LLVM API Documentation

DeadStoreElimination.cpp
Go to the documentation of this file.
00001 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements a trivial dead store elimination that only considers
00011 // basic-block local redundant stores.
00012 //
00013 // FIXME: This should eventually be extended to be a post-dominator tree
00014 // traversal.  Doing so would be pretty trivial.
00015 //
00016 //===----------------------------------------------------------------------===//
00017 
00018 #include "llvm/Transforms/Scalar.h"
00019 #include "llvm/ADT/STLExtras.h"
00020 #include "llvm/ADT/SetVector.h"
00021 #include "llvm/ADT/Statistic.h"
00022 #include "llvm/Analysis/AliasAnalysis.h"
00023 #include "llvm/Analysis/CaptureTracking.h"
00024 #include "llvm/Analysis/MemoryBuiltins.h"
00025 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
00026 #include "llvm/Analysis/ValueTracking.h"
00027 #include "llvm/IR/Constants.h"
00028 #include "llvm/IR/DataLayout.h"
00029 #include "llvm/IR/Dominators.h"
00030 #include "llvm/IR/Function.h"
00031 #include "llvm/IR/GlobalVariable.h"
00032 #include "llvm/IR/Instructions.h"
00033 #include "llvm/IR/IntrinsicInst.h"
00034 #include "llvm/Pass.h"
00035 #include "llvm/Support/Debug.h"
00036 #include "llvm/Target/TargetLibraryInfo.h"
00037 #include "llvm/Transforms/Utils/Local.h"
00038 using namespace llvm;
00039 
00040 #define DEBUG_TYPE "dse"
00041 
00042 STATISTIC(NumFastStores, "Number of stores deleted");
00043 STATISTIC(NumFastOther , "Number of other instrs removed");
00044 
00045 namespace {
00046   struct DSE : public FunctionPass {
00047     AliasAnalysis *AA;
00048     MemoryDependenceAnalysis *MD;
00049     DominatorTree *DT;
00050     const TargetLibraryInfo *TLI;
00051 
00052     static char ID; // Pass identification, replacement for typeid
00053     DSE() : FunctionPass(ID), AA(nullptr), MD(nullptr), DT(nullptr) {
00054       initializeDSEPass(*PassRegistry::getPassRegistry());
00055     }
00056 
00057     bool runOnFunction(Function &F) override {
00058       if (skipOptnoneFunction(F))
00059         return false;
00060 
00061       AA = &getAnalysis<AliasAnalysis>();
00062       MD = &getAnalysis<MemoryDependenceAnalysis>();
00063       DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
00064       TLI = AA->getTargetLibraryInfo();
00065 
00066       bool Changed = false;
00067       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
00068         // Only check non-dead blocks.  Dead blocks may have strange pointer
00069         // cycles that will confuse alias analysis.
00070         if (DT->isReachableFromEntry(I))
00071           Changed |= runOnBasicBlock(*I);
00072 
00073       AA = nullptr; MD = nullptr; DT = nullptr;
00074       return Changed;
00075     }
00076 
00077     bool runOnBasicBlock(BasicBlock &BB);
00078     bool HandleFree(CallInst *F);
00079     bool handleEndBlock(BasicBlock &BB);
00080     void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
00081                                SmallSetVector<Value*, 16> &DeadStackObjects);
00082 
00083     void getAnalysisUsage(AnalysisUsage &AU) const override {
00084       AU.setPreservesCFG();
00085       AU.addRequired<DominatorTreeWrapperPass>();
00086       AU.addRequired<AliasAnalysis>();
00087       AU.addRequired<MemoryDependenceAnalysis>();
00088       AU.addPreserved<AliasAnalysis>();
00089       AU.addPreserved<DominatorTreeWrapperPass>();
00090       AU.addPreserved<MemoryDependenceAnalysis>();
00091     }
00092   };
00093 }
00094 
00095 char DSE::ID = 0;
00096 INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
00097 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
00098 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
00099 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
00100 INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
00101 
00102 FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
00103 
00104 //===----------------------------------------------------------------------===//
00105 // Helper functions
00106 //===----------------------------------------------------------------------===//
00107 
00108 /// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
00109 /// and zero out all the operands of this instruction.  If any of them become
00110 /// dead, delete them and the computation tree that feeds them.
00111 ///
00112 /// If ValueSet is non-null, remove any deleted instructions from it as well.
00113 ///
00114 static void DeleteDeadInstruction(Instruction *I,
00115                                MemoryDependenceAnalysis &MD,
00116                                const TargetLibraryInfo *TLI,
00117                                SmallSetVector<Value*, 16> *ValueSet = nullptr) {
00118   SmallVector<Instruction*, 32> NowDeadInsts;
00119 
00120   NowDeadInsts.push_back(I);
00121   --NumFastOther;
00122 
00123   // Before we touch this instruction, remove it from memdep!
00124   do {
00125     Instruction *DeadInst = NowDeadInsts.pop_back_val();
00126     ++NumFastOther;
00127 
00128     // This instruction is dead, zap it, in stages.  Start by removing it from
00129     // MemDep, which needs to know the operands and needs it to be in the
00130     // function.
00131     MD.removeInstruction(DeadInst);
00132 
00133     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
00134       Value *Op = DeadInst->getOperand(op);
00135       DeadInst->setOperand(op, nullptr);
00136 
00137       // If this operand just became dead, add it to the NowDeadInsts list.
00138       if (!Op->use_empty()) continue;
00139 
00140       if (Instruction *OpI = dyn_cast<Instruction>(Op))
00141         if (isInstructionTriviallyDead(OpI, TLI))
00142           NowDeadInsts.push_back(OpI);
00143     }
00144 
00145     DeadInst->eraseFromParent();
00146 
00147     if (ValueSet) ValueSet->remove(DeadInst);
00148   } while (!NowDeadInsts.empty());
00149 }
00150 
00151 
00152 /// hasMemoryWrite - Does this instruction write some memory?  This only returns
00153 /// true for things that we can analyze with other helpers below.
00154 static bool hasMemoryWrite(Instruction *I, const TargetLibraryInfo *TLI) {
00155   if (isa<StoreInst>(I))
00156     return true;
00157   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
00158     switch (II->getIntrinsicID()) {
00159     default:
00160       return false;
00161     case Intrinsic::memset:
00162     case Intrinsic::memmove:
00163     case Intrinsic::memcpy:
00164     case Intrinsic::init_trampoline:
00165     case Intrinsic::lifetime_end:
00166       return true;
00167     }
00168   }
00169   if (CallSite CS = I) {
00170     if (Function *F = CS.getCalledFunction()) {
00171       if (TLI && TLI->has(LibFunc::strcpy) &&
00172           F->getName() == TLI->getName(LibFunc::strcpy)) {
00173         return true;
00174       }
00175       if (TLI && TLI->has(LibFunc::strncpy) &&
00176           F->getName() == TLI->getName(LibFunc::strncpy)) {
00177         return true;
00178       }
00179       if (TLI && TLI->has(LibFunc::strcat) &&
00180           F->getName() == TLI->getName(LibFunc::strcat)) {
00181         return true;
00182       }
00183       if (TLI && TLI->has(LibFunc::strncat) &&
00184           F->getName() == TLI->getName(LibFunc::strncat)) {
00185         return true;
00186       }
00187     }
00188   }
00189   return false;
00190 }
00191 
00192 /// getLocForWrite - Return a Location stored to by the specified instruction.
00193 /// If isRemovable returns true, this function and getLocForRead completely
00194 /// describe the memory operations for this instruction.
00195 static AliasAnalysis::Location
00196 getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
00197   const DataLayout *DL = AA.getDataLayout();
00198   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
00199     return AA.getLocation(SI);
00200 
00201   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
00202     // memcpy/memmove/memset.
00203     AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
00204     // If we don't have target data around, an unknown size in Location means
00205     // that we should use the size of the pointee type.  This isn't valid for
00206     // memset/memcpy, which writes more than an i8.
00207     if (Loc.Size == AliasAnalysis::UnknownSize && DL == nullptr)
00208       return AliasAnalysis::Location();
00209     return Loc;
00210   }
00211 
00212   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
00213   if (!II) return AliasAnalysis::Location();
00214 
00215   switch (II->getIntrinsicID()) {
00216   default: return AliasAnalysis::Location(); // Unhandled intrinsic.
00217   case Intrinsic::init_trampoline:
00218     // If we don't have target data around, an unknown size in Location means
00219     // that we should use the size of the pointee type.  This isn't valid for
00220     // init.trampoline, which writes more than an i8.
00221     if (!DL) return AliasAnalysis::Location();
00222 
00223     // FIXME: We don't know the size of the trampoline, so we can't really
00224     // handle it here.
00225     return AliasAnalysis::Location(II->getArgOperand(0));
00226   case Intrinsic::lifetime_end: {
00227     uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
00228     return AliasAnalysis::Location(II->getArgOperand(1), Len);
00229   }
00230   }
00231 }
00232 
00233 /// getLocForRead - Return the location read by the specified "hasMemoryWrite"
00234 /// instruction if any.
00235 static AliasAnalysis::Location
00236 getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
00237   assert(hasMemoryWrite(Inst, AA.getTargetLibraryInfo()) &&
00238          "Unknown instruction case");
00239 
00240   // The only instructions that both read and write are the mem transfer
00241   // instructions (memcpy/memmove).
00242   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
00243     return AA.getLocationForSource(MTI);
00244   return AliasAnalysis::Location();
00245 }
00246 
00247 
00248 /// isRemovable - If the value of this instruction and the memory it writes to
00249 /// is unused, may we delete this instruction?
00250 static bool isRemovable(Instruction *I) {
00251   // Don't remove volatile/atomic stores.
00252   if (StoreInst *SI = dyn_cast<StoreInst>(I))
00253     return SI->isUnordered();
00254 
00255   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
00256     switch (II->getIntrinsicID()) {
00257     default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
00258     case Intrinsic::lifetime_end:
00259       // Never remove dead lifetime_end's, e.g. because it is followed by a
00260       // free.
00261       return false;
00262     case Intrinsic::init_trampoline:
00263       // Always safe to remove init_trampoline.
00264       return true;
00265 
00266     case Intrinsic::memset:
00267     case Intrinsic::memmove:
00268     case Intrinsic::memcpy:
00269       // Don't remove volatile memory intrinsics.
00270       return !cast<MemIntrinsic>(II)->isVolatile();
00271     }
00272   }
00273 
00274   if (CallSite CS = I)
00275     return CS.getInstruction()->use_empty();
00276 
00277   return false;
00278 }
00279 
00280 
00281 /// isShortenable - Returns true if this instruction can be safely shortened in
00282 /// length.
00283 static bool isShortenable(Instruction *I) {
00284   // Don't shorten stores for now
00285   if (isa<StoreInst>(I))
00286     return false;
00287 
00288   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
00289     switch (II->getIntrinsicID()) {
00290       default: return false;
00291       case Intrinsic::memset:
00292       case Intrinsic::memcpy:
00293         // Do shorten memory intrinsics.
00294         return true;
00295     }
00296   }
00297 
00298   // Don't shorten libcalls calls for now.
00299 
00300   return false;
00301 }
00302 
00303 /// getStoredPointerOperand - Return the pointer that is being written to.
00304 static Value *getStoredPointerOperand(Instruction *I) {
00305   if (StoreInst *SI = dyn_cast<StoreInst>(I))
00306     return SI->getPointerOperand();
00307   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
00308     return MI->getDest();
00309 
00310   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
00311     switch (II->getIntrinsicID()) {
00312     default: llvm_unreachable("Unexpected intrinsic!");
00313     case Intrinsic::init_trampoline:
00314       return II->getArgOperand(0);
00315     }
00316   }
00317 
00318   CallSite CS = I;
00319   // All the supported functions so far happen to have dest as their first
00320   // argument.
00321   return CS.getArgument(0);
00322 }
00323 
00324 static uint64_t getPointerSize(const Value *V, AliasAnalysis &AA) {
00325   uint64_t Size;
00326   if (getObjectSize(V, Size, AA.getDataLayout(), AA.getTargetLibraryInfo()))
00327     return Size;
00328   return AliasAnalysis::UnknownSize;
00329 }
00330 
00331 namespace {
00332   enum OverwriteResult
00333   {
00334     OverwriteComplete,
00335     OverwriteEnd,
00336     OverwriteUnknown
00337   };
00338 }
00339 
00340 /// isOverwrite - Return 'OverwriteComplete' if a store to the 'Later' location
00341 /// completely overwrites a store to the 'Earlier' location.
00342 /// 'OverwriteEnd' if the end of the 'Earlier' location is completely
00343 /// overwritten by 'Later', or 'OverwriteUnknown' if nothing can be determined
00344 static OverwriteResult isOverwrite(const AliasAnalysis::Location &Later,
00345                                    const AliasAnalysis::Location &Earlier,
00346                                    AliasAnalysis &AA,
00347                                    int64_t &EarlierOff,
00348                                    int64_t &LaterOff) {
00349   const DataLayout *DL = AA.getDataLayout();
00350   const Value *P1 = Earlier.Ptr->stripPointerCasts();
00351   const Value *P2 = Later.Ptr->stripPointerCasts();
00352 
00353   // If the start pointers are the same, we just have to compare sizes to see if
00354   // the later store was larger than the earlier store.
00355   if (P1 == P2) {
00356     // If we don't know the sizes of either access, then we can't do a
00357     // comparison.
00358     if (Later.Size == AliasAnalysis::UnknownSize ||
00359         Earlier.Size == AliasAnalysis::UnknownSize) {
00360       // If we have no DataLayout information around, then the size of the store
00361       // is inferrable from the pointee type.  If they are the same type, then
00362       // we know that the store is safe.
00363       if (DL == nullptr && Later.Ptr->getType() == Earlier.Ptr->getType())
00364         return OverwriteComplete;
00365 
00366       return OverwriteUnknown;
00367     }
00368 
00369     // Make sure that the Later size is >= the Earlier size.
00370     if (Later.Size >= Earlier.Size)
00371       return OverwriteComplete;
00372   }
00373 
00374   // Otherwise, we have to have size information, and the later store has to be
00375   // larger than the earlier one.
00376   if (Later.Size == AliasAnalysis::UnknownSize ||
00377       Earlier.Size == AliasAnalysis::UnknownSize || DL == nullptr)
00378     return OverwriteUnknown;
00379 
00380   // Check to see if the later store is to the entire object (either a global,
00381   // an alloca, or a byval/inalloca argument).  If so, then it clearly
00382   // overwrites any other store to the same object.
00383   const Value *UO1 = GetUnderlyingObject(P1, DL),
00384               *UO2 = GetUnderlyingObject(P2, DL);
00385 
00386   // If we can't resolve the same pointers to the same object, then we can't
00387   // analyze them at all.
00388   if (UO1 != UO2)
00389     return OverwriteUnknown;
00390 
00391   // If the "Later" store is to a recognizable object, get its size.
00392   uint64_t ObjectSize = getPointerSize(UO2, AA);
00393   if (ObjectSize != AliasAnalysis::UnknownSize)
00394     if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
00395       return OverwriteComplete;
00396 
00397   // Okay, we have stores to two completely different pointers.  Try to
00398   // decompose the pointer into a "base + constant_offset" form.  If the base
00399   // pointers are equal, then we can reason about the two stores.
00400   EarlierOff = 0;
00401   LaterOff = 0;
00402   const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
00403   const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
00404 
00405   // If the base pointers still differ, we have two completely different stores.
00406   if (BP1 != BP2)
00407     return OverwriteUnknown;
00408 
00409   // The later store completely overlaps the earlier store if:
00410   //
00411   // 1. Both start at the same offset and the later one's size is greater than
00412   //    or equal to the earlier one's, or
00413   //
00414   //      |--earlier--|
00415   //      |--   later   --|
00416   //
00417   // 2. The earlier store has an offset greater than the later offset, but which
00418   //    still lies completely within the later store.
00419   //
00420   //        |--earlier--|
00421   //    |-----  later  ------|
00422   //
00423   // We have to be careful here as *Off is signed while *.Size is unsigned.
00424   if (EarlierOff >= LaterOff &&
00425       Later.Size >= Earlier.Size &&
00426       uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
00427     return OverwriteComplete;
00428 
00429   // The other interesting case is if the later store overwrites the end of
00430   // the earlier store
00431   //
00432   //      |--earlier--|
00433   //                |--   later   --|
00434   //
00435   // In this case we may want to trim the size of earlier to avoid generating
00436   // writes to addresses which will definitely be overwritten later
00437   if (LaterOff > EarlierOff &&
00438       LaterOff < int64_t(EarlierOff + Earlier.Size) &&
00439       int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size))
00440     return OverwriteEnd;
00441 
00442   // Otherwise, they don't completely overlap.
00443   return OverwriteUnknown;
00444 }
00445 
00446 /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
00447 /// memory region into an identical pointer) then it doesn't actually make its
00448 /// input dead in the traditional sense.  Consider this case:
00449 ///
00450 ///   memcpy(A <- B)
00451 ///   memcpy(A <- A)
00452 ///
00453 /// In this case, the second store to A does not make the first store to A dead.
00454 /// The usual situation isn't an explicit A<-A store like this (which can be
00455 /// trivially removed) but a case where two pointers may alias.
00456 ///
00457 /// This function detects when it is unsafe to remove a dependent instruction
00458 /// because the DSE inducing instruction may be a self-read.
00459 static bool isPossibleSelfRead(Instruction *Inst,
00460                                const AliasAnalysis::Location &InstStoreLoc,
00461                                Instruction *DepWrite, AliasAnalysis &AA) {
00462   // Self reads can only happen for instructions that read memory.  Get the
00463   // location read.
00464   AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
00465   if (!InstReadLoc.Ptr) return false;  // Not a reading instruction.
00466 
00467   // If the read and written loc obviously don't alias, it isn't a read.
00468   if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
00469 
00470   // Okay, 'Inst' may copy over itself.  However, we can still remove a the
00471   // DepWrite instruction if we can prove that it reads from the same location
00472   // as Inst.  This handles useful cases like:
00473   //   memcpy(A <- B)
00474   //   memcpy(A <- B)
00475   // Here we don't know if A/B may alias, but we do know that B/B are must
00476   // aliases, so removing the first memcpy is safe (assuming it writes <= #
00477   // bytes as the second one.
00478   AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
00479 
00480   if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
00481     return false;
00482 
00483   // If DepWrite doesn't read memory or if we can't prove it is a must alias,
00484   // then it can't be considered dead.
00485   return true;
00486 }
00487 
00488 
00489 //===----------------------------------------------------------------------===//
00490 // DSE Pass
00491 //===----------------------------------------------------------------------===//
00492 
00493 bool DSE::runOnBasicBlock(BasicBlock &BB) {
00494   bool MadeChange = false;
00495 
00496   // Do a top-down walk on the BB.
00497   for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
00498     Instruction *Inst = BBI++;
00499 
00500     // Handle 'free' calls specially.
00501     if (CallInst *F = isFreeCall(Inst, TLI)) {
00502       MadeChange |= HandleFree(F);
00503       continue;
00504     }
00505 
00506     // If we find something that writes memory, get its memory dependence.
00507     if (!hasMemoryWrite(Inst, TLI))
00508       continue;
00509 
00510     MemDepResult InstDep = MD->getDependency(Inst);
00511 
00512     // Ignore any store where we can't find a local dependence.
00513     // FIXME: cross-block DSE would be fun. :)
00514     if (!InstDep.isDef() && !InstDep.isClobber())
00515       continue;
00516 
00517     // If we're storing the same value back to a pointer that we just
00518     // loaded from, then the store can be removed.
00519     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
00520       if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
00521         if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
00522             SI->getOperand(0) == DepLoad && isRemovable(SI)) {
00523           DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
00524                        << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
00525 
00526           // DeleteDeadInstruction can delete the current instruction.  Save BBI
00527           // in case we need it.
00528           WeakVH NextInst(BBI);
00529 
00530           DeleteDeadInstruction(SI, *MD, TLI);
00531 
00532           if (!NextInst)  // Next instruction deleted.
00533             BBI = BB.begin();
00534           else if (BBI != BB.begin())  // Revisit this instruction if possible.
00535             --BBI;
00536           ++NumFastStores;
00537           MadeChange = true;
00538           continue;
00539         }
00540       }
00541     }
00542 
00543     // Figure out what location is being stored to.
00544     AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
00545 
00546     // If we didn't get a useful location, fail.
00547     if (!Loc.Ptr)
00548       continue;
00549 
00550     while (InstDep.isDef() || InstDep.isClobber()) {
00551       // Get the memory clobbered by the instruction we depend on.  MemDep will
00552       // skip any instructions that 'Loc' clearly doesn't interact with.  If we
00553       // end up depending on a may- or must-aliased load, then we can't optimize
00554       // away the store and we bail out.  However, if we depend on on something
00555       // that overwrites the memory location we *can* potentially optimize it.
00556       //
00557       // Find out what memory location the dependent instruction stores.
00558       Instruction *DepWrite = InstDep.getInst();
00559       AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
00560       // If we didn't get a useful location, or if it isn't a size, bail out.
00561       if (!DepLoc.Ptr)
00562         break;
00563 
00564       // If we find a write that is a) removable (i.e., non-volatile), b) is
00565       // completely obliterated by the store to 'Loc', and c) which we know that
00566       // 'Inst' doesn't load from, then we can remove it.
00567       if (isRemovable(DepWrite) &&
00568           !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
00569         int64_t InstWriteOffset, DepWriteOffset;
00570         OverwriteResult OR = isOverwrite(Loc, DepLoc, *AA,
00571                                          DepWriteOffset, InstWriteOffset);
00572         if (OR == OverwriteComplete) {
00573           DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
00574                 << *DepWrite << "\n  KILLER: " << *Inst << '\n');
00575 
00576           // Delete the store and now-dead instructions that feed it.
00577           DeleteDeadInstruction(DepWrite, *MD, TLI);
00578           ++NumFastStores;
00579           MadeChange = true;
00580 
00581           // DeleteDeadInstruction can delete the current instruction in loop
00582           // cases, reset BBI.
00583           BBI = Inst;
00584           if (BBI != BB.begin())
00585             --BBI;
00586           break;
00587         } else if (OR == OverwriteEnd && isShortenable(DepWrite)) {
00588           // TODO: base this on the target vector size so that if the earlier
00589           // store was too small to get vector writes anyway then its likely
00590           // a good idea to shorten it
00591           // Power of 2 vector writes are probably always a bad idea to optimize
00592           // as any store/memset/memcpy is likely using vector instructions so
00593           // shortening it to not vector size is likely to be slower
00594           MemIntrinsic* DepIntrinsic = cast<MemIntrinsic>(DepWrite);
00595           unsigned DepWriteAlign = DepIntrinsic->getAlignment();
00596           if (llvm::isPowerOf2_64(InstWriteOffset) ||
00597               ((DepWriteAlign != 0) && InstWriteOffset % DepWriteAlign == 0)) {
00598 
00599             DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW END: "
00600                   << *DepWrite << "\n  KILLER (offset "
00601                   << InstWriteOffset << ", "
00602                   << DepLoc.Size << ")"
00603                   << *Inst << '\n');
00604 
00605             Value* DepWriteLength = DepIntrinsic->getLength();
00606             Value* TrimmedLength = ConstantInt::get(DepWriteLength->getType(),
00607                                                     InstWriteOffset -
00608                                                     DepWriteOffset);
00609             DepIntrinsic->setLength(TrimmedLength);
00610             MadeChange = true;
00611           }
00612         }
00613       }
00614 
00615       // If this is a may-aliased store that is clobbering the store value, we
00616       // can keep searching past it for another must-aliased pointer that stores
00617       // to the same location.  For example, in:
00618       //   store -> P
00619       //   store -> Q
00620       //   store -> P
00621       // we can remove the first store to P even though we don't know if P and Q
00622       // alias.
00623       if (DepWrite == &BB.front()) break;
00624 
00625       // Can't look past this instruction if it might read 'Loc'.
00626       if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
00627         break;
00628 
00629       InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
00630     }
00631   }
00632 
00633   // If this block ends in a return, unwind, or unreachable, all allocas are
00634   // dead at its end, which means stores to them are also dead.
00635   if (BB.getTerminator()->getNumSuccessors() == 0)
00636     MadeChange |= handleEndBlock(BB);
00637 
00638   return MadeChange;
00639 }
00640 
00641 /// Find all blocks that will unconditionally lead to the block BB and append
00642 /// them to F.
00643 static void FindUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
00644                                    BasicBlock *BB, DominatorTree *DT) {
00645   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
00646     BasicBlock *Pred = *I;
00647     if (Pred == BB) continue;
00648     TerminatorInst *PredTI = Pred->getTerminator();
00649     if (PredTI->getNumSuccessors() != 1)
00650       continue;
00651 
00652     if (DT->isReachableFromEntry(Pred))
00653       Blocks.push_back(Pred);
00654   }
00655 }
00656 
00657 /// HandleFree - Handle frees of entire structures whose dependency is a store
00658 /// to a field of that structure.
00659 bool DSE::HandleFree(CallInst *F) {
00660   bool MadeChange = false;
00661 
00662   AliasAnalysis::Location Loc = AliasAnalysis::Location(F->getOperand(0));
00663   SmallVector<BasicBlock *, 16> Blocks;
00664   Blocks.push_back(F->getParent());
00665 
00666   while (!Blocks.empty()) {
00667     BasicBlock *BB = Blocks.pop_back_val();
00668     Instruction *InstPt = BB->getTerminator();
00669     if (BB == F->getParent()) InstPt = F;
00670 
00671     MemDepResult Dep = MD->getPointerDependencyFrom(Loc, false, InstPt, BB);
00672     while (Dep.isDef() || Dep.isClobber()) {
00673       Instruction *Dependency = Dep.getInst();
00674       if (!hasMemoryWrite(Dependency, TLI) || !isRemovable(Dependency))
00675         break;
00676 
00677       Value *DepPointer =
00678         GetUnderlyingObject(getStoredPointerOperand(Dependency));
00679 
00680       // Check for aliasing.
00681       if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
00682         break;
00683 
00684       Instruction *Next = std::next(BasicBlock::iterator(Dependency));
00685 
00686       // DCE instructions only used to calculate that store
00687       DeleteDeadInstruction(Dependency, *MD, TLI);
00688       ++NumFastStores;
00689       MadeChange = true;
00690 
00691       // Inst's old Dependency is now deleted. Compute the next dependency,
00692       // which may also be dead, as in
00693       //    s[0] = 0;
00694       //    s[1] = 0; // This has just been deleted.
00695       //    free(s);
00696       Dep = MD->getPointerDependencyFrom(Loc, false, Next, BB);
00697     }
00698 
00699     if (Dep.isNonLocal())
00700       FindUnconditionalPreds(Blocks, BB, DT);
00701   }
00702 
00703   return MadeChange;
00704 }
00705 
00706 /// handleEndBlock - Remove dead stores to stack-allocated locations in the
00707 /// function end block.  Ex:
00708 /// %A = alloca i32
00709 /// ...
00710 /// store i32 1, i32* %A
00711 /// ret void
00712 bool DSE::handleEndBlock(BasicBlock &BB) {
00713   bool MadeChange = false;
00714 
00715   // Keep track of all of the stack objects that are dead at the end of the
00716   // function.
00717   SmallSetVector<Value*, 16> DeadStackObjects;
00718 
00719   // Find all of the alloca'd pointers in the entry block.
00720   BasicBlock *Entry = BB.getParent()->begin();
00721   for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I) {
00722     if (isa<AllocaInst>(I))
00723       DeadStackObjects.insert(I);
00724 
00725     // Okay, so these are dead heap objects, but if the pointer never escapes
00726     // then it's leaked by this function anyways.
00727     else if (isAllocLikeFn(I, TLI) && !PointerMayBeCaptured(I, true, true))
00728       DeadStackObjects.insert(I);
00729   }
00730 
00731   // Treat byval or inalloca arguments the same, stores to them are dead at the
00732   // end of the function.
00733   for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
00734        AE = BB.getParent()->arg_end(); AI != AE; ++AI)
00735     if (AI->hasByValOrInAllocaAttr())
00736       DeadStackObjects.insert(AI);
00737 
00738   // Scan the basic block backwards
00739   for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
00740     --BBI;
00741 
00742     // If we find a store, check to see if it points into a dead stack value.
00743     if (hasMemoryWrite(BBI, TLI) && isRemovable(BBI)) {
00744       // See through pointer-to-pointer bitcasts
00745       SmallVector<Value *, 4> Pointers;
00746       GetUnderlyingObjects(getStoredPointerOperand(BBI), Pointers);
00747 
00748       // Stores to stack values are valid candidates for removal.
00749       bool AllDead = true;
00750       for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
00751            E = Pointers.end(); I != E; ++I)
00752         if (!DeadStackObjects.count(*I)) {
00753           AllDead = false;
00754           break;
00755         }
00756 
00757       if (AllDead) {
00758         Instruction *Dead = BBI++;
00759 
00760         DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
00761                      << *Dead << "\n  Objects: ";
00762               for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
00763                    E = Pointers.end(); I != E; ++I) {
00764                 dbgs() << **I;
00765                 if (std::next(I) != E)
00766                   dbgs() << ", ";
00767               }
00768               dbgs() << '\n');
00769 
00770         // DCE instructions only used to calculate that store.
00771         DeleteDeadInstruction(Dead, *MD, TLI, &DeadStackObjects);
00772         ++NumFastStores;
00773         MadeChange = true;
00774         continue;
00775       }
00776     }
00777 
00778     // Remove any dead non-memory-mutating instructions.
00779     if (isInstructionTriviallyDead(BBI, TLI)) {
00780       Instruction *Inst = BBI++;
00781       DeleteDeadInstruction(Inst, *MD, TLI, &DeadStackObjects);
00782       ++NumFastOther;
00783       MadeChange = true;
00784       continue;
00785     }
00786 
00787     if (isa<AllocaInst>(BBI)) {
00788       // Remove allocas from the list of dead stack objects; there can't be
00789       // any references before the definition.
00790       DeadStackObjects.remove(BBI);
00791       continue;
00792     }
00793 
00794     if (CallSite CS = cast<Value>(BBI)) {
00795       // Remove allocation function calls from the list of dead stack objects; 
00796       // there can't be any references before the definition.
00797       if (isAllocLikeFn(BBI, TLI))
00798         DeadStackObjects.remove(BBI);
00799 
00800       // If this call does not access memory, it can't be loading any of our
00801       // pointers.
00802       if (AA->doesNotAccessMemory(CS))
00803         continue;
00804 
00805       // If the call might load from any of our allocas, then any store above
00806       // the call is live.
00807       DeadStackObjects.remove_if([&](Value *I) {
00808         // See if the call site touches the value.
00809         AliasAnalysis::ModRefResult A =
00810             AA->getModRefInfo(CS, I, getPointerSize(I, *AA));
00811 
00812         return A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref;
00813       });
00814 
00815       // If all of the allocas were clobbered by the call then we're not going
00816       // to find anything else to process.
00817       if (DeadStackObjects.empty())
00818         break;
00819 
00820       continue;
00821     }
00822 
00823     AliasAnalysis::Location LoadedLoc;
00824 
00825     // If we encounter a use of the pointer, it is no longer considered dead
00826     if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
00827       if (!L->isUnordered()) // Be conservative with atomic/volatile load
00828         break;
00829       LoadedLoc = AA->getLocation(L);
00830     } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
00831       LoadedLoc = AA->getLocation(V);
00832     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
00833       LoadedLoc = AA->getLocationForSource(MTI);
00834     } else if (!BBI->mayReadFromMemory()) {
00835       // Instruction doesn't read memory.  Note that stores that weren't removed
00836       // above will hit this case.
00837       continue;
00838     } else {
00839       // Unknown inst; assume it clobbers everything.
00840       break;
00841     }
00842 
00843     // Remove any allocas from the DeadPointer set that are loaded, as this
00844     // makes any stores above the access live.
00845     RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
00846 
00847     // If all of the allocas were clobbered by the access then we're not going
00848     // to find anything else to process.
00849     if (DeadStackObjects.empty())
00850       break;
00851   }
00852 
00853   return MadeChange;
00854 }
00855 
00856 /// RemoveAccessedObjects - Check to see if the specified location may alias any
00857 /// of the stack objects in the DeadStackObjects set.  If so, they become live
00858 /// because the location is being loaded.
00859 void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
00860                                 SmallSetVector<Value*, 16> &DeadStackObjects) {
00861   const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
00862 
00863   // A constant can't be in the dead pointer set.
00864   if (isa<Constant>(UnderlyingPointer))
00865     return;
00866 
00867   // If the kill pointer can be easily reduced to an alloca, don't bother doing
00868   // extraneous AA queries.
00869   if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
00870     DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
00871     return;
00872   }
00873 
00874   // Remove objects that could alias LoadedLoc.
00875   DeadStackObjects.remove_if([&](Value *I) {
00876     // See if the loaded location could alias the stack location.
00877     AliasAnalysis::Location StackLoc(I, getPointerSize(I, *AA));
00878     return !AA->isNoAlias(StackLoc, LoadedLoc);
00879   });
00880 }