LLVM API Documentation

DeadArgumentElimination.cpp
Go to the documentation of this file.
00001 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This pass deletes dead arguments from internal functions.  Dead argument
00011 // elimination removes arguments which are directly dead, as well as arguments
00012 // only passed into function calls as dead arguments of other functions.  This
00013 // pass also deletes dead return values in a similar way.
00014 //
00015 // This pass is often useful as a cleanup pass to run after aggressive
00016 // interprocedural passes, which add possibly-dead arguments or return values.
00017 //
00018 //===----------------------------------------------------------------------===//
00019 
00020 #include "llvm/Transforms/IPO.h"
00021 #include "llvm/ADT/DenseMap.h"
00022 #include "llvm/ADT/SmallVector.h"
00023 #include "llvm/ADT/Statistic.h"
00024 #include "llvm/ADT/StringExtras.h"
00025 #include "llvm/IR/CallSite.h"
00026 #include "llvm/IR/CallingConv.h"
00027 #include "llvm/IR/Constant.h"
00028 #include "llvm/IR/DIBuilder.h"
00029 #include "llvm/IR/DebugInfo.h"
00030 #include "llvm/IR/DerivedTypes.h"
00031 #include "llvm/IR/Instructions.h"
00032 #include "llvm/IR/IntrinsicInst.h"
00033 #include "llvm/IR/LLVMContext.h"
00034 #include "llvm/IR/Module.h"
00035 #include "llvm/Pass.h"
00036 #include "llvm/Support/Debug.h"
00037 #include "llvm/Support/raw_ostream.h"
00038 #include <map>
00039 #include <set>
00040 #include <tuple>
00041 using namespace llvm;
00042 
00043 #define DEBUG_TYPE "deadargelim"
00044 
00045 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
00046 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
00047 STATISTIC(NumArgumentsReplacedWithUndef, 
00048           "Number of unread args replaced with undef");
00049 namespace {
00050   /// DAE - The dead argument elimination pass.
00051   ///
00052   class DAE : public ModulePass {
00053   public:
00054 
00055     /// Struct that represents (part of) either a return value or a function
00056     /// argument.  Used so that arguments and return values can be used
00057     /// interchangeably.
00058     struct RetOrArg {
00059       RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
00060                IsArg(IsArg) {}
00061       const Function *F;
00062       unsigned Idx;
00063       bool IsArg;
00064 
00065       /// Make RetOrArg comparable, so we can put it into a map.
00066       bool operator<(const RetOrArg &O) const {
00067         return std::tie(F, Idx, IsArg) < std::tie(O.F, O.Idx, O.IsArg);
00068       }
00069 
00070       /// Make RetOrArg comparable, so we can easily iterate the multimap.
00071       bool operator==(const RetOrArg &O) const {
00072         return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
00073       }
00074 
00075       std::string getDescription() const {
00076         return std::string((IsArg ? "Argument #" : "Return value #"))
00077                + utostr(Idx) + " of function " + F->getName().str();
00078       }
00079     };
00080 
00081     /// Liveness enum - During our initial pass over the program, we determine
00082     /// that things are either alive or maybe alive. We don't mark anything
00083     /// explicitly dead (even if we know they are), since anything not alive
00084     /// with no registered uses (in Uses) will never be marked alive and will
00085     /// thus become dead in the end.
00086     enum Liveness { Live, MaybeLive };
00087 
00088     /// Convenience wrapper
00089     RetOrArg CreateRet(const Function *F, unsigned Idx) {
00090       return RetOrArg(F, Idx, false);
00091     }
00092     /// Convenience wrapper
00093     RetOrArg CreateArg(const Function *F, unsigned Idx) {
00094       return RetOrArg(F, Idx, true);
00095     }
00096 
00097     typedef std::multimap<RetOrArg, RetOrArg> UseMap;
00098     /// This maps a return value or argument to any MaybeLive return values or
00099     /// arguments it uses. This allows the MaybeLive values to be marked live
00100     /// when any of its users is marked live.
00101     /// For example (indices are left out for clarity):
00102     ///  - Uses[ret F] = ret G
00103     ///    This means that F calls G, and F returns the value returned by G.
00104     ///  - Uses[arg F] = ret G
00105     ///    This means that some function calls G and passes its result as an
00106     ///    argument to F.
00107     ///  - Uses[ret F] = arg F
00108     ///    This means that F returns one of its own arguments.
00109     ///  - Uses[arg F] = arg G
00110     ///    This means that G calls F and passes one of its own (G's) arguments
00111     ///    directly to F.
00112     UseMap Uses;
00113 
00114     typedef std::set<RetOrArg> LiveSet;
00115     typedef std::set<const Function*> LiveFuncSet;
00116 
00117     /// This set contains all values that have been determined to be live.
00118     LiveSet LiveValues;
00119     /// This set contains all values that are cannot be changed in any way.
00120     LiveFuncSet LiveFunctions;
00121 
00122     typedef SmallVector<RetOrArg, 5> UseVector;
00123 
00124     // Map each LLVM function to corresponding metadata with debug info. If
00125     // the function is replaced with another one, we should patch the pointer
00126     // to LLVM function in metadata.
00127     // As the code generation for module is finished (and DIBuilder is
00128     // finalized) we assume that subprogram descriptors won't be changed, and
00129     // they are stored in map for short duration anyway.
00130     DenseMap<const Function *, DISubprogram> FunctionDIs;
00131 
00132   protected:
00133     // DAH uses this to specify a different ID.
00134     explicit DAE(char &ID) : ModulePass(ID) {}
00135 
00136   public:
00137     static char ID; // Pass identification, replacement for typeid
00138     DAE() : ModulePass(ID) {
00139       initializeDAEPass(*PassRegistry::getPassRegistry());
00140     }
00141 
00142     bool runOnModule(Module &M) override;
00143 
00144     virtual bool ShouldHackArguments() const { return false; }
00145 
00146   private:
00147     Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
00148     Liveness SurveyUse(const Use *U, UseVector &MaybeLiveUses,
00149                        unsigned RetValNum = 0);
00150     Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
00151 
00152     void SurveyFunction(const Function &F);
00153     void MarkValue(const RetOrArg &RA, Liveness L,
00154                    const UseVector &MaybeLiveUses);
00155     void MarkLive(const RetOrArg &RA);
00156     void MarkLive(const Function &F);
00157     void PropagateLiveness(const RetOrArg &RA);
00158     bool RemoveDeadStuffFromFunction(Function *F);
00159     bool DeleteDeadVarargs(Function &Fn);
00160     bool RemoveDeadArgumentsFromCallers(Function &Fn);
00161   };
00162 }
00163 
00164 
00165 char DAE::ID = 0;
00166 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
00167 
00168 namespace {
00169   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
00170   /// deletes arguments to functions which are external.  This is only for use
00171   /// by bugpoint.
00172   struct DAH : public DAE {
00173     static char ID;
00174     DAH() : DAE(ID) {}
00175 
00176     bool ShouldHackArguments() const override { return true; }
00177   };
00178 }
00179 
00180 char DAH::ID = 0;
00181 INITIALIZE_PASS(DAH, "deadarghaX0r", 
00182                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
00183                 false, false)
00184 
00185 /// createDeadArgEliminationPass - This pass removes arguments from functions
00186 /// which are not used by the body of the function.
00187 ///
00188 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
00189 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
00190 
00191 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
00192 /// llvm.vastart is never called, the varargs list is dead for the function.
00193 bool DAE::DeleteDeadVarargs(Function &Fn) {
00194   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
00195   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
00196 
00197   // Ensure that the function is only directly called.
00198   if (Fn.hasAddressTaken())
00199     return false;
00200 
00201   // Okay, we know we can transform this function if safe.  Scan its body
00202   // looking for calls marked musttail or calls to llvm.vastart.
00203   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
00204     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
00205       CallInst *CI = dyn_cast<CallInst>(I);
00206       if (!CI)
00207         continue;
00208       if (CI->isMustTailCall())
00209         return false;
00210       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
00211         if (II->getIntrinsicID() == Intrinsic::vastart)
00212           return false;
00213       }
00214     }
00215   }
00216 
00217   // If we get here, there are no calls to llvm.vastart in the function body,
00218   // remove the "..." and adjust all the calls.
00219 
00220   // Start by computing a new prototype for the function, which is the same as
00221   // the old function, but doesn't have isVarArg set.
00222   FunctionType *FTy = Fn.getFunctionType();
00223 
00224   std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
00225   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
00226                                                 Params, false);
00227   unsigned NumArgs = Params.size();
00228 
00229   // Create the new function body and insert it into the module...
00230   Function *NF = Function::Create(NFTy, Fn.getLinkage());
00231   NF->copyAttributesFrom(&Fn);
00232   Fn.getParent()->getFunctionList().insert(&Fn, NF);
00233   NF->takeName(&Fn);
00234 
00235   // Loop over all of the callers of the function, transforming the call sites
00236   // to pass in a smaller number of arguments into the new function.
00237   //
00238   std::vector<Value*> Args;
00239   for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
00240     CallSite CS(*I++);
00241     if (!CS)
00242       continue;
00243     Instruction *Call = CS.getInstruction();
00244 
00245     // Pass all the same arguments.
00246     Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
00247 
00248     // Drop any attributes that were on the vararg arguments.
00249     AttributeSet PAL = CS.getAttributes();
00250     if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
00251       SmallVector<AttributeSet, 8> AttributesVec;
00252       for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
00253         AttributesVec.push_back(PAL.getSlotAttributes(i));
00254       if (PAL.hasAttributes(AttributeSet::FunctionIndex))
00255         AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
00256                                                   PAL.getFnAttributes()));
00257       PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
00258     }
00259 
00260     Instruction *New;
00261     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
00262       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
00263                                Args, "", Call);
00264       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
00265       cast<InvokeInst>(New)->setAttributes(PAL);
00266     } else {
00267       New = CallInst::Create(NF, Args, "", Call);
00268       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
00269       cast<CallInst>(New)->setAttributes(PAL);
00270       if (cast<CallInst>(Call)->isTailCall())
00271         cast<CallInst>(New)->setTailCall();
00272     }
00273     New->setDebugLoc(Call->getDebugLoc());
00274 
00275     Args.clear();
00276 
00277     if (!Call->use_empty())
00278       Call->replaceAllUsesWith(New);
00279 
00280     New->takeName(Call);
00281 
00282     // Finally, remove the old call from the program, reducing the use-count of
00283     // F.
00284     Call->eraseFromParent();
00285   }
00286 
00287   // Since we have now created the new function, splice the body of the old
00288   // function right into the new function, leaving the old rotting hulk of the
00289   // function empty.
00290   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
00291 
00292   // Loop over the argument list, transferring uses of the old arguments over to
00293   // the new arguments, also transferring over the names as well.  While we're at
00294   // it, remove the dead arguments from the DeadArguments list.
00295   //
00296   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
00297        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
00298     // Move the name and users over to the new version.
00299     I->replaceAllUsesWith(I2);
00300     I2->takeName(I);
00301   }
00302 
00303   // Patch the pointer to LLVM function in debug info descriptor.
00304   auto DI = FunctionDIs.find(&Fn);
00305   if (DI != FunctionDIs.end())
00306     DI->second.replaceFunction(NF);
00307 
00308   // Fix up any BlockAddresses that refer to the function.
00309   Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
00310   // Delete the bitcast that we just created, so that NF does not
00311   // appear to be address-taken.
00312   NF->removeDeadConstantUsers();
00313   // Finally, nuke the old function.
00314   Fn.eraseFromParent();
00315   return true;
00316 }
00317 
00318 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any 
00319 /// arguments that are unused, and changes the caller parameters to be undefined
00320 /// instead.
00321 bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
00322 {
00323   if (Fn.isDeclaration() || Fn.mayBeOverridden())
00324     return false;
00325 
00326   // Functions with local linkage should already have been handled, except the
00327   // fragile (variadic) ones which we can improve here.
00328   if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
00329     return false;
00330 
00331   // If a function seen at compile time is not necessarily the one linked to
00332   // the binary being built, it is illegal to change the actual arguments
00333   // passed to it. These functions can be captured by isWeakForLinker().
00334   // *NOTE* that mayBeOverridden() is insufficient for this purpose as it
00335   // doesn't include linkage types like AvailableExternallyLinkage and
00336   // LinkOnceODRLinkage. Take link_odr* as an example, it indicates a set of
00337   // *EQUIVALENT* globals that can be merged at link-time. However, the
00338   // semantic of *EQUIVALENT*-functions includes parameters. Changing
00339   // parameters breaks this assumption.
00340   //
00341   if (Fn.isWeakForLinker())
00342     return false;
00343 
00344   if (Fn.use_empty())
00345     return false;
00346 
00347   SmallVector<unsigned, 8> UnusedArgs;
00348   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); 
00349        I != E; ++I) {
00350     Argument *Arg = I;
00351 
00352     if (Arg->use_empty() && !Arg->hasByValOrInAllocaAttr())
00353       UnusedArgs.push_back(Arg->getArgNo());
00354   }
00355 
00356   if (UnusedArgs.empty())
00357     return false;
00358 
00359   bool Changed = false;
00360 
00361   for (Use &U : Fn.uses()) {
00362     CallSite CS(U.getUser());
00363     if (!CS || !CS.isCallee(&U))
00364       continue;
00365 
00366     // Now go through all unused args and replace them with "undef".
00367     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
00368       unsigned ArgNo = UnusedArgs[I];
00369 
00370       Value *Arg = CS.getArgument(ArgNo);
00371       CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
00372       ++NumArgumentsReplacedWithUndef;
00373       Changed = true;
00374     }
00375   }
00376 
00377   return Changed;
00378 }
00379 
00380 /// Convenience function that returns the number of return values. It returns 0
00381 /// for void functions and 1 for functions not returning a struct. It returns
00382 /// the number of struct elements for functions returning a struct.
00383 static unsigned NumRetVals(const Function *F) {
00384   if (F->getReturnType()->isVoidTy())
00385     return 0;
00386   else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
00387     return STy->getNumElements();
00388   else
00389     return 1;
00390 }
00391 
00392 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
00393 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
00394 /// liveness of Use.
00395 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
00396   // We're live if our use or its Function is already marked as live.
00397   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
00398     return Live;
00399 
00400   // We're maybe live otherwise, but remember that we must become live if
00401   // Use becomes live.
00402   MaybeLiveUses.push_back(Use);
00403   return MaybeLive;
00404 }
00405 
00406 
00407 /// SurveyUse - This looks at a single use of an argument or return value
00408 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
00409 /// if it causes the used value to become MaybeLive.
00410 ///
00411 /// RetValNum is the return value number to use when this use is used in a
00412 /// return instruction. This is used in the recursion, you should always leave
00413 /// it at 0.
00414 DAE::Liveness DAE::SurveyUse(const Use *U,
00415                              UseVector &MaybeLiveUses, unsigned RetValNum) {
00416     const User *V = U->getUser();
00417     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
00418       // The value is returned from a function. It's only live when the
00419       // function's return value is live. We use RetValNum here, for the case
00420       // that U is really a use of an insertvalue instruction that uses the
00421       // original Use.
00422       RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
00423       // We might be live, depending on the liveness of Use.
00424       return MarkIfNotLive(Use, MaybeLiveUses);
00425     }
00426     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
00427       if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
00428           && IV->hasIndices())
00429         // The use we are examining is inserted into an aggregate. Our liveness
00430         // depends on all uses of that aggregate, but if it is used as a return
00431         // value, only index at which we were inserted counts.
00432         RetValNum = *IV->idx_begin();
00433 
00434       // Note that if we are used as the aggregate operand to the insertvalue,
00435       // we don't change RetValNum, but do survey all our uses.
00436 
00437       Liveness Result = MaybeLive;
00438       for (const Use &UU : IV->uses()) {
00439         Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
00440         if (Result == Live)
00441           break;
00442       }
00443       return Result;
00444     }
00445 
00446     if (ImmutableCallSite CS = V) {
00447       const Function *F = CS.getCalledFunction();
00448       if (F) {
00449         // Used in a direct call.
00450 
00451         // Find the argument number. We know for sure that this use is an
00452         // argument, since if it was the function argument this would be an
00453         // indirect call and the we know can't be looking at a value of the
00454         // label type (for the invoke instruction).
00455         unsigned ArgNo = CS.getArgumentNo(U);
00456 
00457         if (ArgNo >= F->getFunctionType()->getNumParams())
00458           // The value is passed in through a vararg! Must be live.
00459           return Live;
00460 
00461         assert(CS.getArgument(ArgNo)
00462                == CS->getOperand(U->getOperandNo())
00463                && "Argument is not where we expected it");
00464 
00465         // Value passed to a normal call. It's only live when the corresponding
00466         // argument to the called function turns out live.
00467         RetOrArg Use = CreateArg(F, ArgNo);
00468         return MarkIfNotLive(Use, MaybeLiveUses);
00469       }
00470     }
00471     // Used in any other way? Value must be live.
00472     return Live;
00473 }
00474 
00475 /// SurveyUses - This looks at all the uses of the given value
00476 /// Returns the Liveness deduced from the uses of this value.
00477 ///
00478 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
00479 /// the result is Live, MaybeLiveUses might be modified but its content should
00480 /// be ignored (since it might not be complete).
00481 DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
00482   // Assume it's dead (which will only hold if there are no uses at all..).
00483   Liveness Result = MaybeLive;
00484   // Check each use.
00485   for (const Use &U : V->uses()) {
00486     Result = SurveyUse(&U, MaybeLiveUses);
00487     if (Result == Live)
00488       break;
00489   }
00490   return Result;
00491 }
00492 
00493 // SurveyFunction - This performs the initial survey of the specified function,
00494 // checking out whether or not it uses any of its incoming arguments or whether
00495 // any callers use the return value.  This fills in the LiveValues set and Uses
00496 // map.
00497 //
00498 // We consider arguments of non-internal functions to be intrinsically alive as
00499 // well as arguments to functions which have their "address taken".
00500 //
00501 void DAE::SurveyFunction(const Function &F) {
00502   // Functions with inalloca parameters are expecting args in a particular
00503   // register and memory layout.
00504   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
00505     MarkLive(F);
00506     return;
00507   }
00508 
00509   unsigned RetCount = NumRetVals(&F);
00510   // Assume all return values are dead
00511   typedef SmallVector<Liveness, 5> RetVals;
00512   RetVals RetValLiveness(RetCount, MaybeLive);
00513 
00514   typedef SmallVector<UseVector, 5> RetUses;
00515   // These vectors map each return value to the uses that make it MaybeLive, so
00516   // we can add those to the Uses map if the return value really turns out to be
00517   // MaybeLive. Initialized to a list of RetCount empty lists.
00518   RetUses MaybeLiveRetUses(RetCount);
00519 
00520   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
00521     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
00522       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
00523           != F.getFunctionType()->getReturnType()) {
00524         // We don't support old style multiple return values.
00525         MarkLive(F);
00526         return;
00527       }
00528 
00529   if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
00530     MarkLive(F);
00531     return;
00532   }
00533 
00534   DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
00535   // Keep track of the number of live retvals, so we can skip checks once all
00536   // of them turn out to be live.
00537   unsigned NumLiveRetVals = 0;
00538   Type *STy = dyn_cast<StructType>(F.getReturnType());
00539   // Loop all uses of the function.
00540   for (const Use &U : F.uses()) {
00541     // If the function is PASSED IN as an argument, its address has been
00542     // taken.
00543     ImmutableCallSite CS(U.getUser());
00544     if (!CS || !CS.isCallee(&U)) {
00545       MarkLive(F);
00546       return;
00547     }
00548 
00549     // If this use is anything other than a call site, the function is alive.
00550     const Instruction *TheCall = CS.getInstruction();
00551     if (!TheCall) {   // Not a direct call site?
00552       MarkLive(F);
00553       return;
00554     }
00555 
00556     // If we end up here, we are looking at a direct call to our function.
00557 
00558     // Now, check how our return value(s) is/are used in this caller. Don't
00559     // bother checking return values if all of them are live already.
00560     if (NumLiveRetVals != RetCount) {
00561       if (STy) {
00562         // Check all uses of the return value.
00563         for (const User *U : TheCall->users()) {
00564           const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U);
00565           if (Ext && Ext->hasIndices()) {
00566             // This use uses a part of our return value, survey the uses of
00567             // that part and store the results for this index only.
00568             unsigned Idx = *Ext->idx_begin();
00569             if (RetValLiveness[Idx] != Live) {
00570               RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
00571               if (RetValLiveness[Idx] == Live)
00572                 NumLiveRetVals++;
00573             }
00574           } else {
00575             // Used by something else than extractvalue. Mark all return
00576             // values as live.
00577             for (unsigned i = 0; i != RetCount; ++i )
00578               RetValLiveness[i] = Live;
00579             NumLiveRetVals = RetCount;
00580             break;
00581           }
00582         }
00583       } else {
00584         // Single return value
00585         RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
00586         if (RetValLiveness[0] == Live)
00587           NumLiveRetVals = RetCount;
00588       }
00589     }
00590   }
00591 
00592   // Now we've inspected all callers, record the liveness of our return values.
00593   for (unsigned i = 0; i != RetCount; ++i)
00594     MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
00595 
00596   DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
00597 
00598   // Now, check all of our arguments.
00599   unsigned i = 0;
00600   UseVector MaybeLiveArgUses;
00601   for (Function::const_arg_iterator AI = F.arg_begin(),
00602        E = F.arg_end(); AI != E; ++AI, ++i) {
00603     Liveness Result;
00604     if (F.getFunctionType()->isVarArg()) {
00605       // Variadic functions will already have a va_arg function expanded inside
00606       // them, making them potentially very sensitive to ABI changes resulting
00607       // from removing arguments entirely, so don't. For example AArch64 handles
00608       // register and stack HFAs very differently, and this is reflected in the
00609       // IR which has already been generated.
00610       Result = Live;
00611     } else {
00612       // See what the effect of this use is (recording any uses that cause
00613       // MaybeLive in MaybeLiveArgUses). 
00614       Result = SurveyUses(AI, MaybeLiveArgUses);
00615     }
00616 
00617     // Mark the result.
00618     MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
00619     // Clear the vector again for the next iteration.
00620     MaybeLiveArgUses.clear();
00621   }
00622 }
00623 
00624 /// MarkValue - This function marks the liveness of RA depending on L. If L is
00625 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
00626 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
00627 /// live later on.
00628 void DAE::MarkValue(const RetOrArg &RA, Liveness L,
00629                     const UseVector &MaybeLiveUses) {
00630   switch (L) {
00631     case Live: MarkLive(RA); break;
00632     case MaybeLive:
00633     {
00634       // Note any uses of this value, so this return value can be
00635       // marked live whenever one of the uses becomes live.
00636       for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
00637            UE = MaybeLiveUses.end(); UI != UE; ++UI)
00638         Uses.insert(std::make_pair(*UI, RA));
00639       break;
00640     }
00641   }
00642 }
00643 
00644 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
00645 /// changed in any way. Additionally,
00646 /// mark any values that are used as this function's parameters or by its return
00647 /// values (according to Uses) live as well.
00648 void DAE::MarkLive(const Function &F) {
00649   DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
00650   // Mark the function as live.
00651   LiveFunctions.insert(&F);
00652   // Mark all arguments as live.
00653   for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
00654     PropagateLiveness(CreateArg(&F, i));
00655   // Mark all return values as live.
00656   for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
00657     PropagateLiveness(CreateRet(&F, i));
00658 }
00659 
00660 /// MarkLive - Mark the given return value or argument as live. Additionally,
00661 /// mark any values that are used by this value (according to Uses) live as
00662 /// well.
00663 void DAE::MarkLive(const RetOrArg &RA) {
00664   if (LiveFunctions.count(RA.F))
00665     return; // Function was already marked Live.
00666 
00667   if (!LiveValues.insert(RA).second)
00668     return; // We were already marked Live.
00669 
00670   DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
00671   PropagateLiveness(RA);
00672 }
00673 
00674 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
00675 /// to any other values it uses (according to Uses).
00676 void DAE::PropagateLiveness(const RetOrArg &RA) {
00677   // We don't use upper_bound (or equal_range) here, because our recursive call
00678   // to ourselves is likely to cause the upper_bound (which is the first value
00679   // not belonging to RA) to become erased and the iterator invalidated.
00680   UseMap::iterator Begin = Uses.lower_bound(RA);
00681   UseMap::iterator E = Uses.end();
00682   UseMap::iterator I;
00683   for (I = Begin; I != E && I->first == RA; ++I)
00684     MarkLive(I->second);
00685 
00686   // Erase RA from the Uses map (from the lower bound to wherever we ended up
00687   // after the loop).
00688   Uses.erase(Begin, I);
00689 }
00690 
00691 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
00692 // that are not in LiveValues. Transform the function and all of the callees of
00693 // the function to not have these arguments and return values.
00694 //
00695 bool DAE::RemoveDeadStuffFromFunction(Function *F) {
00696   // Don't modify fully live functions
00697   if (LiveFunctions.count(F))
00698     return false;
00699 
00700   // Start by computing a new prototype for the function, which is the same as
00701   // the old function, but has fewer arguments and a different return type.
00702   FunctionType *FTy = F->getFunctionType();
00703   std::vector<Type*> Params;
00704 
00705   // Keep track of if we have a live 'returned' argument
00706   bool HasLiveReturnedArg = false;
00707 
00708   // Set up to build a new list of parameter attributes.
00709   SmallVector<AttributeSet, 8> AttributesVec;
00710   const AttributeSet &PAL = F->getAttributes();
00711 
00712   // Remember which arguments are still alive.
00713   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
00714   // Construct the new parameter list from non-dead arguments. Also construct
00715   // a new set of parameter attributes to correspond. Skip the first parameter
00716   // attribute, since that belongs to the return value.
00717   unsigned i = 0;
00718   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
00719        I != E; ++I, ++i) {
00720     RetOrArg Arg = CreateArg(F, i);
00721     if (LiveValues.erase(Arg)) {
00722       Params.push_back(I->getType());
00723       ArgAlive[i] = true;
00724 
00725       // Get the original parameter attributes (skipping the first one, that is
00726       // for the return value.
00727       if (PAL.hasAttributes(i + 1)) {
00728         AttrBuilder B(PAL, i + 1);
00729         if (B.contains(Attribute::Returned))
00730           HasLiveReturnedArg = true;
00731         AttributesVec.
00732           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
00733       }
00734     } else {
00735       ++NumArgumentsEliminated;
00736       DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
00737             << ") from " << F->getName() << "\n");
00738     }
00739   }
00740 
00741   // Find out the new return value.
00742   Type *RetTy = FTy->getReturnType();
00743   Type *NRetTy = nullptr;
00744   unsigned RetCount = NumRetVals(F);
00745 
00746   // -1 means unused, other numbers are the new index
00747   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
00748   std::vector<Type*> RetTypes;
00749 
00750   // If there is a function with a live 'returned' argument but a dead return
00751   // value, then there are two possible actions:
00752   // 1) Eliminate the return value and take off the 'returned' attribute on the
00753   //    argument.
00754   // 2) Retain the 'returned' attribute and treat the return value (but not the
00755   //    entire function) as live so that it is not eliminated.
00756   // 
00757   // It's not clear in the general case which option is more profitable because,
00758   // even in the absence of explicit uses of the return value, code generation
00759   // is free to use the 'returned' attribute to do things like eliding
00760   // save/restores of registers across calls. Whether or not this happens is
00761   // target and ABI-specific as well as depending on the amount of register
00762   // pressure, so there's no good way for an IR-level pass to figure this out.
00763   //
00764   // Fortunately, the only places where 'returned' is currently generated by
00765   // the FE are places where 'returned' is basically free and almost always a
00766   // performance win, so the second option can just be used always for now.
00767   //
00768   // This should be revisited if 'returned' is ever applied more liberally.
00769   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
00770     NRetTy = RetTy;
00771   } else {
00772     StructType *STy = dyn_cast<StructType>(RetTy);
00773     if (STy)
00774       // Look at each of the original return values individually.
00775       for (unsigned i = 0; i != RetCount; ++i) {
00776         RetOrArg Ret = CreateRet(F, i);
00777         if (LiveValues.erase(Ret)) {
00778           RetTypes.push_back(STy->getElementType(i));
00779           NewRetIdxs[i] = RetTypes.size() - 1;
00780         } else {
00781           ++NumRetValsEliminated;
00782           DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
00783                 << F->getName() << "\n");
00784         }
00785       }
00786     else
00787       // We used to return a single value.
00788       if (LiveValues.erase(CreateRet(F, 0))) {
00789         RetTypes.push_back(RetTy);
00790         NewRetIdxs[0] = 0;
00791       } else {
00792         DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
00793               << "\n");
00794         ++NumRetValsEliminated;
00795       }
00796     if (RetTypes.size() > 1)
00797       // More than one return type? Return a struct with them. Also, if we used
00798       // to return a struct and didn't change the number of return values,
00799       // return a struct again. This prevents changing {something} into
00800       // something and {} into void.
00801       // Make the new struct packed if we used to return a packed struct
00802       // already.
00803       NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
00804     else if (RetTypes.size() == 1)
00805       // One return type? Just a simple value then, but only if we didn't use to
00806       // return a struct with that simple value before.
00807       NRetTy = RetTypes.front();
00808     else if (RetTypes.size() == 0)
00809       // No return types? Make it void, but only if we didn't use to return {}.
00810       NRetTy = Type::getVoidTy(F->getContext());
00811   }
00812 
00813   assert(NRetTy && "No new return type found?");
00814 
00815   // The existing function return attributes.
00816   AttributeSet RAttrs = PAL.getRetAttributes();
00817 
00818   // Remove any incompatible attributes, but only if we removed all return
00819   // values. Otherwise, ensure that we don't have any conflicting attributes
00820   // here. Currently, this should not be possible, but special handling might be
00821   // required when new return value attributes are added.
00822   if (NRetTy->isVoidTy())
00823     RAttrs =
00824       AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
00825                         AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
00826          removeAttributes(AttributeFuncs::
00827                           typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
00828                           AttributeSet::ReturnIndex));
00829   else
00830     assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
00831              hasAttributes(AttributeFuncs::
00832                            typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
00833                            AttributeSet::ReturnIndex) &&
00834            "Return attributes no longer compatible?");
00835 
00836   if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
00837     AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
00838 
00839   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
00840     AttributesVec.push_back(AttributeSet::get(F->getContext(),
00841                                               PAL.getFnAttributes()));
00842 
00843   // Reconstruct the AttributesList based on the vector we constructed.
00844   AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
00845 
00846   // Create the new function type based on the recomputed parameters.
00847   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
00848 
00849   // No change?
00850   if (NFTy == FTy)
00851     return false;
00852 
00853   // Create the new function body and insert it into the module...
00854   Function *NF = Function::Create(NFTy, F->getLinkage());
00855   NF->copyAttributesFrom(F);
00856   NF->setAttributes(NewPAL);
00857   // Insert the new function before the old function, so we won't be processing
00858   // it again.
00859   F->getParent()->getFunctionList().insert(F, NF);
00860   NF->takeName(F);
00861 
00862   // Loop over all of the callers of the function, transforming the call sites
00863   // to pass in a smaller number of arguments into the new function.
00864   //
00865   std::vector<Value*> Args;
00866   while (!F->use_empty()) {
00867     CallSite CS(F->user_back());
00868     Instruction *Call = CS.getInstruction();
00869 
00870     AttributesVec.clear();
00871     const AttributeSet &CallPAL = CS.getAttributes();
00872 
00873     // The call return attributes.
00874     AttributeSet RAttrs = CallPAL.getRetAttributes();
00875 
00876     // Adjust in case the function was changed to return void.
00877     RAttrs =
00878       AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
00879                         AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
00880         removeAttributes(AttributeFuncs::
00881                          typeIncompatible(NF->getReturnType(),
00882                                           AttributeSet::ReturnIndex),
00883                          AttributeSet::ReturnIndex));
00884     if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
00885       AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
00886 
00887     // Declare these outside of the loops, so we can reuse them for the second
00888     // loop, which loops the varargs.
00889     CallSite::arg_iterator I = CS.arg_begin();
00890     unsigned i = 0;
00891     // Loop over those operands, corresponding to the normal arguments to the
00892     // original function, and add those that are still alive.
00893     for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
00894       if (ArgAlive[i]) {
00895         Args.push_back(*I);
00896         // Get original parameter attributes, but skip return attributes.
00897         if (CallPAL.hasAttributes(i + 1)) {
00898           AttrBuilder B(CallPAL, i + 1);
00899           // If the return type has changed, then get rid of 'returned' on the
00900           // call site. The alternative is to make all 'returned' attributes on
00901           // call sites keep the return value alive just like 'returned'
00902           // attributes on function declaration but it's less clearly a win
00903           // and this is not an expected case anyway
00904           if (NRetTy != RetTy && B.contains(Attribute::Returned))
00905             B.removeAttribute(Attribute::Returned);
00906           AttributesVec.
00907             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
00908         }
00909       }
00910 
00911     // Push any varargs arguments on the list. Don't forget their attributes.
00912     for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
00913       Args.push_back(*I);
00914       if (CallPAL.hasAttributes(i + 1)) {
00915         AttrBuilder B(CallPAL, i + 1);
00916         AttributesVec.
00917           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
00918       }
00919     }
00920 
00921     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
00922       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
00923                                                 CallPAL.getFnAttributes()));
00924 
00925     // Reconstruct the AttributesList based on the vector we constructed.
00926     AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
00927 
00928     Instruction *New;
00929     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
00930       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
00931                                Args, "", Call);
00932       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
00933       cast<InvokeInst>(New)->setAttributes(NewCallPAL);
00934     } else {
00935       New = CallInst::Create(NF, Args, "", Call);
00936       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
00937       cast<CallInst>(New)->setAttributes(NewCallPAL);
00938       if (cast<CallInst>(Call)->isTailCall())
00939         cast<CallInst>(New)->setTailCall();
00940     }
00941     New->setDebugLoc(Call->getDebugLoc());
00942 
00943     Args.clear();
00944 
00945     if (!Call->use_empty()) {
00946       if (New->getType() == Call->getType()) {
00947         // Return type not changed? Just replace users then.
00948         Call->replaceAllUsesWith(New);
00949         New->takeName(Call);
00950       } else if (New->getType()->isVoidTy()) {
00951         // Our return value has uses, but they will get removed later on.
00952         // Replace by null for now.
00953         if (!Call->getType()->isX86_MMXTy())
00954           Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
00955       } else {
00956         assert(RetTy->isStructTy() &&
00957                "Return type changed, but not into a void. The old return type"
00958                " must have been a struct!");
00959         Instruction *InsertPt = Call;
00960         if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
00961           BasicBlock::iterator IP = II->getNormalDest()->begin();
00962           while (isa<PHINode>(IP)) ++IP;
00963           InsertPt = IP;
00964         }
00965 
00966         // We used to return a struct. Instead of doing smart stuff with all the
00967         // uses of this struct, we will just rebuild it using
00968         // extract/insertvalue chaining and let instcombine clean that up.
00969         //
00970         // Start out building up our return value from undef
00971         Value *RetVal = UndefValue::get(RetTy);
00972         for (unsigned i = 0; i != RetCount; ++i)
00973           if (NewRetIdxs[i] != -1) {
00974             Value *V;
00975             if (RetTypes.size() > 1)
00976               // We are still returning a struct, so extract the value from our
00977               // return value
00978               V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
00979                                            InsertPt);
00980             else
00981               // We are now returning a single element, so just insert that
00982               V = New;
00983             // Insert the value at the old position
00984             RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
00985           }
00986         // Now, replace all uses of the old call instruction with the return
00987         // struct we built
00988         Call->replaceAllUsesWith(RetVal);
00989         New->takeName(Call);
00990       }
00991     }
00992 
00993     // Finally, remove the old call from the program, reducing the use-count of
00994     // F.
00995     Call->eraseFromParent();
00996   }
00997 
00998   // Since we have now created the new function, splice the body of the old
00999   // function right into the new function, leaving the old rotting hulk of the
01000   // function empty.
01001   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
01002 
01003   // Loop over the argument list, transferring uses of the old arguments over to
01004   // the new arguments, also transferring over the names as well.
01005   i = 0;
01006   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
01007        I2 = NF->arg_begin(); I != E; ++I, ++i)
01008     if (ArgAlive[i]) {
01009       // If this is a live argument, move the name and users over to the new
01010       // version.
01011       I->replaceAllUsesWith(I2);
01012       I2->takeName(I);
01013       ++I2;
01014     } else {
01015       // If this argument is dead, replace any uses of it with null constants
01016       // (these are guaranteed to become unused later on).
01017       if (!I->getType()->isX86_MMXTy())
01018         I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
01019     }
01020 
01021   // If we change the return value of the function we must rewrite any return
01022   // instructions.  Check this now.
01023   if (F->getReturnType() != NF->getReturnType())
01024     for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
01025       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
01026         Value *RetVal;
01027 
01028         if (NFTy->getReturnType()->isVoidTy()) {
01029           RetVal = nullptr;
01030         } else {
01031           assert (RetTy->isStructTy());
01032           // The original return value was a struct, insert
01033           // extractvalue/insertvalue chains to extract only the values we need
01034           // to return and insert them into our new result.
01035           // This does generate messy code, but we'll let it to instcombine to
01036           // clean that up.
01037           Value *OldRet = RI->getOperand(0);
01038           // Start out building up our return value from undef
01039           RetVal = UndefValue::get(NRetTy);
01040           for (unsigned i = 0; i != RetCount; ++i)
01041             if (NewRetIdxs[i] != -1) {
01042               ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
01043                                                               "oldret", RI);
01044               if (RetTypes.size() > 1) {
01045                 // We're still returning a struct, so reinsert the value into
01046                 // our new return value at the new index
01047 
01048                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
01049                                                  "newret", RI);
01050               } else {
01051                 // We are now only returning a simple value, so just return the
01052                 // extracted value.
01053                 RetVal = EV;
01054               }
01055             }
01056         }
01057         // Replace the return instruction with one returning the new return
01058         // value (possibly 0 if we became void).
01059         ReturnInst::Create(F->getContext(), RetVal, RI);
01060         BB->getInstList().erase(RI);
01061       }
01062 
01063   // Patch the pointer to LLVM function in debug info descriptor.
01064   auto DI = FunctionDIs.find(F);
01065   if (DI != FunctionDIs.end())
01066     DI->second.replaceFunction(NF);
01067 
01068   // Now that the old function is dead, delete it.
01069   F->eraseFromParent();
01070 
01071   return true;
01072 }
01073 
01074 bool DAE::runOnModule(Module &M) {
01075   bool Changed = false;
01076 
01077   // Collect debug info descriptors for functions.
01078   FunctionDIs = makeSubprogramMap(M);
01079 
01080   // First pass: Do a simple check to see if any functions can have their "..."
01081   // removed.  We can do this if they never call va_start.  This loop cannot be
01082   // fused with the next loop, because deleting a function invalidates
01083   // information computed while surveying other functions.
01084   DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
01085   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
01086     Function &F = *I++;
01087     if (F.getFunctionType()->isVarArg())
01088       Changed |= DeleteDeadVarargs(F);
01089   }
01090 
01091   // Second phase:loop through the module, determining which arguments are live.
01092   // We assume all arguments are dead unless proven otherwise (allowing us to
01093   // determine that dead arguments passed into recursive functions are dead).
01094   //
01095   DEBUG(dbgs() << "DAE - Determining liveness\n");
01096   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
01097     SurveyFunction(*I);
01098 
01099   // Now, remove all dead arguments and return values from each function in
01100   // turn.
01101   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
01102     // Increment now, because the function will probably get removed (ie.
01103     // replaced by a new one).
01104     Function *F = I++;
01105     Changed |= RemoveDeadStuffFromFunction(F);
01106   }
01107 
01108   // Finally, look for any unused parameters in functions with non-local
01109   // linkage and replace the passed in parameters with undef.
01110   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
01111     Function& F = *I;
01112 
01113     Changed |= RemoveDeadArgumentsFromCallers(F);
01114   }
01115 
01116   return Changed;
01117 }