == 0;
00158   }
00159 
00160   /// This is just a convenience method to make client code smaller for a
00161   /// common case. It also correctly performs the comparison without the
00162   /// potential for an assertion from getZExtValue().
00163   /// @brief Determine if the value is one.
00164   bool isOne() const {
00165     return Val == 1;
00166   }
00167 
00168   /// This function will return true iff every bit in this constant is set
00169   /// to true.
00170   /// @returns true iff this constant's bits are all set to true.
00171   /// @brief Determine if the value is all ones.
00172   bool isMinusOne() const {
00173     return Val.isAllOnesValue();
00174   }
00175 
00176   /// This function will return true iff this constant represents the largest
00177   /// value that may be represented by the constant's type.
00178   /// @returns true iff this is the largest value that may be represented
00179   /// by this type.
00180   /// @brief Determine if the value is maximal.
00181   bool isMaxValue(bool isSigned) const {
00182     if (isSigned)
00183       return Val.isMaxSignedValue();
00184     else
00185       return Val.isMaxValue();
00186   }
00187 
00188   /// This function will return true iff this constant represents the smallest
00189   /// value that may be represented by this constant's type.
00190   /// @returns true if this is the smallest value that may be represented by
00191   /// this type.
00192   /// @brief Determine if the value is minimal.
00193   bool isMinValue(bool isSigned) const {
00194     if (isSigned)
00195       return Val.isMinSignedValue();
00196     else
00197       return Val.isMinValue();
00198   }
00199 
00200   /// This function will return true iff this constant represents a value with
00201   /// active bits bigger than 64 bits or a value greater than the given uint64_t
00202   /// value.
00203   /// @returns true iff this constant is greater or equal to the given number.
00204   /// @brief Determine if the value is greater or equal to the given number.
00205   bool uge(uint64_t Num) const {
00206     return Val.getActiveBits() > 64 || Val.getZExtValue() >= Num;
00207   }
00208 
00209   /// getLimitedValue - If the value is smaller than the specified limit,
00210   /// return it, otherwise return the limit value.  This causes the value
00211   /// to saturate to the limit.
00212   /// @returns the min of the value of the constant and the specified value
00213   /// @brief Get the constant's value with a saturation limit
00214   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
00215     return Val.getLimitedValue(Limit);
00216   }
00217 
00218   /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
00219   static bool classof(const Value *V) {
00220     return V->getValueID() == ConstantIntVal;
00221   }
00222 };
00223 
00224 
00225 //===----------------------------------------------------------------------===//
00226 /// ConstantFP - Floating Point Values [float, double]
00227 ///
00228 class ConstantFP : public Constant {
00229   APFloat Val;
00230   void anchor() override;
00231   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
00232   ConstantFP(const ConstantFP &) LLVM_DELETED_FUNCTION;
00233   friend class LLVMContextImpl;
00234 protected:
00235   ConstantFP(Type *Ty, const APFloat& V);
00236 protected:
00237   // allocate space for exactly zero operands
00238   void *operator new(size_t s) {
00239     return User::operator new(s, 0);
00240   }
00241 public:
00242   /// Floating point negation must be implemented with f(x) = -0.0 - x. This
00243   /// method returns the negative zero constant for floating point or vector
00244   /// floating point types; for all other types, it returns the null value.
00245   static Constant *getZeroValueForNegation(Type *Ty);
00246 
00247   /// get() - This returns a ConstantFP, or a vector containing a splat of a
00248   /// ConstantFP, for the specified value in the specified type.  This should
00249   /// only be used for simple constant values like 2.0/1.0 etc, that are
00250   /// known-valid both as host double and as the target format.
00251   static Constant *get(Type* Ty, double V);
00252   static Constant *get(Type* Ty, StringRef Str);
00253   static ConstantFP *get(LLVMContext &Context, const APFloat &V);
00254   static Constant *getNegativeZero(Type *Ty);
00255   static Constant *getInfinity(Type *Ty, bool Negative = false);
00256 
00257   /// isValueValidForType - return true if Ty is big enough to represent V.
00258   static bool isValueValidForType(Type *Ty, const APFloat &V);
00259   inline const APFloat &getValueAPF() const { return Val; }
00260 
00261   /// isZero - Return true if the value is positive or negative zero.
00262   bool isZero() const { return Val.isZero(); }
00263 
00264   /// isNegative - Return true if the sign bit is set.
00265   bool isNegative() const { return Val.isNegative(); }
00266 
00267   /// isNaN - Return true if the value is a NaN.
00268   bool isNaN() const { return Val.isNaN(); }
00269 
00270   /// isExactlyValue - We don't rely on operator== working on double values, as
00271   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
00272   /// As such, this method can be used to do an exact bit-for-bit comparison of
00273   /// two floating point values.  The version with a double operand is retained
00274   /// because it's so convenient to write isExactlyValue(2.0), but please use
00275   /// it only for simple constants.
00276   bool isExactlyValue(const APFloat &V) const;
00277 
00278   bool isExactlyValue(double V) const {
00279     bool ignored;
00280     APFloat FV(V);
00281     FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
00282     return isExactlyValue(FV);
00283   }
00284   /// Methods for support type inquiry through isa, cast, and dyn_cast:
00285   static bool classof(const Value *V) {
00286     return V->getValueID() == ConstantFPVal;
00287   }
00288 };
00289 
00290 //===----------------------------------------------------------------------===//
00291 /// ConstantAggregateZero - All zero aggregate value
00292 ///
00293 class ConstantAggregateZero : public Constant {
00294   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
00295   ConstantAggregateZero(const ConstantAggregateZero &) LLVM_DELETED_FUNCTION;
00296 protected:
00297   explicit ConstantAggregateZero(Type *ty)
00298     : Constant(ty, ConstantAggregateZeroVal, nullptr, 0) {}
00299 protected:
00300   // allocate space for exactly zero operands
00301   void *operator new(size_t s) {
00302     return User::operator new(s, 0);
00303   }
00304 public:
00305   static ConstantAggregateZero *get(Type *Ty);
00306 
00307   void destroyConstant() override;
00308 
00309   /// getSequentialElement - If this CAZ has array or vector type, return a zero
00310   /// with the right element type.
00311   Constant *getSequentialElement() const;
00312 
00313   /// getStructElement - If this CAZ has struct type, return a zero with the
00314   /// right element type for the specified element.
00315   Constant *getStructElement(unsigned Elt) const;
00316 
00317   /// getElementValue - Return a zero of the right value for the specified GEP
00318   /// index.
00319   Constant *getElementValue(Constant *C) const;
00320 
00321   /// getElementValue - Return a zero of the right value for the specified GEP
00322   /// index.
00323   Constant *getElementValue(unsigned Idx) const;
00324 
00325   /// Methods for support type inquiry through isa, cast, and dyn_cast:
00326   ///
00327   static bool classof(const Value *V) {
00328     return V->getValueID() == ConstantAggregateZeroVal;
00329   }
00330 };
00331 
00332 
00333 //===----------------------------------------------------------------------===//
00334 /// ConstantArray - Constant Array Declarations
00335 ///
00336 class ConstantArray : public Constant {
00337   friend struct ConstantAggrKeyType<ConstantArray>;
00338   ConstantArray(const ConstantArray &) LLVM_DELETED_FUNCTION;
00339 protected:
00340   ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
00341 public:
00342   // ConstantArray accessors
00343   static Constant *get(ArrayType *T, ArrayRef<Constant*> V);
00344 
00345 private:
00346   static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
00347 
00348 public:
00349   /// Transparently provide more efficient getOperand methods.
00350   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
00351 
00352   /// getType - Specialize the getType() method to always return an ArrayType,
00353   /// which reduces the amount of casting needed in parts of the compiler.
00354   ///
00355   inline ArrayType *getType() const {
00356     return cast<ArrayType>(Value::getType());
00357   }
00358 
00359   void destroyConstant() override;
00360   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
00361 
00362   /// Methods for support type inquiry through isa, cast, and dyn_cast:
00363   static bool classof(const Value *V) {
00364     return V->getValueID() == ConstantArrayVal;
00365   }
00366 };
00367 
00368 template <>
00369 struct OperandTraits<ConstantArray> :
00370   public VariadicOperandTraits<ConstantArray> {
00371 };
00372 
00373 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantArray, Constant)
00374 
00375 //===----------------------------------------------------------------------===//
00376 // ConstantStruct - Constant Struct Declarations
00377 //
00378 class ConstantStruct : public Constant {
00379   friend struct ConstantAggrKeyType<ConstantStruct>;
00380   ConstantStruct(const ConstantStruct &) LLVM_DELETED_FUNCTION;
00381 protected:
00382   ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
00383 public:
00384   // ConstantStruct accessors
00385   static Constant *get(StructType *T, ArrayRef<Constant*> V);
00386   static Constant *get(StructType *T, ...) END_WITH_NULL;
00387 
00388   /// getAnon - Return an anonymous struct that has the specified
00389   /// elements.  If the struct is possibly empty, then you must specify a
00390   /// context.
00391   static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) {
00392     return get(getTypeForElements(V, Packed), V);
00393   }
00394   static Constant *getAnon(LLVMContext &Ctx,
00395                            ArrayRef<Constant*> V, bool Packed = false) {
00396     return get(getTypeForElements(Ctx, V, Packed), V);
00397   }
00398 
00399   /// getTypeForElements - Return an anonymous struct type to use for a constant
00400   /// with the specified set of elements.  The list must not be empty.
00401   static StructType *getTypeForElements(ArrayRef<Constant*> V,
00402                                         bool Packed = false);
00403   /// getTypeForElements - This version of the method allows an empty list.
00404   static StructType *getTypeForElements(LLVMContext &Ctx,
00405                                         ArrayRef<Constant*> V,
00406                                         bool Packed = false);
00407 
00408   /// Transparently provide more efficient getOperand methods.
00409   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
00410 
00411   /// getType() specialization - Reduce amount of casting...
00412   ///
00413   inline StructType *getType() const {
00414     return cast<StructType>(Value::getType());
00415   }
00416 
00417   void destroyConstant() override;
00418   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
00419 
00420   /// Methods for support type inquiry through isa, cast, and dyn_cast:
00421   static bool classof(const Value *V) {
00422     return V->getValueID() == ConstantStructVal;
00423   }
00424 };
00425 
00426 template <>
00427 struct OperandTraits<ConstantStruct> :
00428   public VariadicOperandTraits<ConstantStruct> {
00429 };
00430 
00431 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantStruct, Constant)
00432 
00433 
00434 //===----------------------------------------------------------------------===//
00435 /// ConstantVector - Constant Vector Declarations
00436 ///
00437 class ConstantVector : public Constant {
00438   friend struct ConstantAggrKeyType<ConstantVector>;
00439   ConstantVector(const ConstantVector &) LLVM_DELETED_FUNCTION;
00440 protected:
00441   ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
00442 public:
00443   // ConstantVector accessors
00444   static Constant *get(ArrayRef<Constant*> V);
00445 
00446 private:
00447   static Constant *getImpl(ArrayRef<Constant *> V);
00448 
00449 public:
00450   /// getSplat - Return a ConstantVector with the specified constant in each
00451   /// element.
00452   static Constant *getSplat(unsigned NumElts, Constant *Elt);
00453 
00454   /// Transparently provide more efficient getOperand methods.
00455   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
00456 
00457   /// getType - Specialize the getType() method to always return a VectorType,
00458   /// which reduces the amount of casting needed in parts of the compiler.
00459   ///
00460   inline VectorType *getType() const {
00461     return cast<VectorType>(Value::getType());
00462   }
00463 
00464   /// getSplatValue - If this is a splat constant, meaning that all of the
00465   /// elements have the same value, return that value. Otherwise return NULL.
00466   Constant *getSplatValue() const;
00467 
00468   void destroyConstant() override;
00469   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
00470 
00471   /// Methods for support type inquiry through isa, cast, and dyn_cast:
00472   static bool classof(const Value *V) {
00473     return V->getValueID() == ConstantVectorVal;
00474   }
00475 };
00476 
00477 template <>
00478 struct OperandTraits<ConstantVector> :
00479   public VariadicOperandTraits<ConstantVector> {
00480 };
00481 
00482 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantVector, Constant)
00483 
00484 //===----------------------------------------------------------------------===//
00485 /// ConstantPointerNull - a constant pointer value that points to null
00486 ///
00487 class ConstantPointerNull : public Constant {
00488   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
00489   ConstantPointerNull(const ConstantPointerNull &) LLVM_DELETED_FUNCTION;
00490 protected:
00491   explicit ConstantPointerNull(PointerType *T)
00492     : Constant(T,
00493                Value::ConstantPointerNullVal, nullptr, 0) {}
00494 
00495 protected:
00496   // allocate space for exactly zero operands
00497   void *operator new(size_t s) {
00498     return User::operator new(s, 0);
00499   }
00500 public:
00501   /// get() - Static factory methods - Return objects of the specified value
00502   static ConstantPointerNull *get(PointerType *T);
00503 
00504   void destroyConstant() override;
00505 
00506   /// getType - Specialize the getType() method to always return an PointerType,
00507   /// which reduces the amount of casting needed in parts of the compiler.
00508   ///
00509   inline PointerType *getType() const {
00510     return cast<PointerType>(Value::getType());
00511   }
00512 
00513   /// Methods for support type inquiry through isa, cast, and dyn_cast:
00514   static bool classof(const Value *V) {
00515     return V->getValueID() == ConstantPointerNullVal;
00516   }
00517 };
00518 
00519 //===----------------------------------------------------------------------===//
00520 /// ConstantDataSequential - A vector or array constant whose element type is a
00521 /// simple 1/2/4/8-byte integer or float/double, and whose elements are just
00522 /// simple data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
00523 /// operands because it stores all of the elements of the constant as densely
00524 /// packed data, instead of as Value*'s.
00525 ///
00526 /// This is the common base class of ConstantDataArray and ConstantDataVector.
00527 ///
00528 class ConstantDataSequential : public Constant {
00529   friend class LLVMContextImpl;
00530   /// DataElements - A pointer to the bytes underlying this constant (which is
00531   /// owned by the uniquing StringMap).
00532   const char *DataElements;
00533 
00534   /// Next - This forms a link list of ConstantDataSequential nodes that have
00535   /// the same value but different type.  For example, 0,0,0,1 could be a 4
00536   /// element array of i8, or a 1-element array of i32.  They'll both end up in
00537   /// the same StringMap bucket, linked up.
00538   ConstantDataSequential *Next;
00539   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
00540   ConstantDataSequential(const ConstantDataSequential &) LLVM_DELETED_FUNCTION;
00541 protected:
00542   explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
00543     : Constant(ty, VT, nullptr, 0), DataElements(Data), Next(nullptr) {}
00544   ~ConstantDataSequential() { delete Next; }
00545 
00546   static Constant *getImpl(StringRef Bytes, Type *Ty);
00547 
00548 protected:
00549   // allocate space for exactly zero operands.
00550   void *operator new(size_t s) {
00551     return User::operator new(s, 0);
00552   }
00553 public:
00554 
00555   /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
00556   /// formed with a vector or array of the specified element type.
00557   /// ConstantDataArray only works with normal float and int types that are
00558   /// stored densely in memory, not with things like i42 or x86_f80.
00559   static bool isElementTypeCompatible(const Type *Ty);
00560 
00561   /// getElementAsInteger - If this is a sequential container of integers (of
00562   /// any size), return the specified element in the low bits of a uint64_t.
00563   uint64_t getElementAsInteger(unsigned i) const;
00564 
00565   /// getElementAsAPFloat - If this is a sequential container of floating point
00566   /// type, return the specified element as an APFloat.
00567   APFloat getElementAsAPFloat(unsigned i) const;
00568 
00569   /// getElementAsFloat - If this is an sequential container of floats, return
00570   /// the specified element as a float.
00571   float getElementAsFloat(unsigned i) const;
00572 
00573   /// getElementAsDouble - If this is an sequential container of doubles, return
00574   /// the specified element as a double.
00575   double getElementAsDouble(unsigned i) const;
00576 
00577   /// getElementAsConstant - Return a Constant for a specified index's element.
00578   /// Note that this has to compute a new constant to return, so it isn't as
00579   /// efficient as getElementAsInteger/Float/Double.
00580   Constant *getElementAsConstant(unsigned i) const;
00581 
00582   /// getType - Specialize the getType() method to always return a
00583   /// SequentialType, which reduces the amount of casting needed in parts of the
00584   /// compiler.
00585   inline SequentialType *getType() const {
00586     return cast<SequentialType>(Value::getType());
00587   }
00588 
00589   /// getElementType - Return the element type of the array/vector.
00590   Type *getElementType() const;
00591 
00592   /// getNumElements - Return the number of elements in the array or vector.
00593   unsigned getNumElements() const;
00594 
00595   /// getElementByteSize - Return the size (in bytes) of each element in the
00596   /// array/vector.  The size of the elements is known to be a multiple of one
00597   /// byte.
00598   uint64_t getElementByteSize() const;
00599 
00600 
00601   /// isString - This method returns true if this is an array of i8.
00602   bool isString() const;
00603 
00604   /// isCString - This method returns true if the array "isString", ends with a
00605   /// nul byte, and does not contains any other nul bytes.
00606   bool isCString() const;
00607 
00608   /// getAsString - If this array is isString(), then this method returns the
00609   /// array as a StringRef.  Otherwise, it asserts out.
00610   ///
00611   StringRef getAsString() const {
00612     assert(isString() && "Not a string");
00613     return getRawDataValues();
00614   }
00615 
00616   /// getAsCString - If this array is isCString(), then this method returns the
00617   /// array (without the trailing null byte) as a StringRef. Otherwise, it
00618   /// asserts out.
00619   ///
00620   StringRef getAsCString() const {
00621     assert(isCString() && "Isn't a C string");
00622     StringRef Str = getAsString();
00623     return Str.substr(0, Str.size()-1);
00624   }
00625 
00626   /// getRawDataValues - Return the raw, underlying, bytes of this data.  Note
00627   /// that this is an extremely tricky thing to work with, as it exposes the
00628   /// host endianness of the data elements.
00629   StringRef getRawDataValues() const;
00630 
00631   void destroyConstant() override;
00632 
00633   /// Methods for support type inquiry through isa, cast, and dyn_cast:
00634   ///
00635   static bool classof(const Value *V) {
00636     return V->getValueID() == ConstantDataArrayVal ||
00637            V->getValueID() == ConstantDataVectorVal;
00638   }
00639 private:
00640   const char *getElementPointer(unsigned Elt) const;
00641 };
00642 
00643 //===----------------------------------------------------------------------===//
00644 /// ConstantDataArray - An array constant whose element type is a simple
00645 /// 1/2/4/8-byte integer or float/double, and whose elements are just simple
00646 /// data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
00647 /// operands because it stores all of the elements of the constant as densely
00648 /// packed data, instead of as Value*'s.
00649 class ConstantDataArray : public ConstantDataSequential {
00650   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
00651   ConstantDataArray(const ConstantDataArray &) LLVM_DELETED_FUNCTION;
00652   void anchor() override;
00653   friend class ConstantDataSequential;
00654   explicit ConstantDataArray(Type *ty, const char *Data)
00655     : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
00656 protected:
00657   // allocate space for exactly zero operands.
00658   void *operator new(size_t s) {
00659     return User::operator new(s, 0);
00660   }
00661 public:
00662 
00663   /// get() constructors - Return a constant with array type with an element
00664   /// count and element type matching the ArrayRef passed in.  Note that this
00665   /// can return a ConstantAggregateZero object.
00666   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
00667   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
00668   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
00669   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
00670   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
00671   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
00672 
00673   /// getString - This method constructs a CDS and initializes it with a text
00674   /// string. The default behavior (AddNull==true) causes a null terminator to
00675   /// be placed at the end of the array (increasing the length of the string by
00676   /// one more than the StringRef would normally indicate.  Pass AddNull=false
00677   /// to disable this behavior.
00678   static Constant *getString(LLVMContext &Context, StringRef Initializer,
00679                              bool AddNull = true);
00680 
00681   /// getType - Specialize the getType() method to always return an ArrayType,
00682   /// which reduces the amount of casting needed in parts of the compiler.
00683   ///
00684   inline ArrayType *getType() const {
00685     return cast<ArrayType>(Value::getType());
00686   }
00687 
00688   /// Methods for support type inquiry through isa, cast, and dyn_cast:
00689   ///
00690   static bool classof(const Value *V) {
00691     return V->getValueID() == ConstantDataArrayVal;
00692   }
00693 };
00694 
00695 //===----------------------------------------------------------------------===//
00696 /// ConstantDataVector - A vector constant whose element type is a simple
00697 /// 1/2/4/8-byte integer or float/double, and whose elements are just simple
00698 /// data values (i.e. ConstantInt/ConstantFP).  This Constant node has no
00699 /// operands because it stores all of the elements of the constant as densely
00700 /// packed data, instead of as Value*'s.
00701 class ConstantDataVector : public ConstantDataSequential {
00702   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
00703   ConstantDataVector(const ConstantDataVector &) LLVM_DELETED_FUNCTION;
00704   void anchor() override;
00705   friend class ConstantDataSequential;
00706   explicit ConstantDataVector(Type *ty, const char *Data)
00707   : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {}
00708 protected:
00709   // allocate space for exactly zero operands.
00710   void *operator new(size_t s) {
00711     return User::operator new(s, 0);
00712   }
00713 public:
00714 
00715   /// get() constructors - Return a constant with vector type with an element
00716   /// count and element type matching the ArrayRef passed in.  Note that this
00717   /// can return a ConstantAggregateZero object.
00718   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
00719   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
00720   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
00721   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
00722   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
00723   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
00724 
00725   /// getSplat - Return a ConstantVector with the specified constant in each
00726   /// element.  The specified constant has to be a of a compatible type (i8/i16/
00727   /// i32/i64/float/double) and must be a ConstantFP or ConstantInt.
00728   static Constant *getSplat(unsigned NumElts, Constant *Elt);
00729 
00730   /// getSplatValue - If this is a splat constant, meaning that all of the
00731   /// elements have the same value, return that value. Otherwise return NULL.
00732   Constant *getSplatValue() const;
00733 
00734   /// getType - Specialize the getType() method to always return a VectorType,
00735   /// which reduces the amount of casting needed in parts of the compiler.
00736   ///
00737   inline VectorType *getType() const {
00738     return cast<VectorType>(Value::getType());
00739   }
00740 
00741   /// Methods for support type inquiry through isa, cast, and dyn_cast:
00742   ///
00743   static bool classof(const Value *V) {
00744     return V->getValueID() == ConstantDataVectorVal;
00745   }
00746 };
00747 
00748 
00749 
00750 /// BlockAddress - The address of a basic block.
00751 ///
00752 class BlockAddress : public Constant {
00753   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
00754   void *operator new(size_t s) { return User::operator new(s, 2); }
00755   BlockAddress(Function *F, BasicBlock *BB);
00756 public:
00757   /// get - Return a BlockAddress for the specified function and basic block.
00758   static BlockAddress *get(Function *F, BasicBlock *BB);
00759 
00760   /// get - Return a BlockAddress for the specified basic block.  The basic
00761   /// block must be embedded into a function.
00762   static BlockAddress *get(BasicBlock *BB);
00763 
00764   /// \brief Lookup an existing \c BlockAddress constant for the given
00765   /// BasicBlock.
00766   ///
00767   /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
00768   static BlockAddress *lookup(const BasicBlock *BB);
00769 
00770   /// Transparently provide more efficient getOperand methods.
00771   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
00772 
00773   Function *getFunction() const { return (Function*)Op<0>().get(); }
00774   BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); }
00775 
00776   void destroyConstant() override;
00777   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
00778 
00779   /// Methods for support type inquiry through isa, cast, and dyn_cast:
00780   static inline bool classof(const Value *V) {
00781     return V->getValueID() == BlockAddressVal;
00782   }
00783 };
00784 
00785 template <>
00786 struct OperandTraits<BlockAddress> :
00787   public FixedNumOperandTraits<BlockAddress, 2> {
00788 };
00789 
00790 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
00791 
00792 
00793 //===----------------------------------------------------------------------===//
00794 /// ConstantExpr - a constant value that is initialized with an expression using
00795 /// other constant values.
00796 ///
00797 /// This class uses the standard Instruction opcodes to define the various
00798 /// constant expressions.  The Opcode field for the ConstantExpr class is
00799 /// maintained in the Value::SubclassData field.
00800 class ConstantExpr : public Constant {
00801   friend struct ConstantExprKeyType;
00802 
00803 protected:
00804   ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
00805     : Constant(ty, ConstantExprVal, Ops, NumOps) {
00806     // Operation type (an Instruction opcode) is stored as the SubclassData.
00807     setValueSubclassData(Opcode);
00808   }
00809 
00810 public:
00811   // Static methods to construct a ConstantExpr of different kinds.  Note that
00812   // these methods may return a object that is not an instance of the
00813   // ConstantExpr class, because they will attempt to fold the constant
00814   // expression into something simpler if possible.
00815 
00816   /// getAlignOf constant expr - computes the alignment of a type in a target
00817   /// independent way (Note: the return type is an i64).
00818   static Constant *getAlignOf(Type *Ty);
00819 
00820   /// getSizeOf constant expr - computes the (alloc) size of a type (in
00821   /// address-units, not bits) in a target independent way (Note: the return
00822   /// type is an i64).
00823   ///
00824   static Constant *getSizeOf(Type *Ty);
00825 
00826   /// getOffsetOf constant expr - computes the offset of a struct field in a
00827   /// target independent way (Note: the return type is an i64).
00828   ///
00829   static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
00830 
00831   /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
00832   /// which supports any aggregate type, and any Constant index.
00833   ///
00834   static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
00835 
00836   static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false);
00837   static Constant *getFNeg(Constant *C);
00838   static Constant *getNot(Constant *C);
00839   static Constant *getAdd(Constant *C1, Constant *C2,
00840                           bool HasNUW = false, bool HasNSW = false);
00841   static Constant *getFAdd(Constant *C1, Constant *C2);
00842   static Constant *getSub(Constant *C1, Constant *C2,
00843                           bool HasNUW = false, bool HasNSW = false);
00844   static Constant *getFSub(Constant *C1, Constant *C2);
00845   static Constant *getMul(Constant *C1, Constant *C2,
00846                           bool HasNUW = false, bool HasNSW = false);
00847   static Constant *getFMul(Constant *C1, Constant *C2);
00848   static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
00849   static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
00850   static Constant *getFDiv(Constant *C1, Constant *C2);
00851   static Constant *getURem(Constant *C1, Constant *C2);
00852   static Constant *getSRem(Constant *C1, Constant *C2);
00853   static Constant *getFRem(Constant *C1, Constant *C2);
00854   static Constant *getAnd(Constant *C1, Constant *C2);
00855   static Constant *getOr(Constant *C1, Constant *C2);
00856   static Constant *getXor(Constant *C1, Constant *C2);
00857   static Constant *getShl(Constant *C1, Constant *C2,
00858                           bool HasNUW = false, bool HasNSW = false);
00859   static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
00860   static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
00861   static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
00862   static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
00863   static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
00864   static Constant *getFPTrunc(Constant *C, Type *Ty,
00865                               bool OnlyIfReduced = false);
00866   static Constant *getFPExtend(Constant *C, Type *Ty,
00867                                bool OnlyIfReduced = false);
00868   static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
00869   static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
00870   static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
00871   static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
00872   static Constant *getPtrToInt(Constant *C, Type *Ty,
00873                                bool OnlyIfReduced = false);
00874   static Constant *getIntToPtr(Constant *C, Type *Ty,
00875                                bool OnlyIfReduced = false);
00876   static Constant *getBitCast(Constant *C, Type *Ty,
00877                               bool OnlyIfReduced = false);
00878   static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
00879                                     bool OnlyIfReduced = false);
00880 
00881   static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
00882   static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
00883   static Constant *getNSWAdd(Constant *C1, Constant *C2) {
00884     return getAdd(C1, C2, false, true);
00885   }
00886   static Constant *getNUWAdd(Constant *C1, Constant *C2) {
00887     return getAdd(C1, C2, true, false);
00888   }
00889   static Constant *getNSWSub(Constant *C1, Constant *C2) {
00890     return getSub(C1, C2, false, true);
00891   }
00892   static Constant *getNUWSub(Constant *C1, Constant *C2) {
00893     return getSub(C1, C2, true, false);
00894   }
00895   static Constant *getNSWMul(Constant *C1, Constant *C2) {
00896     return getMul(C1, C2, false, true);
00897   }
00898   static Constant *getNUWMul(Constant *C1, Constant *C2) {
00899     return getMul(C1, C2, true, false);
00900   }
00901   static Constant *getNSWShl(Constant *C1, Constant *C2) {
00902     return getShl(C1, C2, false, true);
00903   }
00904   static Constant *getNUWShl(Constant *C1, Constant *C2) {
00905     return getShl(C1, C2, true, false);
00906   }
00907   static Constant *getExactSDiv(Constant *C1, Constant *C2) {
00908     return getSDiv(C1, C2, true);
00909   }
00910   static Constant *getExactUDiv(Constant *C1, Constant *C2) {
00911     return getUDiv(C1, C2, true);
00912   }
00913   static Constant *getExactAShr(Constant *C1, Constant *C2) {
00914     return getAShr(C1, C2, true);
00915   }
00916   static Constant *getExactLShr(Constant *C1, Constant *C2) {
00917     return getLShr(C1, C2, true);
00918   }
00919 
00920   /// getBinOpIdentity - Return the identity for the given binary operation,
00921   /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
00922   /// returns null if the operator doesn't have an identity.
00923   static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty);
00924 
00925   /// getBinOpAbsorber - Return the absorbing element for the given binary
00926   /// operation, i.e. a constant C such that X op C = C and C op X = C for
00927   /// every X.  For example, this returns zero for integer multiplication.
00928   /// It returns null if the operator doesn't have an absorbing element.
00929   static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
00930 
00931   /// Transparently provide more efficient getOperand methods.
00932   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
00933 
00934   /// \brief Convenience function for getting a Cast operation.
00935   ///
00936   /// \param ops The opcode for the conversion
00937   /// \param C  The constant to be converted
00938   /// \param Ty The type to which the constant is converted
00939   /// \param OnlyIfReduced see \a getWithOperands() docs.
00940   static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
00941                            bool OnlyIfReduced = false);
00942 
00943   // @brief Create a ZExt or BitCast cast constant expression
00944   static Constant *getZExtOrBitCast(
00945     Constant *C,   ///< The constant to zext or bitcast
00946     Type *Ty ///< The type to zext or bitcast C to
00947   );
00948 
00949   // @brief Create a SExt or BitCast cast constant expression
00950   static Constant *getSExtOrBitCast(
00951     Constant *C,   ///< The constant to sext or bitcast
00952     Type *Ty ///< The type to sext or bitcast C to
00953   );
00954 
00955   // @brief Create a Trunc or BitCast cast constant expression
00956   static Constant *getTruncOrBitCast(
00957     Constant *C,   ///< The constant to trunc or bitcast
00958     Type *Ty ///< The type to trunc or bitcast C to
00959   );
00960 
00961   /// @brief Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
00962   /// expression.
00963   static Constant *getPointerCast(
00964     Constant *C,   ///< The pointer value to be casted (operand 0)
00965     Type *Ty ///< The type to which cast should be made
00966   );
00967 
00968   /// @brief Create a BitCast or AddrSpaceCast for a pointer type depending on
00969   /// the address space.
00970   static Constant *getPointerBitCastOrAddrSpaceCast(
00971     Constant *C,   ///< The constant to addrspacecast or bitcast
00972     Type *Ty ///< The type to bitcast or addrspacecast C to
00973   );
00974 
00975   /// @brief Create a ZExt, Bitcast or Trunc for integer -> integer casts
00976   static Constant *getIntegerCast(
00977     Constant *C,    ///< The integer constant to be casted
00978     Type *Ty, ///< The integer type to cast to
00979     bool isSigned   ///< Whether C should be treated as signed or not
00980   );
00981 
00982   /// @brief Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
00983   static Constant *getFPCast(
00984     Constant *C,    ///< The integer constant to be casted
00985     Type *Ty ///< The integer type to cast to
00986   );
00987 
00988   /// @brief Return true if this is a convert constant expression
00989   bool isCast() const;
00990 
00991   /// @brief Return true if this is a compare constant expression
00992   bool isCompare() const;
00993 
00994   /// @brief Return true if this is an insertvalue or extractvalue expression,
00995   /// and the getIndices() method may be used.
00996   bool hasIndices() const;
00997 
00998   /// @brief Return true if this is a getelementptr expression and all
00999   /// the index operands are compile-time known integers within the
01000   /// corresponding notional static array extents. Note that this is
01001   /// not equivalant to, a subset of, or a superset of the "inbounds"
01002   /// property.
01003   bool isGEPWithNoNotionalOverIndexing() const;
01004 
01005   /// Select constant expr
01006   ///
01007   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
01008   static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
01009                              Type *OnlyIfReducedTy = nullptr);
01010 
01011   /// get - Return a binary or shift operator constant expression,
01012   /// folding if possible.
01013   ///
01014   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
01015   static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
01016                        unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
01017 
01018   /// \brief Return an ICmp or FCmp comparison operator constant expression.
01019   ///
01020   /// \param OnlyIfReduced see \a getWithOperands() docs.
01021   static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
01022                               bool OnlyIfReduced = false);
01023 
01024   /// get* - Return some common constants without having to
01025   /// specify the full Instruction::OPCODE identifier.
01026   ///
01027   static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
01028                            bool OnlyIfReduced = false);
01029   static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
01030                            bool OnlyIfReduced = false);
01031 
01032   /// Getelementptr form.  Value* is only accepted for convenience;
01033   /// all elements must be Constant's.
01034   ///
01035   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
01036   static Constant *getGetElementPtr(Constant *C, ArrayRef<Constant *> IdxList,
01037                                     bool InBounds = false,
01038                                     Type *OnlyIfReducedTy = nullptr) {
01039     return getGetElementPtr(
01040         C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()),
01041         InBounds, OnlyIfReducedTy);
01042   }
01043   static Constant *getGetElementPtr(Constant *C, Constant *Idx,
01044                                     bool InBounds = false,
01045                                     Type *OnlyIfReducedTy = nullptr) {
01046     // This form of the function only exists to avoid ambiguous overload
01047     // warnings about whether to convert Idx to ArrayRef<Constant *> or
01048     // ArrayRef<Value *>.
01049     return getGetElementPtr(C, cast<Value>(Idx), InBounds, OnlyIfReducedTy);
01050   }
01051   static Constant *getGetElementPtr(Constant *C, ArrayRef<Value *> IdxList,
01052                                     bool InBounds = false,
01053                                     Type *OnlyIfReducedTy = nullptr);
01054 
01055   /// Create an "inbounds" getelementptr. See the documentation for the
01056   /// "inbounds" flag in LangRef.html for details.
01057   static Constant *getInBoundsGetElementPtr(Constant *C,
01058                                             ArrayRef<Constant *> IdxList) {
01059     return getGetElementPtr(C, IdxList, true);
01060   }
01061   static Constant *getInBoundsGetElementPtr(Constant *C,
01062                                             Constant *Idx) {
01063     // This form of the function only exists to avoid ambiguous overload
01064     // warnings about whether to convert Idx to ArrayRef<Constant *> or
01065     // ArrayRef<Value *>.
01066     return getGetElementPtr(C, Idx, true);
01067   }
01068   static Constant *getInBoundsGetElementPtr(Constant *C,
01069                                             ArrayRef<Value *> IdxList) {
01070     return getGetElementPtr(C, IdxList, true);
01071   }
01072 
01073   static Constant *getExtractElement(Constant *Vec, Constant *Idx,
01074                                      Type *OnlyIfReducedTy = nullptr);
01075   static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
01076                                     Type *OnlyIfReducedTy = nullptr);
01077   static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask,
01078                                     Type *OnlyIfReducedTy = nullptr);
01079   static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
01080                                    Type *OnlyIfReducedTy = nullptr);
01081   static Constant *getInsertValue(Constant *Agg, Constant *Val,
01082                                   ArrayRef<unsigned> Idxs,
01083                                   Type *OnlyIfReducedTy = nullptr);
01084 
01085   /// getOpcode - Return the opcode at the root of this constant expression
01086   unsigned getOpcode() const { return getSubclassDataFromValue(); }
01087 
01088   /// getPredicate - Return the ICMP or FCMP predicate value. Assert if this is
01089   /// not an ICMP or FCMP constant expression.
01090   unsigned getPredicate() const;
01091 
01092   /// getIndices - Assert that this is an insertvalue or exactvalue
01093   /// expression and return the list of indices.
01094   ArrayRef<unsigned> getIndices() const;
01095 
01096   /// getOpcodeName - Return a string representation for an opcode.
01097   const char *getOpcodeName() const;
01098 
01099   /// getWithOperandReplaced - Return a constant expression identical to this
01100   /// one, but with the specified operand set to the specified value.
01101   Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
01102 
01103   /// getWithOperands - This returns the current constant expression with the
01104   /// operands replaced with the specified values.  The specified array must
01105   /// have the same number of operands as our current one.
01106   Constant *getWithOperands(ArrayRef<Constant*> Ops) const {
01107     return getWithOperands(Ops, getType());
01108   }
01109 
01110   /// \brief Get the current expression with the operands replaced.
01111   ///
01112   /// Return the current constant expression with the operands replaced with \c
01113   /// Ops and the type with \c Ty.  The new operands must have the same number
01114   /// as the current ones.
01115   ///
01116   /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
01117   /// gets constant-folded, the type changes, or the expression is otherwise
01118   /// canonicalized.  This parameter should almost always be \c false.
01119   Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
01120                             bool OnlyIfReduced = false) const;
01121 
01122   /// getAsInstruction - Returns an Instruction which implements the same operation
01123   /// as this ConstantExpr. The instruction is not linked to any basic block.
01124   ///
01125   /// A better approach to this could be to have a constructor for Instruction
01126   /// which would take a ConstantExpr parameter, but that would have spread
01127   /// implementation details of ConstantExpr outside of Constants.cpp, which
01128   /// would make it harder to remove ConstantExprs altogether.
01129   Instruction *getAsInstruction();
01130 
01131   void destroyConstant() override;
01132   void replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) override;
01133 
01134   /// Methods for support type inquiry through isa, cast, and dyn_cast:
01135   static inline bool classof(const Value *V) {
01136     return V->getValueID() == ConstantExprVal;
01137   }
01138 
01139 private:
01140   // Shadow Value::setValueSubclassData with a private forwarding method so that
01141   // subclasses cannot accidentally use it.
01142   void setValueSubclassData(unsigned short D) {
01143     Value::setValueSubclassData(D);
01144   }
01145 };
01146 
01147 template <>
01148 struct OperandTraits<ConstantExpr> :
01149   public VariadicOperandTraits<ConstantExpr, 1> {
01150 };
01151 
01152 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
01153 
01154 //===----------------------------------------------------------------------===//
01155 /// UndefValue - 'undef' values are things that do not have specified contents.
01156 /// These are used for a variety of purposes, including global variable
01157 /// initializers and operands to instructions.  'undef' values can occur with
01158 /// any first-class type.
01159 ///
01160 /// Undef values aren't exactly constants; if they have multiple uses, they
01161 /// can appear to have different bit patterns at each use. See
01162 /// LangRef.html#undefvalues for details.
01163 ///
01164 class UndefValue : public Constant {
01165   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
01166   UndefValue(const UndefValue &) LLVM_DELETED_FUNCTION;
01167 protected:
01168   explicit UndefValue(Type *T) : Constant(T, UndefValueVal, nullptr, 0) {}
01169 protected:
01170   // allocate space for exactly zero operands
01171   void *operator new(size_t s) {
01172     return User::operator new(s, 0);
01173   }
01174 public:
01175   /// get() - Static factory methods - Return an 'undef' object of the specified
01176   /// type.
01177   ///
01178   static UndefValue *get(Type *T);
01179 
01180   /// getSequentialElement - If this Undef has array or vector type, return a
01181   /// undef with the right element type.
01182   UndefValue *getSequentialElement() const;
01183 
01184   /// getStructElement - If this undef has struct type, return a undef with the
01185   /// right element type for the specified element.
01186   UndefValue *getStructElement(unsigned Elt) const;
01187 
01188   /// getElementValue - Return an undef of the right value for the specified GEP
01189   /// index.
01190   UndefValue *getElementValue(Constant *C) const;
01191 
01192   /// getElementValue - Return an undef of the right value for the specified GEP
01193   /// index.
01194   UndefValue *getElementValue(unsigned Idx) const;
01195 
01196   void destroyConstant() override;
01197 
01198   /// Methods for support type inquiry through isa, cast, and dyn_cast:
01199   static bool classof(const Value *V) {
01200     return V->getValueID() == UndefValueVal;
01201   }
01202 };
01203 
01204 } // End llvm namespace
01205 
01206 #endif