LLVM API Documentation
00001 //===-- ExternalFunctions.cpp - Implement External Functions --------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains both code to deal with invoking "external" functions, but 00011 // also contains code that implements "exported" external functions. 00012 // 00013 // There are currently two mechanisms for handling external functions in the 00014 // Interpreter. The first is to implement lle_* wrapper functions that are 00015 // specific to well-known library functions which manually translate the 00016 // arguments from GenericValues and make the call. If such a wrapper does 00017 // not exist, and libffi is available, then the Interpreter will attempt to 00018 // invoke the function using libffi, after finding its address. 00019 // 00020 //===----------------------------------------------------------------------===// 00021 00022 #include "Interpreter.h" 00023 #include "llvm/Config/config.h" // Detect libffi 00024 #include "llvm/IR/DataLayout.h" 00025 #include "llvm/IR/DerivedTypes.h" 00026 #include "llvm/IR/Module.h" 00027 #include "llvm/Support/DynamicLibrary.h" 00028 #include "llvm/Support/ErrorHandling.h" 00029 #include "llvm/Support/ManagedStatic.h" 00030 #include "llvm/Support/Mutex.h" 00031 #include "llvm/Support/UniqueLock.h" 00032 #include <cmath> 00033 #include <csignal> 00034 #include <cstdio> 00035 #include <cstring> 00036 #include <map> 00037 00038 #ifdef HAVE_FFI_CALL 00039 #ifdef HAVE_FFI_H 00040 #include <ffi.h> 00041 #define USE_LIBFFI 00042 #elif HAVE_FFI_FFI_H 00043 #include <ffi/ffi.h> 00044 #define USE_LIBFFI 00045 #endif 00046 #endif 00047 00048 using namespace llvm; 00049 00050 static ManagedStatic<sys::Mutex> FunctionsLock; 00051 00052 typedef GenericValue (*ExFunc)(FunctionType *, 00053 const std::vector<GenericValue> &); 00054 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions; 00055 static std::map<std::string, ExFunc> FuncNames; 00056 00057 #ifdef USE_LIBFFI 00058 typedef void (*RawFunc)(); 00059 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions; 00060 #endif 00061 00062 static Interpreter *TheInterpreter; 00063 00064 static char getTypeID(Type *Ty) { 00065 switch (Ty->getTypeID()) { 00066 case Type::VoidTyID: return 'V'; 00067 case Type::IntegerTyID: 00068 switch (cast<IntegerType>(Ty)->getBitWidth()) { 00069 case 1: return 'o'; 00070 case 8: return 'B'; 00071 case 16: return 'S'; 00072 case 32: return 'I'; 00073 case 64: return 'L'; 00074 default: return 'N'; 00075 } 00076 case Type::FloatTyID: return 'F'; 00077 case Type::DoubleTyID: return 'D'; 00078 case Type::PointerTyID: return 'P'; 00079 case Type::FunctionTyID:return 'M'; 00080 case Type::StructTyID: return 'T'; 00081 case Type::ArrayTyID: return 'A'; 00082 default: return 'U'; 00083 } 00084 } 00085 00086 // Try to find address of external function given a Function object. 00087 // Please note, that interpreter doesn't know how to assemble a 00088 // real call in general case (this is JIT job), that's why it assumes, 00089 // that all external functions has the same (and pretty "general") signature. 00090 // The typical example of such functions are "lle_X_" ones. 00091 static ExFunc lookupFunction(const Function *F) { 00092 // Function not found, look it up... start by figuring out what the 00093 // composite function name should be. 00094 std::string ExtName = "lle_"; 00095 FunctionType *FT = F->getFunctionType(); 00096 for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i) 00097 ExtName += getTypeID(FT->getContainedType(i)); 00098 ExtName += "_" + F->getName().str(); 00099 00100 sys::ScopedLock Writer(*FunctionsLock); 00101 ExFunc FnPtr = FuncNames[ExtName]; 00102 if (!FnPtr) 00103 FnPtr = FuncNames["lle_X_" + F->getName().str()]; 00104 if (!FnPtr) // Try calling a generic function... if it exists... 00105 FnPtr = (ExFunc)(intptr_t) 00106 sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_" + 00107 F->getName().str()); 00108 if (FnPtr) 00109 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later 00110 return FnPtr; 00111 } 00112 00113 #ifdef USE_LIBFFI 00114 static ffi_type *ffiTypeFor(Type *Ty) { 00115 switch (Ty->getTypeID()) { 00116 case Type::VoidTyID: return &ffi_type_void; 00117 case Type::IntegerTyID: 00118 switch (cast<IntegerType>(Ty)->getBitWidth()) { 00119 case 8: return &ffi_type_sint8; 00120 case 16: return &ffi_type_sint16; 00121 case 32: return &ffi_type_sint32; 00122 case 64: return &ffi_type_sint64; 00123 } 00124 case Type::FloatTyID: return &ffi_type_float; 00125 case Type::DoubleTyID: return &ffi_type_double; 00126 case Type::PointerTyID: return &ffi_type_pointer; 00127 default: break; 00128 } 00129 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 00130 report_fatal_error("Type could not be mapped for use with libffi."); 00131 return NULL; 00132 } 00133 00134 static void *ffiValueFor(Type *Ty, const GenericValue &AV, 00135 void *ArgDataPtr) { 00136 switch (Ty->getTypeID()) { 00137 case Type::IntegerTyID: 00138 switch (cast<IntegerType>(Ty)->getBitWidth()) { 00139 case 8: { 00140 int8_t *I8Ptr = (int8_t *) ArgDataPtr; 00141 *I8Ptr = (int8_t) AV.IntVal.getZExtValue(); 00142 return ArgDataPtr; 00143 } 00144 case 16: { 00145 int16_t *I16Ptr = (int16_t *) ArgDataPtr; 00146 *I16Ptr = (int16_t) AV.IntVal.getZExtValue(); 00147 return ArgDataPtr; 00148 } 00149 case 32: { 00150 int32_t *I32Ptr = (int32_t *) ArgDataPtr; 00151 *I32Ptr = (int32_t) AV.IntVal.getZExtValue(); 00152 return ArgDataPtr; 00153 } 00154 case 64: { 00155 int64_t *I64Ptr = (int64_t *) ArgDataPtr; 00156 *I64Ptr = (int64_t) AV.IntVal.getZExtValue(); 00157 return ArgDataPtr; 00158 } 00159 } 00160 case Type::FloatTyID: { 00161 float *FloatPtr = (float *) ArgDataPtr; 00162 *FloatPtr = AV.FloatVal; 00163 return ArgDataPtr; 00164 } 00165 case Type::DoubleTyID: { 00166 double *DoublePtr = (double *) ArgDataPtr; 00167 *DoublePtr = AV.DoubleVal; 00168 return ArgDataPtr; 00169 } 00170 case Type::PointerTyID: { 00171 void **PtrPtr = (void **) ArgDataPtr; 00172 *PtrPtr = GVTOP(AV); 00173 return ArgDataPtr; 00174 } 00175 default: break; 00176 } 00177 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc. 00178 report_fatal_error("Type value could not be mapped for use with libffi."); 00179 return NULL; 00180 } 00181 00182 static bool ffiInvoke(RawFunc Fn, Function *F, 00183 const std::vector<GenericValue> &ArgVals, 00184 const DataLayout *TD, GenericValue &Result) { 00185 ffi_cif cif; 00186 FunctionType *FTy = F->getFunctionType(); 00187 const unsigned NumArgs = F->arg_size(); 00188 00189 // TODO: We don't have type information about the remaining arguments, because 00190 // this information is never passed into ExecutionEngine::runFunction(). 00191 if (ArgVals.size() > NumArgs && F->isVarArg()) { 00192 report_fatal_error("Calling external var arg function '" + F->getName() 00193 + "' is not supported by the Interpreter."); 00194 } 00195 00196 unsigned ArgBytes = 0; 00197 00198 std::vector<ffi_type*> args(NumArgs); 00199 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 00200 A != E; ++A) { 00201 const unsigned ArgNo = A->getArgNo(); 00202 Type *ArgTy = FTy->getParamType(ArgNo); 00203 args[ArgNo] = ffiTypeFor(ArgTy); 00204 ArgBytes += TD->getTypeStoreSize(ArgTy); 00205 } 00206 00207 SmallVector<uint8_t, 128> ArgData; 00208 ArgData.resize(ArgBytes); 00209 uint8_t *ArgDataPtr = ArgData.data(); 00210 SmallVector<void*, 16> values(NumArgs); 00211 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end(); 00212 A != E; ++A) { 00213 const unsigned ArgNo = A->getArgNo(); 00214 Type *ArgTy = FTy->getParamType(ArgNo); 00215 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr); 00216 ArgDataPtr += TD->getTypeStoreSize(ArgTy); 00217 } 00218 00219 Type *RetTy = FTy->getReturnType(); 00220 ffi_type *rtype = ffiTypeFor(RetTy); 00221 00222 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) { 00223 SmallVector<uint8_t, 128> ret; 00224 if (RetTy->getTypeID() != Type::VoidTyID) 00225 ret.resize(TD->getTypeStoreSize(RetTy)); 00226 ffi_call(&cif, Fn, ret.data(), values.data()); 00227 switch (RetTy->getTypeID()) { 00228 case Type::IntegerTyID: 00229 switch (cast<IntegerType>(RetTy)->getBitWidth()) { 00230 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break; 00231 case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break; 00232 case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break; 00233 case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break; 00234 } 00235 break; 00236 case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break; 00237 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break; 00238 case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break; 00239 default: break; 00240 } 00241 return true; 00242 } 00243 00244 return false; 00245 } 00246 #endif // USE_LIBFFI 00247 00248 GenericValue Interpreter::callExternalFunction(Function *F, 00249 const std::vector<GenericValue> &ArgVals) { 00250 TheInterpreter = this; 00251 00252 unique_lock<sys::Mutex> Guard(*FunctionsLock); 00253 00254 // Do a lookup to see if the function is in our cache... this should just be a 00255 // deferred annotation! 00256 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F); 00257 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F) 00258 : FI->second) { 00259 Guard.unlock(); 00260 return Fn(F->getFunctionType(), ArgVals); 00261 } 00262 00263 #ifdef USE_LIBFFI 00264 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F); 00265 RawFunc RawFn; 00266 if (RF == RawFunctions->end()) { 00267 RawFn = (RawFunc)(intptr_t) 00268 sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName()); 00269 if (!RawFn) 00270 RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F); 00271 if (RawFn != 0) 00272 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later 00273 } else { 00274 RawFn = RF->second; 00275 } 00276 00277 Guard.unlock(); 00278 00279 GenericValue Result; 00280 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result)) 00281 return Result; 00282 #endif // USE_LIBFFI 00283 00284 if (F->getName() == "__main") 00285 errs() << "Tried to execute an unknown external function: " 00286 << *F->getType() << " __main\n"; 00287 else 00288 report_fatal_error("Tried to execute an unknown external function: " + 00289 F->getName()); 00290 #ifndef USE_LIBFFI 00291 errs() << "Recompiling LLVM with --enable-libffi might help.\n"; 00292 #endif 00293 return GenericValue(); 00294 } 00295 00296 00297 //===----------------------------------------------------------------------===// 00298 // Functions "exported" to the running application... 00299 // 00300 00301 // void atexit(Function*) 00302 static 00303 GenericValue lle_X_atexit(FunctionType *FT, 00304 const std::vector<GenericValue> &Args) { 00305 assert(Args.size() == 1); 00306 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0])); 00307 GenericValue GV; 00308 GV.IntVal = 0; 00309 return GV; 00310 } 00311 00312 // void exit(int) 00313 static 00314 GenericValue lle_X_exit(FunctionType *FT, 00315 const std::vector<GenericValue> &Args) { 00316 TheInterpreter->exitCalled(Args[0]); 00317 return GenericValue(); 00318 } 00319 00320 // void abort(void) 00321 static 00322 GenericValue lle_X_abort(FunctionType *FT, 00323 const std::vector<GenericValue> &Args) { 00324 //FIXME: should we report or raise here? 00325 //report_fatal_error("Interpreted program raised SIGABRT"); 00326 raise (SIGABRT); 00327 return GenericValue(); 00328 } 00329 00330 // int sprintf(char *, const char *, ...) - a very rough implementation to make 00331 // output useful. 00332 static 00333 GenericValue lle_X_sprintf(FunctionType *FT, 00334 const std::vector<GenericValue> &Args) { 00335 char *OutputBuffer = (char *)GVTOP(Args[0]); 00336 const char *FmtStr = (const char *)GVTOP(Args[1]); 00337 unsigned ArgNo = 2; 00338 00339 // printf should return # chars printed. This is completely incorrect, but 00340 // close enough for now. 00341 GenericValue GV; 00342 GV.IntVal = APInt(32, strlen(FmtStr)); 00343 while (1) { 00344 switch (*FmtStr) { 00345 case 0: return GV; // Null terminator... 00346 default: // Normal nonspecial character 00347 sprintf(OutputBuffer++, "%c", *FmtStr++); 00348 break; 00349 case '\\': { // Handle escape codes 00350 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1)); 00351 FmtStr += 2; OutputBuffer += 2; 00352 break; 00353 } 00354 case '%': { // Handle format specifiers 00355 char FmtBuf[100] = "", Buffer[1000] = ""; 00356 char *FB = FmtBuf; 00357 *FB++ = *FmtStr++; 00358 char Last = *FB++ = *FmtStr++; 00359 unsigned HowLong = 0; 00360 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' && 00361 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' && 00362 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' && 00363 Last != 'p' && Last != 's' && Last != '%') { 00364 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's 00365 Last = *FB++ = *FmtStr++; 00366 } 00367 *FB = 0; 00368 00369 switch (Last) { 00370 case '%': 00371 memcpy(Buffer, "%", 2); break; 00372 case 'c': 00373 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 00374 break; 00375 case 'd': case 'i': 00376 case 'u': case 'o': 00377 case 'x': case 'X': 00378 if (HowLong >= 1) { 00379 if (HowLong == 1 && 00380 TheInterpreter->getDataLayout()->getPointerSizeInBits() == 64 && 00381 sizeof(long) < sizeof(int64_t)) { 00382 // Make sure we use %lld with a 64 bit argument because we might be 00383 // compiling LLI on a 32 bit compiler. 00384 unsigned Size = strlen(FmtBuf); 00385 FmtBuf[Size] = FmtBuf[Size-1]; 00386 FmtBuf[Size+1] = 0; 00387 FmtBuf[Size-1] = 'l'; 00388 } 00389 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue()); 00390 } else 00391 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue())); 00392 break; 00393 case 'e': case 'E': case 'g': case 'G': case 'f': 00394 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break; 00395 case 'p': 00396 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break; 00397 case 's': 00398 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break; 00399 default: 00400 errs() << "<unknown printf code '" << *FmtStr << "'!>"; 00401 ArgNo++; break; 00402 } 00403 size_t Len = strlen(Buffer); 00404 memcpy(OutputBuffer, Buffer, Len + 1); 00405 OutputBuffer += Len; 00406 } 00407 break; 00408 } 00409 } 00410 return GV; 00411 } 00412 00413 // int printf(const char *, ...) - a very rough implementation to make output 00414 // useful. 00415 static 00416 GenericValue lle_X_printf(FunctionType *FT, 00417 const std::vector<GenericValue> &Args) { 00418 char Buffer[10000]; 00419 std::vector<GenericValue> NewArgs; 00420 NewArgs.push_back(PTOGV((void*)&Buffer[0])); 00421 NewArgs.insert(NewArgs.end(), Args.begin(), Args.end()); 00422 GenericValue GV = lle_X_sprintf(FT, NewArgs); 00423 outs() << Buffer; 00424 return GV; 00425 } 00426 00427 // int sscanf(const char *format, ...); 00428 static 00429 GenericValue lle_X_sscanf(FunctionType *FT, 00430 const std::vector<GenericValue> &args) { 00431 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!"); 00432 00433 char *Args[10]; 00434 for (unsigned i = 0; i < args.size(); ++i) 00435 Args[i] = (char*)GVTOP(args[i]); 00436 00437 GenericValue GV; 00438 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4], 00439 Args[5], Args[6], Args[7], Args[8], Args[9])); 00440 return GV; 00441 } 00442 00443 // int scanf(const char *format, ...); 00444 static 00445 GenericValue lle_X_scanf(FunctionType *FT, 00446 const std::vector<GenericValue> &args) { 00447 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!"); 00448 00449 char *Args[10]; 00450 for (unsigned i = 0; i < args.size(); ++i) 00451 Args[i] = (char*)GVTOP(args[i]); 00452 00453 GenericValue GV; 00454 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4], 00455 Args[5], Args[6], Args[7], Args[8], Args[9])); 00456 return GV; 00457 } 00458 00459 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make 00460 // output useful. 00461 static 00462 GenericValue lle_X_fprintf(FunctionType *FT, 00463 const std::vector<GenericValue> &Args) { 00464 assert(Args.size() >= 2); 00465 char Buffer[10000]; 00466 std::vector<GenericValue> NewArgs; 00467 NewArgs.push_back(PTOGV(Buffer)); 00468 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end()); 00469 GenericValue GV = lle_X_sprintf(FT, NewArgs); 00470 00471 fputs(Buffer, (FILE *) GVTOP(Args[0])); 00472 return GV; 00473 } 00474 00475 static GenericValue lle_X_memset(FunctionType *FT, 00476 const std::vector<GenericValue> &Args) { 00477 int val = (int)Args[1].IntVal.getSExtValue(); 00478 size_t len = (size_t)Args[2].IntVal.getZExtValue(); 00479 memset((void *)GVTOP(Args[0]), val, len); 00480 // llvm.memset.* returns void, lle_X_* returns GenericValue, 00481 // so here we return GenericValue with IntVal set to zero 00482 GenericValue GV; 00483 GV.IntVal = 0; 00484 return GV; 00485 } 00486 00487 static GenericValue lle_X_memcpy(FunctionType *FT, 00488 const std::vector<GenericValue> &Args) { 00489 memcpy(GVTOP(Args[0]), GVTOP(Args[1]), 00490 (size_t)(Args[2].IntVal.getLimitedValue())); 00491 00492 // llvm.memcpy* returns void, lle_X_* returns GenericValue, 00493 // so here we return GenericValue with IntVal set to zero 00494 GenericValue GV; 00495 GV.IntVal = 0; 00496 return GV; 00497 } 00498 00499 void Interpreter::initializeExternalFunctions() { 00500 sys::ScopedLock Writer(*FunctionsLock); 00501 FuncNames["lle_X_atexit"] = lle_X_atexit; 00502 FuncNames["lle_X_exit"] = lle_X_exit; 00503 FuncNames["lle_X_abort"] = lle_X_abort; 00504 00505 FuncNames["lle_X_printf"] = lle_X_printf; 00506 FuncNames["lle_X_sprintf"] = lle_X_sprintf; 00507 FuncNames["lle_X_sscanf"] = lle_X_sscanf; 00508 FuncNames["lle_X_scanf"] = lle_X_scanf; 00509 FuncNames["lle_X_fprintf"] = lle_X_fprintf; 00510 FuncNames["lle_X_memset"] = lle_X_memset; 00511 FuncNames["lle_X_memcpy"] = lle_X_memcpy; 00512 }