LLVM API Documentation

DWARFDebugLine.cpp
Go to the documentation of this file.
00001 //===-- DWARFDebugLine.cpp ------------------------------------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 
00010 #include "DWARFDebugLine.h"
00011 #include "llvm/Support/Dwarf.h"
00012 #include "llvm/Support/Format.h"
00013 #include "llvm/Support/Path.h"
00014 #include "llvm/Support/raw_ostream.h"
00015 #include <algorithm>
00016 using namespace llvm;
00017 using namespace dwarf;
00018 typedef DILineInfoSpecifier::FileLineInfoKind FileLineInfoKind;
00019 
00020 DWARFDebugLine::Prologue::Prologue() {
00021   clear();
00022 }
00023 
00024 void DWARFDebugLine::Prologue::clear() {
00025   TotalLength = Version = PrologueLength = 0;
00026   MinInstLength = MaxOpsPerInst = DefaultIsStmt = LineBase = LineRange = 0;
00027   OpcodeBase = 0;
00028   StandardOpcodeLengths.clear();
00029   IncludeDirectories.clear();
00030   FileNames.clear();
00031 }
00032 
00033 void DWARFDebugLine::Prologue::dump(raw_ostream &OS) const {
00034   OS << "Line table prologue:\n"
00035      << format("    total_length: 0x%8.8x\n", TotalLength)
00036      << format("         version: %u\n", Version)
00037      << format(" prologue_length: 0x%8.8x\n", PrologueLength)
00038      << format(" min_inst_length: %u\n", MinInstLength)
00039      << format(Version >= 4 ? "max_ops_per_inst: %u\n" : "", MaxOpsPerInst)
00040      << format(" default_is_stmt: %u\n", DefaultIsStmt)
00041      << format("       line_base: %i\n", LineBase)
00042      << format("      line_range: %u\n", LineRange)
00043      << format("     opcode_base: %u\n", OpcodeBase);
00044 
00045   for (uint32_t i = 0; i < StandardOpcodeLengths.size(); ++i)
00046     OS << format("standard_opcode_lengths[%s] = %u\n", LNStandardString(i+1),
00047                  StandardOpcodeLengths[i]);
00048 
00049   if (!IncludeDirectories.empty())
00050     for (uint32_t i = 0; i < IncludeDirectories.size(); ++i)
00051       OS << format("include_directories[%3u] = '", i+1)
00052          << IncludeDirectories[i] << "'\n";
00053 
00054   if (!FileNames.empty()) {
00055     OS << "                Dir  Mod Time   File Len   File Name\n"
00056        << "                ---- ---------- ---------- -----------"
00057           "----------------\n";
00058     for (uint32_t i = 0; i < FileNames.size(); ++i) {
00059       const FileNameEntry& fileEntry = FileNames[i];
00060       OS << format("file_names[%3u] %4" PRIu64 " ", i+1, fileEntry.DirIdx)
00061          << format("0x%8.8" PRIx64 " 0x%8.8" PRIx64 " ",
00062                    fileEntry.ModTime, fileEntry.Length)
00063          << fileEntry.Name << '\n';
00064     }
00065   }
00066 }
00067 
00068 bool DWARFDebugLine::Prologue::parse(DataExtractor debug_line_data,
00069                                      uint32_t *offset_ptr) {
00070   const uint32_t prologue_offset = *offset_ptr;
00071 
00072   clear();
00073   TotalLength = debug_line_data.getU32(offset_ptr);
00074   Version = debug_line_data.getU16(offset_ptr);
00075   if (Version < 2)
00076     return false;
00077 
00078   PrologueLength = debug_line_data.getU32(offset_ptr);
00079   const uint32_t end_prologue_offset = PrologueLength + *offset_ptr;
00080   MinInstLength = debug_line_data.getU8(offset_ptr);
00081   if (Version >= 4)
00082     MaxOpsPerInst = debug_line_data.getU8(offset_ptr);
00083   DefaultIsStmt = debug_line_data.getU8(offset_ptr);
00084   LineBase = debug_line_data.getU8(offset_ptr);
00085   LineRange = debug_line_data.getU8(offset_ptr);
00086   OpcodeBase = debug_line_data.getU8(offset_ptr);
00087 
00088   StandardOpcodeLengths.reserve(OpcodeBase - 1);
00089   for (uint32_t i = 1; i < OpcodeBase; ++i) {
00090     uint8_t op_len = debug_line_data.getU8(offset_ptr);
00091     StandardOpcodeLengths.push_back(op_len);
00092   }
00093 
00094   while (*offset_ptr < end_prologue_offset) {
00095     const char *s = debug_line_data.getCStr(offset_ptr);
00096     if (s && s[0])
00097       IncludeDirectories.push_back(s);
00098     else
00099       break;
00100   }
00101 
00102   while (*offset_ptr < end_prologue_offset) {
00103     const char *name = debug_line_data.getCStr(offset_ptr);
00104     if (name && name[0]) {
00105       FileNameEntry fileEntry;
00106       fileEntry.Name = name;
00107       fileEntry.DirIdx = debug_line_data.getULEB128(offset_ptr);
00108       fileEntry.ModTime = debug_line_data.getULEB128(offset_ptr);
00109       fileEntry.Length = debug_line_data.getULEB128(offset_ptr);
00110       FileNames.push_back(fileEntry);
00111     } else {
00112       break;
00113     }
00114   }
00115 
00116   if (*offset_ptr != end_prologue_offset) {
00117     fprintf(stderr, "warning: parsing line table prologue at 0x%8.8x should"
00118                     " have ended at 0x%8.8x but it ended at 0x%8.8x\n",
00119             prologue_offset, end_prologue_offset, *offset_ptr);
00120     return false;
00121   }
00122   return true;
00123 }
00124 
00125 DWARFDebugLine::Row::Row(bool default_is_stmt) {
00126   reset(default_is_stmt);
00127 }
00128 
00129 void DWARFDebugLine::Row::postAppend() {
00130   BasicBlock = false;
00131   PrologueEnd = false;
00132   EpilogueBegin = false;
00133 }
00134 
00135 void DWARFDebugLine::Row::reset(bool default_is_stmt) {
00136   Address = 0;
00137   Line = 1;
00138   Column = 0;
00139   File = 1;
00140   Isa = 0;
00141   Discriminator = 0;
00142   IsStmt = default_is_stmt;
00143   BasicBlock = false;
00144   EndSequence = false;
00145   PrologueEnd = false;
00146   EpilogueBegin = false;
00147 }
00148 
00149 void DWARFDebugLine::Row::dump(raw_ostream &OS) const {
00150   OS << format("0x%16.16" PRIx64 " %6u %6u", Address, Line, Column)
00151      << format(" %6u %3u %13u ", File, Isa, Discriminator)
00152      << (IsStmt ? " is_stmt" : "")
00153      << (BasicBlock ? " basic_block" : "")
00154      << (PrologueEnd ? " prologue_end" : "")
00155      << (EpilogueBegin ? " epilogue_begin" : "")
00156      << (EndSequence ? " end_sequence" : "")
00157      << '\n';
00158 }
00159 
00160 DWARFDebugLine::Sequence::Sequence() {
00161   reset();
00162 }
00163 
00164 void DWARFDebugLine::Sequence::reset() {
00165   LowPC = 0;
00166   HighPC = 0;
00167   FirstRowIndex = 0;
00168   LastRowIndex = 0;
00169   Empty = true;
00170 }
00171 
00172 DWARFDebugLine::LineTable::LineTable() {
00173   clear();
00174 }
00175 
00176 void DWARFDebugLine::LineTable::dump(raw_ostream &OS) const {
00177   Prologue.dump(OS);
00178   OS << '\n';
00179 
00180   if (!Rows.empty()) {
00181     OS << "Address            Line   Column File   ISA Discriminator Flags\n"
00182        << "------------------ ------ ------ ------ --- ------------- "
00183           "-------------\n";
00184     for (const Row &R : Rows) {
00185       R.dump(OS);
00186     }
00187   }
00188 }
00189 
00190 void DWARFDebugLine::LineTable::clear() {
00191   Prologue.clear();
00192   Rows.clear();
00193   Sequences.clear();
00194 }
00195 
00196 DWARFDebugLine::ParsingState::ParsingState(struct LineTable *LT)
00197     : LineTable(LT), RowNumber(0) {
00198   resetRowAndSequence();
00199 }
00200 
00201 void DWARFDebugLine::ParsingState::resetRowAndSequence() {
00202   Row.reset(LineTable->Prologue.DefaultIsStmt);
00203   Sequence.reset();
00204 }
00205 
00206 void DWARFDebugLine::ParsingState::appendRowToMatrix(uint32_t offset) {
00207   if (Sequence.Empty) {
00208     // Record the beginning of instruction sequence.
00209     Sequence.Empty = false;
00210     Sequence.LowPC = Row.Address;
00211     Sequence.FirstRowIndex = RowNumber;
00212   }
00213   ++RowNumber;
00214   LineTable->appendRow(Row);
00215   if (Row.EndSequence) {
00216     // Record the end of instruction sequence.
00217     Sequence.HighPC = Row.Address;
00218     Sequence.LastRowIndex = RowNumber;
00219     if (Sequence.isValid())
00220       LineTable->appendSequence(Sequence);
00221     Sequence.reset();
00222   }
00223   Row.postAppend();
00224 }
00225 
00226 const DWARFDebugLine::LineTable *
00227 DWARFDebugLine::getLineTable(uint32_t offset) const {
00228   LineTableConstIter pos = LineTableMap.find(offset);
00229   if (pos != LineTableMap.end())
00230     return &pos->second;
00231   return nullptr;
00232 }
00233 
00234 const DWARFDebugLine::LineTable *
00235 DWARFDebugLine::getOrParseLineTable(DataExtractor debug_line_data,
00236                                     uint32_t offset) {
00237   std::pair<LineTableIter, bool> pos =
00238     LineTableMap.insert(LineTableMapTy::value_type(offset, LineTable()));
00239   LineTable *LT = &pos.first->second;
00240   if (pos.second) {
00241     if (!LT->parse(debug_line_data, RelocMap, &offset))
00242       return nullptr;
00243   }
00244   return LT;
00245 }
00246 
00247 bool DWARFDebugLine::LineTable::parse(DataExtractor debug_line_data,
00248                                       const RelocAddrMap *RMap,
00249                                       uint32_t *offset_ptr) {
00250   const uint32_t debug_line_offset = *offset_ptr;
00251 
00252   clear();
00253 
00254   if (!Prologue.parse(debug_line_data, offset_ptr)) {
00255     // Restore our offset and return false to indicate failure!
00256     *offset_ptr = debug_line_offset;
00257     return false;
00258   }
00259 
00260   const uint32_t end_offset = debug_line_offset + Prologue.TotalLength +
00261                               sizeof(Prologue.TotalLength);
00262 
00263   ParsingState State(this);
00264 
00265   while (*offset_ptr < end_offset) {
00266     uint8_t opcode = debug_line_data.getU8(offset_ptr);
00267 
00268     if (opcode == 0) {
00269       // Extended Opcodes always start with a zero opcode followed by
00270       // a uleb128 length so you can skip ones you don't know about
00271       uint32_t ext_offset = *offset_ptr;
00272       uint64_t len = debug_line_data.getULEB128(offset_ptr);
00273       uint32_t arg_size = len - (*offset_ptr - ext_offset);
00274 
00275       uint8_t sub_opcode = debug_line_data.getU8(offset_ptr);
00276       switch (sub_opcode) {
00277       case DW_LNE_end_sequence:
00278         // Set the end_sequence register of the state machine to true and
00279         // append a row to the matrix using the current values of the
00280         // state-machine registers. Then reset the registers to the initial
00281         // values specified above. Every statement program sequence must end
00282         // with a DW_LNE_end_sequence instruction which creates a row whose
00283         // address is that of the byte after the last target machine instruction
00284         // of the sequence.
00285         State.Row.EndSequence = true;
00286         State.appendRowToMatrix(*offset_ptr);
00287         State.resetRowAndSequence();
00288         break;
00289 
00290       case DW_LNE_set_address:
00291         // Takes a single relocatable address as an operand. The size of the
00292         // operand is the size appropriate to hold an address on the target
00293         // machine. Set the address register to the value given by the
00294         // relocatable address. All of the other statement program opcodes
00295         // that affect the address register add a delta to it. This instruction
00296         // stores a relocatable value into it instead.
00297         {
00298           // If this address is in our relocation map, apply the relocation.
00299           RelocAddrMap::const_iterator AI = RMap->find(*offset_ptr);
00300           if (AI != RMap->end()) {
00301              const std::pair<uint8_t, int64_t> &R = AI->second;
00302              State.Row.Address =
00303                  debug_line_data.getAddress(offset_ptr) + R.second;
00304           } else
00305             State.Row.Address = debug_line_data.getAddress(offset_ptr);
00306         }
00307         break;
00308 
00309       case DW_LNE_define_file:
00310         // Takes 4 arguments. The first is a null terminated string containing
00311         // a source file name. The second is an unsigned LEB128 number
00312         // representing the directory index of the directory in which the file
00313         // was found. The third is an unsigned LEB128 number representing the
00314         // time of last modification of the file. The fourth is an unsigned
00315         // LEB128 number representing the length in bytes of the file. The time
00316         // and length fields may contain LEB128(0) if the information is not
00317         // available.
00318         //
00319         // The directory index represents an entry in the include_directories
00320         // section of the statement program prologue. The index is LEB128(0)
00321         // if the file was found in the current directory of the compilation,
00322         // LEB128(1) if it was found in the first directory in the
00323         // include_directories section, and so on. The directory index is
00324         // ignored for file names that represent full path names.
00325         //
00326         // The files are numbered, starting at 1, in the order in which they
00327         // appear; the names in the prologue come before names defined by
00328         // the DW_LNE_define_file instruction. These numbers are used in the
00329         // the file register of the state machine.
00330         {
00331           FileNameEntry fileEntry;
00332           fileEntry.Name = debug_line_data.getCStr(offset_ptr);
00333           fileEntry.DirIdx = debug_line_data.getULEB128(offset_ptr);
00334           fileEntry.ModTime = debug_line_data.getULEB128(offset_ptr);
00335           fileEntry.Length = debug_line_data.getULEB128(offset_ptr);
00336           Prologue.FileNames.push_back(fileEntry);
00337         }
00338         break;
00339 
00340       case DW_LNE_set_discriminator:
00341         State.Row.Discriminator = debug_line_data.getULEB128(offset_ptr);
00342         break;
00343 
00344       default:
00345         // Length doesn't include the zero opcode byte or the length itself, but
00346         // it does include the sub_opcode, so we have to adjust for that below
00347         (*offset_ptr) += arg_size;
00348         break;
00349       }
00350     } else if (opcode < Prologue.OpcodeBase) {
00351       switch (opcode) {
00352       // Standard Opcodes
00353       case DW_LNS_copy:
00354         // Takes no arguments. Append a row to the matrix using the
00355         // current values of the state-machine registers. Then set
00356         // the basic_block register to false.
00357         State.appendRowToMatrix(*offset_ptr);
00358         break;
00359 
00360       case DW_LNS_advance_pc:
00361         // Takes a single unsigned LEB128 operand, multiplies it by the
00362         // min_inst_length field of the prologue, and adds the
00363         // result to the address register of the state machine.
00364         State.Row.Address +=
00365             debug_line_data.getULEB128(offset_ptr) * Prologue.MinInstLength;
00366         break;
00367 
00368       case DW_LNS_advance_line:
00369         // Takes a single signed LEB128 operand and adds that value to
00370         // the line register of the state machine.
00371         State.Row.Line += debug_line_data.getSLEB128(offset_ptr);
00372         break;
00373 
00374       case DW_LNS_set_file:
00375         // Takes a single unsigned LEB128 operand and stores it in the file
00376         // register of the state machine.
00377         State.Row.File = debug_line_data.getULEB128(offset_ptr);
00378         break;
00379 
00380       case DW_LNS_set_column:
00381         // Takes a single unsigned LEB128 operand and stores it in the
00382         // column register of the state machine.
00383         State.Row.Column = debug_line_data.getULEB128(offset_ptr);
00384         break;
00385 
00386       case DW_LNS_negate_stmt:
00387         // Takes no arguments. Set the is_stmt register of the state
00388         // machine to the logical negation of its current value.
00389         State.Row.IsStmt = !State.Row.IsStmt;
00390         break;
00391 
00392       case DW_LNS_set_basic_block:
00393         // Takes no arguments. Set the basic_block register of the
00394         // state machine to true
00395         State.Row.BasicBlock = true;
00396         break;
00397 
00398       case DW_LNS_const_add_pc:
00399         // Takes no arguments. Add to the address register of the state
00400         // machine the address increment value corresponding to special
00401         // opcode 255. The motivation for DW_LNS_const_add_pc is this:
00402         // when the statement program needs to advance the address by a
00403         // small amount, it can use a single special opcode, which occupies
00404         // a single byte. When it needs to advance the address by up to
00405         // twice the range of the last special opcode, it can use
00406         // DW_LNS_const_add_pc followed by a special opcode, for a total
00407         // of two bytes. Only if it needs to advance the address by more
00408         // than twice that range will it need to use both DW_LNS_advance_pc
00409         // and a special opcode, requiring three or more bytes.
00410         {
00411           uint8_t adjust_opcode = 255 - Prologue.OpcodeBase;
00412           uint64_t addr_offset =
00413               (adjust_opcode / Prologue.LineRange) * Prologue.MinInstLength;
00414           State.Row.Address += addr_offset;
00415         }
00416         break;
00417 
00418       case DW_LNS_fixed_advance_pc:
00419         // Takes a single uhalf operand. Add to the address register of
00420         // the state machine the value of the (unencoded) operand. This
00421         // is the only extended opcode that takes an argument that is not
00422         // a variable length number. The motivation for DW_LNS_fixed_advance_pc
00423         // is this: existing assemblers cannot emit DW_LNS_advance_pc or
00424         // special opcodes because they cannot encode LEB128 numbers or
00425         // judge when the computation of a special opcode overflows and
00426         // requires the use of DW_LNS_advance_pc. Such assemblers, however,
00427         // can use DW_LNS_fixed_advance_pc instead, sacrificing compression.
00428         State.Row.Address += debug_line_data.getU16(offset_ptr);
00429         break;
00430 
00431       case DW_LNS_set_prologue_end:
00432         // Takes no arguments. Set the prologue_end register of the
00433         // state machine to true
00434         State.Row.PrologueEnd = true;
00435         break;
00436 
00437       case DW_LNS_set_epilogue_begin:
00438         // Takes no arguments. Set the basic_block register of the
00439         // state machine to true
00440         State.Row.EpilogueBegin = true;
00441         break;
00442 
00443       case DW_LNS_set_isa:
00444         // Takes a single unsigned LEB128 operand and stores it in the
00445         // column register of the state machine.
00446         State.Row.Isa = debug_line_data.getULEB128(offset_ptr);
00447         break;
00448 
00449       default:
00450         // Handle any unknown standard opcodes here. We know the lengths
00451         // of such opcodes because they are specified in the prologue
00452         // as a multiple of LEB128 operands for each opcode.
00453         {
00454           assert(opcode - 1U < Prologue.StandardOpcodeLengths.size());
00455           uint8_t opcode_length = Prologue.StandardOpcodeLengths[opcode - 1];
00456           for (uint8_t i = 0; i < opcode_length; ++i)
00457             debug_line_data.getULEB128(offset_ptr);
00458         }
00459         break;
00460       }
00461     } else {
00462       // Special Opcodes
00463 
00464       // A special opcode value is chosen based on the amount that needs
00465       // to be added to the line and address registers. The maximum line
00466       // increment for a special opcode is the value of the line_base
00467       // field in the header, plus the value of the line_range field,
00468       // minus 1 (line base + line range - 1). If the desired line
00469       // increment is greater than the maximum line increment, a standard
00470       // opcode must be used instead of a special opcode. The "address
00471       // advance" is calculated by dividing the desired address increment
00472       // by the minimum_instruction_length field from the header. The
00473       // special opcode is then calculated using the following formula:
00474       //
00475       //  opcode = (desired line increment - line_base) +
00476       //           (line_range * address advance) + opcode_base
00477       //
00478       // If the resulting opcode is greater than 255, a standard opcode
00479       // must be used instead.
00480       //
00481       // To decode a special opcode, subtract the opcode_base from the
00482       // opcode itself to give the adjusted opcode. The amount to
00483       // increment the address register is the result of the adjusted
00484       // opcode divided by the line_range multiplied by the
00485       // minimum_instruction_length field from the header. That is:
00486       //
00487       //  address increment = (adjusted opcode / line_range) *
00488       //                      minimum_instruction_length
00489       //
00490       // The amount to increment the line register is the line_base plus
00491       // the result of the adjusted opcode modulo the line_range. That is:
00492       //
00493       // line increment = line_base + (adjusted opcode % line_range)
00494 
00495       uint8_t adjust_opcode = opcode - Prologue.OpcodeBase;
00496       uint64_t addr_offset =
00497           (adjust_opcode / Prologue.LineRange) * Prologue.MinInstLength;
00498       int32_t line_offset =
00499           Prologue.LineBase + (adjust_opcode % Prologue.LineRange);
00500       State.Row.Line += line_offset;
00501       State.Row.Address += addr_offset;
00502       State.appendRowToMatrix(*offset_ptr);
00503     }
00504   }
00505 
00506   if (!State.Sequence.Empty) {
00507     fprintf(stderr, "warning: last sequence in debug line table is not"
00508                     "terminated!\n");
00509   }
00510 
00511   // Sort all sequences so that address lookup will work faster.
00512   if (!Sequences.empty()) {
00513     std::sort(Sequences.begin(), Sequences.end(), Sequence::orderByLowPC);
00514     // Note: actually, instruction address ranges of sequences should not
00515     // overlap (in shared objects and executables). If they do, the address
00516     // lookup would still work, though, but result would be ambiguous.
00517     // We don't report warning in this case. For example,
00518     // sometimes .so compiled from multiple object files contains a few
00519     // rudimentary sequences for address ranges [0x0, 0xsomething).
00520   }
00521 
00522   return end_offset;
00523 }
00524 
00525 uint32_t DWARFDebugLine::LineTable::lookupAddress(uint64_t address) const {
00526   uint32_t unknown_index = UINT32_MAX;
00527   if (Sequences.empty())
00528     return unknown_index;
00529   // First, find an instruction sequence containing the given address.
00530   DWARFDebugLine::Sequence sequence;
00531   sequence.LowPC = address;
00532   SequenceIter first_seq = Sequences.begin();
00533   SequenceIter last_seq = Sequences.end();
00534   SequenceIter seq_pos = std::lower_bound(first_seq, last_seq, sequence,
00535       DWARFDebugLine::Sequence::orderByLowPC);
00536   DWARFDebugLine::Sequence found_seq;
00537   if (seq_pos == last_seq) {
00538     found_seq = Sequences.back();
00539   } else if (seq_pos->LowPC == address) {
00540     found_seq = *seq_pos;
00541   } else {
00542     if (seq_pos == first_seq)
00543       return unknown_index;
00544     found_seq = *(seq_pos - 1);
00545   }
00546   if (!found_seq.containsPC(address))
00547     return unknown_index;
00548   // Search for instruction address in the rows describing the sequence.
00549   // Rows are stored in a vector, so we may use arithmetical operations with
00550   // iterators.
00551   DWARFDebugLine::Row row;
00552   row.Address = address;
00553   RowIter first_row = Rows.begin() + found_seq.FirstRowIndex;
00554   RowIter last_row = Rows.begin() + found_seq.LastRowIndex;
00555   RowIter row_pos = std::lower_bound(first_row, last_row, row,
00556       DWARFDebugLine::Row::orderByAddress);
00557   if (row_pos == last_row) {
00558     return found_seq.LastRowIndex - 1;
00559   }
00560   uint32_t index = found_seq.FirstRowIndex + (row_pos - first_row);
00561   if (row_pos->Address > address) {
00562     if (row_pos == first_row)
00563       return unknown_index;
00564     else
00565       index--;
00566   }
00567   return index;
00568 }
00569 
00570 bool DWARFDebugLine::LineTable::lookupAddressRange(
00571     uint64_t address, uint64_t size, std::vector<uint32_t> &result) const {
00572   if (Sequences.empty())
00573     return false;
00574   uint64_t end_addr = address + size;
00575   // First, find an instruction sequence containing the given address.
00576   DWARFDebugLine::Sequence sequence;
00577   sequence.LowPC = address;
00578   SequenceIter first_seq = Sequences.begin();
00579   SequenceIter last_seq = Sequences.end();
00580   SequenceIter seq_pos = std::lower_bound(first_seq, last_seq, sequence,
00581       DWARFDebugLine::Sequence::orderByLowPC);
00582   if (seq_pos == last_seq || seq_pos->LowPC != address) {
00583     if (seq_pos == first_seq)
00584       return false;
00585     seq_pos--;
00586   }
00587   if (!seq_pos->containsPC(address))
00588     return false;
00589 
00590   SequenceIter start_pos = seq_pos;
00591 
00592   // Add the rows from the first sequence to the vector, starting with the
00593   // index we just calculated
00594 
00595   while (seq_pos != last_seq && seq_pos->LowPC < end_addr) {
00596     DWARFDebugLine::Sequence cur_seq = *seq_pos;
00597     uint32_t first_row_index;
00598     uint32_t last_row_index;
00599     if (seq_pos == start_pos) {
00600       // For the first sequence, we need to find which row in the sequence is the
00601       // first in our range. Rows are stored in a vector, so we may use
00602       // arithmetical operations with iterators.
00603       DWARFDebugLine::Row row;
00604       row.Address = address;
00605       RowIter first_row = Rows.begin() + cur_seq.FirstRowIndex;
00606       RowIter last_row = Rows.begin() + cur_seq.LastRowIndex;
00607       RowIter row_pos = std::upper_bound(first_row, last_row, row,
00608                                          DWARFDebugLine::Row::orderByAddress);
00609       // The 'row_pos' iterator references the first row that is greater than
00610       // our start address. Unless that's the first row, we want to start at
00611       // the row before that.
00612       first_row_index = cur_seq.FirstRowIndex + (row_pos - first_row);
00613       if (row_pos != first_row)
00614         --first_row_index;
00615     } else
00616       first_row_index = cur_seq.FirstRowIndex;
00617 
00618     // For the last sequence in our range, we need to figure out the last row in
00619     // range.  For all other sequences we can go to the end of the sequence.
00620     if (cur_seq.HighPC > end_addr) {
00621       DWARFDebugLine::Row row;
00622       row.Address = end_addr;
00623       RowIter first_row = Rows.begin() + cur_seq.FirstRowIndex;
00624       RowIter last_row = Rows.begin() + cur_seq.LastRowIndex;
00625       RowIter row_pos = std::upper_bound(first_row, last_row, row,
00626                                          DWARFDebugLine::Row::orderByAddress);
00627       // The 'row_pos' iterator references the first row that is greater than
00628       // our end address.  The row before that is the last row we want.
00629       last_row_index = cur_seq.FirstRowIndex + (row_pos - first_row) - 1;
00630     } else
00631       // Contrary to what you might expect, DWARFDebugLine::SequenceLastRowIndex
00632       // isn't a valid index within the current sequence.  It's that plus one.
00633       last_row_index = cur_seq.LastRowIndex - 1;
00634 
00635     for (uint32_t i = first_row_index; i <= last_row_index; ++i) {
00636       result.push_back(i);
00637     }
00638 
00639     ++seq_pos;
00640   }
00641 
00642   return true;
00643 }
00644 
00645 bool
00646 DWARFDebugLine::LineTable::getFileNameByIndex(uint64_t FileIndex,
00647                                               FileLineInfoKind Kind,
00648                                               std::string &Result) const {
00649   if (FileIndex == 0 || FileIndex > Prologue.FileNames.size() ||
00650       Kind == FileLineInfoKind::None)
00651     return false;
00652   const FileNameEntry &Entry = Prologue.FileNames[FileIndex - 1];
00653   const char *FileName = Entry.Name;
00654   if (Kind != FileLineInfoKind::AbsoluteFilePath ||
00655       sys::path::is_absolute(FileName)) {
00656     Result = FileName;
00657     return true;
00658   }
00659   SmallString<16> FilePath;
00660   uint64_t IncludeDirIndex = Entry.DirIdx;
00661   // Be defensive about the contents of Entry.
00662   if (IncludeDirIndex > 0 &&
00663       IncludeDirIndex <= Prologue.IncludeDirectories.size()) {
00664     const char *IncludeDir = Prologue.IncludeDirectories[IncludeDirIndex - 1];
00665     sys::path::append(FilePath, IncludeDir);
00666   }
00667   sys::path::append(FilePath, FileName);
00668   Result = FilePath.str();
00669   return true;
00670 }