LLVM API Documentation

GlobalOpt.cpp
Go to the documentation of this file.
00001 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This pass transforms simple global variables that never have their address
00011 // taken.  If obviously true, it marks read/write globals as constant, deletes
00012 // variables only stored to, etc.
00013 //
00014 //===----------------------------------------------------------------------===//
00015 
00016 #include "llvm/Transforms/IPO.h"
00017 #include "llvm/ADT/DenseMap.h"
00018 #include "llvm/ADT/STLExtras.h"
00019 #include "llvm/ADT/SmallPtrSet.h"
00020 #include "llvm/ADT/SmallSet.h"
00021 #include "llvm/ADT/SmallVector.h"
00022 #include "llvm/ADT/Statistic.h"
00023 #include "llvm/Analysis/ConstantFolding.h"
00024 #include "llvm/Analysis/MemoryBuiltins.h"
00025 #include "llvm/IR/CallSite.h"
00026 #include "llvm/IR/CallingConv.h"
00027 #include "llvm/IR/Constants.h"
00028 #include "llvm/IR/DataLayout.h"
00029 #include "llvm/IR/DerivedTypes.h"
00030 #include "llvm/IR/GetElementPtrTypeIterator.h"
00031 #include "llvm/IR/Instructions.h"
00032 #include "llvm/IR/IntrinsicInst.h"
00033 #include "llvm/IR/Module.h"
00034 #include "llvm/IR/Operator.h"
00035 #include "llvm/IR/ValueHandle.h"
00036 #include "llvm/Pass.h"
00037 #include "llvm/Support/Debug.h"
00038 #include "llvm/Support/ErrorHandling.h"
00039 #include "llvm/Support/MathExtras.h"
00040 #include "llvm/Support/raw_ostream.h"
00041 #include "llvm/Target/TargetLibraryInfo.h"
00042 #include "llvm/Transforms/Utils/CtorUtils.h"
00043 #include "llvm/Transforms/Utils/GlobalStatus.h"
00044 #include "llvm/Transforms/Utils/ModuleUtils.h"
00045 #include <algorithm>
00046 #include <deque>
00047 using namespace llvm;
00048 
00049 #define DEBUG_TYPE "globalopt"
00050 
00051 STATISTIC(NumMarked    , "Number of globals marked constant");
00052 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
00053 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
00054 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
00055 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
00056 STATISTIC(NumDeleted   , "Number of globals deleted");
00057 STATISTIC(NumFnDeleted , "Number of functions deleted");
00058 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
00059 STATISTIC(NumLocalized , "Number of globals localized");
00060 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
00061 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
00062 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
00063 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
00064 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
00065 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
00066 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
00067 
00068 namespace {
00069   struct GlobalOpt : public ModulePass {
00070     void getAnalysisUsage(AnalysisUsage &AU) const override {
00071       AU.addRequired<TargetLibraryInfo>();
00072     }
00073     static char ID; // Pass identification, replacement for typeid
00074     GlobalOpt() : ModulePass(ID) {
00075       initializeGlobalOptPass(*PassRegistry::getPassRegistry());
00076     }
00077 
00078     bool runOnModule(Module &M) override;
00079 
00080   private:
00081     bool OptimizeFunctions(Module &M);
00082     bool OptimizeGlobalVars(Module &M);
00083     bool OptimizeGlobalAliases(Module &M);
00084     bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
00085     bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
00086                                const GlobalStatus &GS);
00087     bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
00088 
00089     const DataLayout *DL;
00090     TargetLibraryInfo *TLI;
00091   };
00092 }
00093 
00094 char GlobalOpt::ID = 0;
00095 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
00096                 "Global Variable Optimizer", false, false)
00097 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
00098 INITIALIZE_PASS_END(GlobalOpt, "globalopt",
00099                 "Global Variable Optimizer", false, false)
00100 
00101 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
00102 
00103 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
00104 /// as a root?  If so, we might not really want to eliminate the stores to it.
00105 static bool isLeakCheckerRoot(GlobalVariable *GV) {
00106   // A global variable is a root if it is a pointer, or could plausibly contain
00107   // a pointer.  There are two challenges; one is that we could have a struct
00108   // the has an inner member which is a pointer.  We recurse through the type to
00109   // detect these (up to a point).  The other is that we may actually be a union
00110   // of a pointer and another type, and so our LLVM type is an integer which
00111   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
00112   // potentially contained here.
00113 
00114   if (GV->hasPrivateLinkage())
00115     return false;
00116 
00117   SmallVector<Type *, 4> Types;
00118   Types.push_back(cast<PointerType>(GV->getType())->getElementType());
00119 
00120   unsigned Limit = 20;
00121   do {
00122     Type *Ty = Types.pop_back_val();
00123     switch (Ty->getTypeID()) {
00124       default: break;
00125       case Type::PointerTyID: return true;
00126       case Type::ArrayTyID:
00127       case Type::VectorTyID: {
00128         SequentialType *STy = cast<SequentialType>(Ty);
00129         Types.push_back(STy->getElementType());
00130         break;
00131       }
00132       case Type::StructTyID: {
00133         StructType *STy = cast<StructType>(Ty);
00134         if (STy->isOpaque()) return true;
00135         for (StructType::element_iterator I = STy->element_begin(),
00136                  E = STy->element_end(); I != E; ++I) {
00137           Type *InnerTy = *I;
00138           if (isa<PointerType>(InnerTy)) return true;
00139           if (isa<CompositeType>(InnerTy))
00140             Types.push_back(InnerTy);
00141         }
00142         break;
00143       }
00144     }
00145     if (--Limit == 0) return true;
00146   } while (!Types.empty());
00147   return false;
00148 }
00149 
00150 /// Given a value that is stored to a global but never read, determine whether
00151 /// it's safe to remove the store and the chain of computation that feeds the
00152 /// store.
00153 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
00154   do {
00155     if (isa<Constant>(V))
00156       return true;
00157     if (!V->hasOneUse())
00158       return false;
00159     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
00160         isa<GlobalValue>(V))
00161       return false;
00162     if (isAllocationFn(V, TLI))
00163       return true;
00164 
00165     Instruction *I = cast<Instruction>(V);
00166     if (I->mayHaveSideEffects())
00167       return false;
00168     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
00169       if (!GEP->hasAllConstantIndices())
00170         return false;
00171     } else if (I->getNumOperands() != 1) {
00172       return false;
00173     }
00174 
00175     V = I->getOperand(0);
00176   } while (1);
00177 }
00178 
00179 /// CleanupPointerRootUsers - This GV is a pointer root.  Loop over all users
00180 /// of the global and clean up any that obviously don't assign the global a
00181 /// value that isn't dynamically allocated.
00182 ///
00183 static bool CleanupPointerRootUsers(GlobalVariable *GV,
00184                                     const TargetLibraryInfo *TLI) {
00185   // A brief explanation of leak checkers.  The goal is to find bugs where
00186   // pointers are forgotten, causing an accumulating growth in memory
00187   // usage over time.  The common strategy for leak checkers is to whitelist the
00188   // memory pointed to by globals at exit.  This is popular because it also
00189   // solves another problem where the main thread of a C++ program may shut down
00190   // before other threads that are still expecting to use those globals.  To
00191   // handle that case, we expect the program may create a singleton and never
00192   // destroy it.
00193 
00194   bool Changed = false;
00195 
00196   // If Dead[n].first is the only use of a malloc result, we can delete its
00197   // chain of computation and the store to the global in Dead[n].second.
00198   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
00199 
00200   // Constants can't be pointers to dynamically allocated memory.
00201   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
00202        UI != E;) {
00203     User *U = *UI++;
00204     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
00205       Value *V = SI->getValueOperand();
00206       if (isa<Constant>(V)) {
00207         Changed = true;
00208         SI->eraseFromParent();
00209       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
00210         if (I->hasOneUse())
00211           Dead.push_back(std::make_pair(I, SI));
00212       }
00213     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
00214       if (isa<Constant>(MSI->getValue())) {
00215         Changed = true;
00216         MSI->eraseFromParent();
00217       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
00218         if (I->hasOneUse())
00219           Dead.push_back(std::make_pair(I, MSI));
00220       }
00221     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
00222       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
00223       if (MemSrc && MemSrc->isConstant()) {
00224         Changed = true;
00225         MTI->eraseFromParent();
00226       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
00227         if (I->hasOneUse())
00228           Dead.push_back(std::make_pair(I, MTI));
00229       }
00230     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
00231       if (CE->use_empty()) {
00232         CE->destroyConstant();
00233         Changed = true;
00234       }
00235     } else if (Constant *C = dyn_cast<Constant>(U)) {
00236       if (isSafeToDestroyConstant(C)) {
00237         C->destroyConstant();
00238         // This could have invalidated UI, start over from scratch.
00239         Dead.clear();
00240         CleanupPointerRootUsers(GV, TLI);
00241         return true;
00242       }
00243     }
00244   }
00245 
00246   for (int i = 0, e = Dead.size(); i != e; ++i) {
00247     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
00248       Dead[i].second->eraseFromParent();
00249       Instruction *I = Dead[i].first;
00250       do {
00251         if (isAllocationFn(I, TLI))
00252           break;
00253         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
00254         if (!J)
00255           break;
00256         I->eraseFromParent();
00257         I = J;
00258       } while (1);
00259       I->eraseFromParent();
00260     }
00261   }
00262 
00263   return Changed;
00264 }
00265 
00266 /// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
00267 /// users of the global, cleaning up the obvious ones.  This is largely just a
00268 /// quick scan over the use list to clean up the easy and obvious cruft.  This
00269 /// returns true if it made a change.
00270 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
00271                                        const DataLayout *DL,
00272                                        TargetLibraryInfo *TLI) {
00273   bool Changed = false;
00274   // Note that we need to use a weak value handle for the worklist items. When
00275   // we delete a constant array, we may also be holding pointer to one of its
00276   // elements (or an element of one of its elements if we're dealing with an
00277   // array of arrays) in the worklist.
00278   SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
00279   while (!WorkList.empty()) {
00280     Value *UV = WorkList.pop_back_val();
00281     if (!UV)
00282       continue;
00283 
00284     User *U = cast<User>(UV);
00285 
00286     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
00287       if (Init) {
00288         // Replace the load with the initializer.
00289         LI->replaceAllUsesWith(Init);
00290         LI->eraseFromParent();
00291         Changed = true;
00292       }
00293     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
00294       // Store must be unreachable or storing Init into the global.
00295       SI->eraseFromParent();
00296       Changed = true;
00297     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
00298       if (CE->getOpcode() == Instruction::GetElementPtr) {
00299         Constant *SubInit = nullptr;
00300         if (Init)
00301           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
00302         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
00303       } else if ((CE->getOpcode() == Instruction::BitCast &&
00304                   CE->getType()->isPointerTy()) ||
00305                  CE->getOpcode() == Instruction::AddrSpaceCast) {
00306         // Pointer cast, delete any stores and memsets to the global.
00307         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
00308       }
00309 
00310       if (CE->use_empty()) {
00311         CE->destroyConstant();
00312         Changed = true;
00313       }
00314     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
00315       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
00316       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
00317       // and will invalidate our notion of what Init is.
00318       Constant *SubInit = nullptr;
00319       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
00320         ConstantExpr *CE =
00321           dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP, DL, TLI));
00322         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
00323           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
00324 
00325         // If the initializer is an all-null value and we have an inbounds GEP,
00326         // we already know what the result of any load from that GEP is.
00327         // TODO: Handle splats.
00328         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
00329           SubInit = Constant::getNullValue(GEP->getType()->getElementType());
00330       }
00331       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
00332 
00333       if (GEP->use_empty()) {
00334         GEP->eraseFromParent();
00335         Changed = true;
00336       }
00337     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
00338       if (MI->getRawDest() == V) {
00339         MI->eraseFromParent();
00340         Changed = true;
00341       }
00342 
00343     } else if (Constant *C = dyn_cast<Constant>(U)) {
00344       // If we have a chain of dead constantexprs or other things dangling from
00345       // us, and if they are all dead, nuke them without remorse.
00346       if (isSafeToDestroyConstant(C)) {
00347         C->destroyConstant();
00348         CleanupConstantGlobalUsers(V, Init, DL, TLI);
00349         return true;
00350       }
00351     }
00352   }
00353   return Changed;
00354 }
00355 
00356 /// isSafeSROAElementUse - Return true if the specified instruction is a safe
00357 /// user of a derived expression from a global that we want to SROA.
00358 static bool isSafeSROAElementUse(Value *V) {
00359   // We might have a dead and dangling constant hanging off of here.
00360   if (Constant *C = dyn_cast<Constant>(V))
00361     return isSafeToDestroyConstant(C);
00362 
00363   Instruction *I = dyn_cast<Instruction>(V);
00364   if (!I) return false;
00365 
00366   // Loads are ok.
00367   if (isa<LoadInst>(I)) return true;
00368 
00369   // Stores *to* the pointer are ok.
00370   if (StoreInst *SI = dyn_cast<StoreInst>(I))
00371     return SI->getOperand(0) != V;
00372 
00373   // Otherwise, it must be a GEP.
00374   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
00375   if (!GEPI) return false;
00376 
00377   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
00378       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
00379     return false;
00380 
00381   for (User *U : GEPI->users())
00382     if (!isSafeSROAElementUse(U))
00383       return false;
00384   return true;
00385 }
00386 
00387 
00388 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
00389 /// Look at it and its uses and decide whether it is safe to SROA this global.
00390 ///
00391 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
00392   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
00393   if (!isa<GetElementPtrInst>(U) &&
00394       (!isa<ConstantExpr>(U) ||
00395        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
00396     return false;
00397 
00398   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
00399   // don't like < 3 operand CE's, and we don't like non-constant integer
00400   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
00401   // value of C.
00402   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
00403       !cast<Constant>(U->getOperand(1))->isNullValue() ||
00404       !isa<ConstantInt>(U->getOperand(2)))
00405     return false;
00406 
00407   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
00408   ++GEPI;  // Skip over the pointer index.
00409 
00410   // If this is a use of an array allocation, do a bit more checking for sanity.
00411   if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
00412     uint64_t NumElements = AT->getNumElements();
00413     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
00414 
00415     // Check to make sure that index falls within the array.  If not,
00416     // something funny is going on, so we won't do the optimization.
00417     //
00418     if (Idx->getZExtValue() >= NumElements)
00419       return false;
00420 
00421     // We cannot scalar repl this level of the array unless any array
00422     // sub-indices are in-range constants.  In particular, consider:
00423     // A[0][i].  We cannot know that the user isn't doing invalid things like
00424     // allowing i to index an out-of-range subscript that accesses A[1].
00425     //
00426     // Scalar replacing *just* the outer index of the array is probably not
00427     // going to be a win anyway, so just give up.
00428     for (++GEPI; // Skip array index.
00429          GEPI != E;
00430          ++GEPI) {
00431       uint64_t NumElements;
00432       if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
00433         NumElements = SubArrayTy->getNumElements();
00434       else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
00435         NumElements = SubVectorTy->getNumElements();
00436       else {
00437         assert((*GEPI)->isStructTy() &&
00438                "Indexed GEP type is not array, vector, or struct!");
00439         continue;
00440       }
00441 
00442       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
00443       if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
00444         return false;
00445     }
00446   }
00447 
00448   for (User *UU : U->users())
00449     if (!isSafeSROAElementUse(UU))
00450       return false;
00451 
00452   return true;
00453 }
00454 
00455 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
00456 /// is safe for us to perform this transformation.
00457 ///
00458 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
00459   for (User *U : GV->users())
00460     if (!IsUserOfGlobalSafeForSRA(U, GV))
00461       return false;
00462 
00463   return true;
00464 }
00465 
00466 
00467 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
00468 /// variable.  This opens the door for other optimizations by exposing the
00469 /// behavior of the program in a more fine-grained way.  We have determined that
00470 /// this transformation is safe already.  We return the first global variable we
00471 /// insert so that the caller can reprocess it.
00472 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
00473   // Make sure this global only has simple uses that we can SRA.
00474   if (!GlobalUsersSafeToSRA(GV))
00475     return nullptr;
00476 
00477   assert(GV->hasLocalLinkage() && !GV->isConstant());
00478   Constant *Init = GV->getInitializer();
00479   Type *Ty = Init->getType();
00480 
00481   std::vector<GlobalVariable*> NewGlobals;
00482   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
00483 
00484   // Get the alignment of the global, either explicit or target-specific.
00485   unsigned StartAlignment = GV->getAlignment();
00486   if (StartAlignment == 0)
00487     StartAlignment = DL.getABITypeAlignment(GV->getType());
00488 
00489   if (StructType *STy = dyn_cast<StructType>(Ty)) {
00490     NewGlobals.reserve(STy->getNumElements());
00491     const StructLayout &Layout = *DL.getStructLayout(STy);
00492     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
00493       Constant *In = Init->getAggregateElement(i);
00494       assert(In && "Couldn't get element of initializer?");
00495       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
00496                                                GlobalVariable::InternalLinkage,
00497                                                In, GV->getName()+"."+Twine(i),
00498                                                GV->getThreadLocalMode(),
00499                                               GV->getType()->getAddressSpace());
00500       Globals.insert(GV, NGV);
00501       NewGlobals.push_back(NGV);
00502 
00503       // Calculate the known alignment of the field.  If the original aggregate
00504       // had 256 byte alignment for example, something might depend on that:
00505       // propagate info to each field.
00506       uint64_t FieldOffset = Layout.getElementOffset(i);
00507       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
00508       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
00509         NGV->setAlignment(NewAlign);
00510     }
00511   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
00512     unsigned NumElements = 0;
00513     if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
00514       NumElements = ATy->getNumElements();
00515     else
00516       NumElements = cast<VectorType>(STy)->getNumElements();
00517 
00518     if (NumElements > 16 && GV->hasNUsesOrMore(16))
00519       return nullptr; // It's not worth it.
00520     NewGlobals.reserve(NumElements);
00521 
00522     uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
00523     unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
00524     for (unsigned i = 0, e = NumElements; i != e; ++i) {
00525       Constant *In = Init->getAggregateElement(i);
00526       assert(In && "Couldn't get element of initializer?");
00527 
00528       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
00529                                                GlobalVariable::InternalLinkage,
00530                                                In, GV->getName()+"."+Twine(i),
00531                                                GV->getThreadLocalMode(),
00532                                               GV->getType()->getAddressSpace());
00533       Globals.insert(GV, NGV);
00534       NewGlobals.push_back(NGV);
00535 
00536       // Calculate the known alignment of the field.  If the original aggregate
00537       // had 256 byte alignment for example, something might depend on that:
00538       // propagate info to each field.
00539       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
00540       if (NewAlign > EltAlign)
00541         NGV->setAlignment(NewAlign);
00542     }
00543   }
00544 
00545   if (NewGlobals.empty())
00546     return nullptr;
00547 
00548   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
00549 
00550   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
00551 
00552   // Loop over all of the uses of the global, replacing the constantexpr geps,
00553   // with smaller constantexpr geps or direct references.
00554   while (!GV->use_empty()) {
00555     User *GEP = GV->user_back();
00556     assert(((isa<ConstantExpr>(GEP) &&
00557              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
00558             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
00559 
00560     // Ignore the 1th operand, which has to be zero or else the program is quite
00561     // broken (undefined).  Get the 2nd operand, which is the structure or array
00562     // index.
00563     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
00564     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
00565 
00566     Value *NewPtr = NewGlobals[Val];
00567 
00568     // Form a shorter GEP if needed.
00569     if (GEP->getNumOperands() > 3) {
00570       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
00571         SmallVector<Constant*, 8> Idxs;
00572         Idxs.push_back(NullInt);
00573         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
00574           Idxs.push_back(CE->getOperand(i));
00575         NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr), Idxs);
00576       } else {
00577         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
00578         SmallVector<Value*, 8> Idxs;
00579         Idxs.push_back(NullInt);
00580         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
00581           Idxs.push_back(GEPI->getOperand(i));
00582         NewPtr = GetElementPtrInst::Create(NewPtr, Idxs,
00583                                            GEPI->getName()+"."+Twine(Val),GEPI);
00584       }
00585     }
00586     GEP->replaceAllUsesWith(NewPtr);
00587 
00588     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
00589       GEPI->eraseFromParent();
00590     else
00591       cast<ConstantExpr>(GEP)->destroyConstant();
00592   }
00593 
00594   // Delete the old global, now that it is dead.
00595   Globals.erase(GV);
00596   ++NumSRA;
00597 
00598   // Loop over the new globals array deleting any globals that are obviously
00599   // dead.  This can arise due to scalarization of a structure or an array that
00600   // has elements that are dead.
00601   unsigned FirstGlobal = 0;
00602   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
00603     if (NewGlobals[i]->use_empty()) {
00604       Globals.erase(NewGlobals[i]);
00605       if (FirstGlobal == i) ++FirstGlobal;
00606     }
00607 
00608   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
00609 }
00610 
00611 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
00612 /// value will trap if the value is dynamically null.  PHIs keeps track of any
00613 /// phi nodes we've seen to avoid reprocessing them.
00614 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
00615                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
00616   for (const User *U : V->users())
00617     if (isa<LoadInst>(U)) {
00618       // Will trap.
00619     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
00620       if (SI->getOperand(0) == V) {
00621         //cerr << "NONTRAPPING USE: " << *U;
00622         return false;  // Storing the value.
00623       }
00624     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
00625       if (CI->getCalledValue() != V) {
00626         //cerr << "NONTRAPPING USE: " << *U;
00627         return false;  // Not calling the ptr
00628       }
00629     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
00630       if (II->getCalledValue() != V) {
00631         //cerr << "NONTRAPPING USE: " << *U;
00632         return false;  // Not calling the ptr
00633       }
00634     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
00635       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
00636     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
00637       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
00638     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
00639       // If we've already seen this phi node, ignore it, it has already been
00640       // checked.
00641       if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
00642         return false;
00643     } else if (isa<ICmpInst>(U) &&
00644                isa<ConstantPointerNull>(U->getOperand(1))) {
00645       // Ignore icmp X, null
00646     } else {
00647       //cerr << "NONTRAPPING USE: " << *U;
00648       return false;
00649     }
00650 
00651   return true;
00652 }
00653 
00654 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
00655 /// from GV will trap if the loaded value is null.  Note that this also permits
00656 /// comparisons of the loaded value against null, as a special case.
00657 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
00658   for (const User *U : GV->users())
00659     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
00660       SmallPtrSet<const PHINode*, 8> PHIs;
00661       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
00662         return false;
00663     } else if (isa<StoreInst>(U)) {
00664       // Ignore stores to the global.
00665     } else {
00666       // We don't know or understand this user, bail out.
00667       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
00668       return false;
00669     }
00670   return true;
00671 }
00672 
00673 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
00674   bool Changed = false;
00675   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
00676     Instruction *I = cast<Instruction>(*UI++);
00677     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
00678       LI->setOperand(0, NewV);
00679       Changed = true;
00680     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
00681       if (SI->getOperand(1) == V) {
00682         SI->setOperand(1, NewV);
00683         Changed = true;
00684       }
00685     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
00686       CallSite CS(I);
00687       if (CS.getCalledValue() == V) {
00688         // Calling through the pointer!  Turn into a direct call, but be careful
00689         // that the pointer is not also being passed as an argument.
00690         CS.setCalledFunction(NewV);
00691         Changed = true;
00692         bool PassedAsArg = false;
00693         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
00694           if (CS.getArgument(i) == V) {
00695             PassedAsArg = true;
00696             CS.setArgument(i, NewV);
00697           }
00698 
00699         if (PassedAsArg) {
00700           // Being passed as an argument also.  Be careful to not invalidate UI!
00701           UI = V->user_begin();
00702         }
00703       }
00704     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
00705       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
00706                                 ConstantExpr::getCast(CI->getOpcode(),
00707                                                       NewV, CI->getType()));
00708       if (CI->use_empty()) {
00709         Changed = true;
00710         CI->eraseFromParent();
00711       }
00712     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
00713       // Should handle GEP here.
00714       SmallVector<Constant*, 8> Idxs;
00715       Idxs.reserve(GEPI->getNumOperands()-1);
00716       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
00717            i != e; ++i)
00718         if (Constant *C = dyn_cast<Constant>(*i))
00719           Idxs.push_back(C);
00720         else
00721           break;
00722       if (Idxs.size() == GEPI->getNumOperands()-1)
00723         Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
00724                           ConstantExpr::getGetElementPtr(NewV, Idxs));
00725       if (GEPI->use_empty()) {
00726         Changed = true;
00727         GEPI->eraseFromParent();
00728       }
00729     }
00730   }
00731 
00732   return Changed;
00733 }
00734 
00735 
00736 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
00737 /// value stored into it.  If there are uses of the loaded value that would trap
00738 /// if the loaded value is dynamically null, then we know that they cannot be
00739 /// reachable with a null optimize away the load.
00740 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
00741                                             const DataLayout *DL,
00742                                             TargetLibraryInfo *TLI) {
00743   bool Changed = false;
00744 
00745   // Keep track of whether we are able to remove all the uses of the global
00746   // other than the store that defines it.
00747   bool AllNonStoreUsesGone = true;
00748 
00749   // Replace all uses of loads with uses of uses of the stored value.
00750   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
00751     User *GlobalUser = *GUI++;
00752     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
00753       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
00754       // If we were able to delete all uses of the loads
00755       if (LI->use_empty()) {
00756         LI->eraseFromParent();
00757         Changed = true;
00758       } else {
00759         AllNonStoreUsesGone = false;
00760       }
00761     } else if (isa<StoreInst>(GlobalUser)) {
00762       // Ignore the store that stores "LV" to the global.
00763       assert(GlobalUser->getOperand(1) == GV &&
00764              "Must be storing *to* the global");
00765     } else {
00766       AllNonStoreUsesGone = false;
00767 
00768       // If we get here we could have other crazy uses that are transitively
00769       // loaded.
00770       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
00771               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
00772               isa<BitCastInst>(GlobalUser) ||
00773               isa<GetElementPtrInst>(GlobalUser)) &&
00774              "Only expect load and stores!");
00775     }
00776   }
00777 
00778   if (Changed) {
00779     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
00780     ++NumGlobUses;
00781   }
00782 
00783   // If we nuked all of the loads, then none of the stores are needed either,
00784   // nor is the global.
00785   if (AllNonStoreUsesGone) {
00786     if (isLeakCheckerRoot(GV)) {
00787       Changed |= CleanupPointerRootUsers(GV, TLI);
00788     } else {
00789       Changed = true;
00790       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
00791     }
00792     if (GV->use_empty()) {
00793       DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
00794       Changed = true;
00795       GV->eraseFromParent();
00796       ++NumDeleted;
00797     }
00798   }
00799   return Changed;
00800 }
00801 
00802 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
00803 /// instructions that are foldable.
00804 static void ConstantPropUsersOf(Value *V, const DataLayout *DL,
00805                                 TargetLibraryInfo *TLI) {
00806   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
00807     if (Instruction *I = dyn_cast<Instruction>(*UI++))
00808       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
00809         I->replaceAllUsesWith(NewC);
00810 
00811         // Advance UI to the next non-I use to avoid invalidating it!
00812         // Instructions could multiply use V.
00813         while (UI != E && *UI == I)
00814           ++UI;
00815         I->eraseFromParent();
00816       }
00817 }
00818 
00819 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
00820 /// variable, and transforms the program as if it always contained the result of
00821 /// the specified malloc.  Because it is always the result of the specified
00822 /// malloc, there is no reason to actually DO the malloc.  Instead, turn the
00823 /// malloc into a global, and any loads of GV as uses of the new global.
00824 static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
00825                                                      CallInst *CI,
00826                                                      Type *AllocTy,
00827                                                      ConstantInt *NElements,
00828                                                      const DataLayout *DL,
00829                                                      TargetLibraryInfo *TLI) {
00830   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
00831 
00832   Type *GlobalType;
00833   if (NElements->getZExtValue() == 1)
00834     GlobalType = AllocTy;
00835   else
00836     // If we have an array allocation, the global variable is of an array.
00837     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
00838 
00839   // Create the new global variable.  The contents of the malloc'd memory is
00840   // undefined, so initialize with an undef value.
00841   GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
00842                                              GlobalType, false,
00843                                              GlobalValue::InternalLinkage,
00844                                              UndefValue::get(GlobalType),
00845                                              GV->getName()+".body",
00846                                              GV,
00847                                              GV->getThreadLocalMode());
00848 
00849   // If there are bitcast users of the malloc (which is typical, usually we have
00850   // a malloc + bitcast) then replace them with uses of the new global.  Update
00851   // other users to use the global as well.
00852   BitCastInst *TheBC = nullptr;
00853   while (!CI->use_empty()) {
00854     Instruction *User = cast<Instruction>(CI->user_back());
00855     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
00856       if (BCI->getType() == NewGV->getType()) {
00857         BCI->replaceAllUsesWith(NewGV);
00858         BCI->eraseFromParent();
00859       } else {
00860         BCI->setOperand(0, NewGV);
00861       }
00862     } else {
00863       if (!TheBC)
00864         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
00865       User->replaceUsesOfWith(CI, TheBC);
00866     }
00867   }
00868 
00869   Constant *RepValue = NewGV;
00870   if (NewGV->getType() != GV->getType()->getElementType())
00871     RepValue = ConstantExpr::getBitCast(RepValue,
00872                                         GV->getType()->getElementType());
00873 
00874   // If there is a comparison against null, we will insert a global bool to
00875   // keep track of whether the global was initialized yet or not.
00876   GlobalVariable *InitBool =
00877     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
00878                        GlobalValue::InternalLinkage,
00879                        ConstantInt::getFalse(GV->getContext()),
00880                        GV->getName()+".init", GV->getThreadLocalMode());
00881   bool InitBoolUsed = false;
00882 
00883   // Loop over all uses of GV, processing them in turn.
00884   while (!GV->use_empty()) {
00885     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
00886       // The global is initialized when the store to it occurs.
00887       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
00888                     SI->getOrdering(), SI->getSynchScope(), SI);
00889       SI->eraseFromParent();
00890       continue;
00891     }
00892 
00893     LoadInst *LI = cast<LoadInst>(GV->user_back());
00894     while (!LI->use_empty()) {
00895       Use &LoadUse = *LI->use_begin();
00896       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
00897       if (!ICI) {
00898         LoadUse = RepValue;
00899         continue;
00900       }
00901 
00902       // Replace the cmp X, 0 with a use of the bool value.
00903       // Sink the load to where the compare was, if atomic rules allow us to.
00904       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
00905                                LI->getOrdering(), LI->getSynchScope(),
00906                                LI->isUnordered() ? (Instruction*)ICI : LI);
00907       InitBoolUsed = true;
00908       switch (ICI->getPredicate()) {
00909       default: llvm_unreachable("Unknown ICmp Predicate!");
00910       case ICmpInst::ICMP_ULT:
00911       case ICmpInst::ICMP_SLT:   // X < null -> always false
00912         LV = ConstantInt::getFalse(GV->getContext());
00913         break;
00914       case ICmpInst::ICMP_ULE:
00915       case ICmpInst::ICMP_SLE:
00916       case ICmpInst::ICMP_EQ:
00917         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
00918         break;
00919       case ICmpInst::ICMP_NE:
00920       case ICmpInst::ICMP_UGE:
00921       case ICmpInst::ICMP_SGE:
00922       case ICmpInst::ICMP_UGT:
00923       case ICmpInst::ICMP_SGT:
00924         break;  // no change.
00925       }
00926       ICI->replaceAllUsesWith(LV);
00927       ICI->eraseFromParent();
00928     }
00929     LI->eraseFromParent();
00930   }
00931 
00932   // If the initialization boolean was used, insert it, otherwise delete it.
00933   if (!InitBoolUsed) {
00934     while (!InitBool->use_empty())  // Delete initializations
00935       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
00936     delete InitBool;
00937   } else
00938     GV->getParent()->getGlobalList().insert(GV, InitBool);
00939 
00940   // Now the GV is dead, nuke it and the malloc..
00941   GV->eraseFromParent();
00942   CI->eraseFromParent();
00943 
00944   // To further other optimizations, loop over all users of NewGV and try to
00945   // constant prop them.  This will promote GEP instructions with constant
00946   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
00947   ConstantPropUsersOf(NewGV, DL, TLI);
00948   if (RepValue != NewGV)
00949     ConstantPropUsersOf(RepValue, DL, TLI);
00950 
00951   return NewGV;
00952 }
00953 
00954 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
00955 /// to make sure that there are no complex uses of V.  We permit simple things
00956 /// like dereferencing the pointer, but not storing through the address, unless
00957 /// it is to the specified global.
00958 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
00959                                                       const GlobalVariable *GV,
00960                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
00961   for (const User *U : V->users()) {
00962     const Instruction *Inst = cast<Instruction>(U);
00963 
00964     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
00965       continue; // Fine, ignore.
00966     }
00967 
00968     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
00969       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
00970         return false;  // Storing the pointer itself... bad.
00971       continue; // Otherwise, storing through it, or storing into GV... fine.
00972     }
00973 
00974     // Must index into the array and into the struct.
00975     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
00976       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
00977         return false;
00978       continue;
00979     }
00980 
00981     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
00982       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
00983       // cycles.
00984       if (PHIs.insert(PN))
00985         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
00986           return false;
00987       continue;
00988     }
00989 
00990     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
00991       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
00992         return false;
00993       continue;
00994     }
00995 
00996     return false;
00997   }
00998   return true;
00999 }
01000 
01001 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
01002 /// somewhere.  Transform all uses of the allocation into loads from the
01003 /// global and uses of the resultant pointer.  Further, delete the store into
01004 /// GV.  This assumes that these value pass the
01005 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
01006 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
01007                                           GlobalVariable *GV) {
01008   while (!Alloc->use_empty()) {
01009     Instruction *U = cast<Instruction>(*Alloc->user_begin());
01010     Instruction *InsertPt = U;
01011     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
01012       // If this is the store of the allocation into the global, remove it.
01013       if (SI->getOperand(1) == GV) {
01014         SI->eraseFromParent();
01015         continue;
01016       }
01017     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
01018       // Insert the load in the corresponding predecessor, not right before the
01019       // PHI.
01020       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
01021     } else if (isa<BitCastInst>(U)) {
01022       // Must be bitcast between the malloc and store to initialize the global.
01023       ReplaceUsesOfMallocWithGlobal(U, GV);
01024       U->eraseFromParent();
01025       continue;
01026     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
01027       // If this is a "GEP bitcast" and the user is a store to the global, then
01028       // just process it as a bitcast.
01029       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
01030         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
01031           if (SI->getOperand(1) == GV) {
01032             // Must be bitcast GEP between the malloc and store to initialize
01033             // the global.
01034             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
01035             GEPI->eraseFromParent();
01036             continue;
01037           }
01038     }
01039 
01040     // Insert a load from the global, and use it instead of the malloc.
01041     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
01042     U->replaceUsesOfWith(Alloc, NL);
01043   }
01044 }
01045 
01046 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
01047 /// of a load) are simple enough to perform heap SRA on.  This permits GEP's
01048 /// that index through the array and struct field, icmps of null, and PHIs.
01049 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
01050                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
01051                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
01052   // We permit two users of the load: setcc comparing against the null
01053   // pointer, and a getelementptr of a specific form.
01054   for (const User *U : V->users()) {
01055     const Instruction *UI = cast<Instruction>(U);
01056 
01057     // Comparison against null is ok.
01058     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
01059       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
01060         return false;
01061       continue;
01062     }
01063 
01064     // getelementptr is also ok, but only a simple form.
01065     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
01066       // Must index into the array and into the struct.
01067       if (GEPI->getNumOperands() < 3)
01068         return false;
01069 
01070       // Otherwise the GEP is ok.
01071       continue;
01072     }
01073 
01074     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
01075       if (!LoadUsingPHIsPerLoad.insert(PN))
01076         // This means some phi nodes are dependent on each other.
01077         // Avoid infinite looping!
01078         return false;
01079       if (!LoadUsingPHIs.insert(PN))
01080         // If we have already analyzed this PHI, then it is safe.
01081         continue;
01082 
01083       // Make sure all uses of the PHI are simple enough to transform.
01084       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
01085                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
01086         return false;
01087 
01088       continue;
01089     }
01090 
01091     // Otherwise we don't know what this is, not ok.
01092     return false;
01093   }
01094 
01095   return true;
01096 }
01097 
01098 
01099 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
01100 /// GV are simple enough to perform HeapSRA, return true.
01101 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
01102                                                     Instruction *StoredVal) {
01103   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
01104   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
01105   for (const User *U : GV->users())
01106     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
01107       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
01108                                           LoadUsingPHIsPerLoad))
01109         return false;
01110       LoadUsingPHIsPerLoad.clear();
01111     }
01112 
01113   // If we reach here, we know that all uses of the loads and transitive uses
01114   // (through PHI nodes) are simple enough to transform.  However, we don't know
01115   // that all inputs the to the PHI nodes are in the same equivalence sets.
01116   // Check to verify that all operands of the PHIs are either PHIS that can be
01117   // transformed, loads from GV, or MI itself.
01118   for (const PHINode *PN : LoadUsingPHIs) {
01119     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
01120       Value *InVal = PN->getIncomingValue(op);
01121 
01122       // PHI of the stored value itself is ok.
01123       if (InVal == StoredVal) continue;
01124 
01125       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
01126         // One of the PHIs in our set is (optimistically) ok.
01127         if (LoadUsingPHIs.count(InPN))
01128           continue;
01129         return false;
01130       }
01131 
01132       // Load from GV is ok.
01133       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
01134         if (LI->getOperand(0) == GV)
01135           continue;
01136 
01137       // UNDEF? NULL?
01138 
01139       // Anything else is rejected.
01140       return false;
01141     }
01142   }
01143 
01144   return true;
01145 }
01146 
01147 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
01148                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
01149                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
01150   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
01151 
01152   if (FieldNo >= FieldVals.size())
01153     FieldVals.resize(FieldNo+1);
01154 
01155   // If we already have this value, just reuse the previously scalarized
01156   // version.
01157   if (Value *FieldVal = FieldVals[FieldNo])
01158     return FieldVal;
01159 
01160   // Depending on what instruction this is, we have several cases.
01161   Value *Result;
01162   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
01163     // This is a scalarized version of the load from the global.  Just create
01164     // a new Load of the scalarized global.
01165     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
01166                                            InsertedScalarizedValues,
01167                                            PHIsToRewrite),
01168                           LI->getName()+".f"+Twine(FieldNo), LI);
01169   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
01170     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
01171     // field.
01172 
01173     PointerType *PTy = cast<PointerType>(PN->getType());
01174     StructType *ST = cast<StructType>(PTy->getElementType());
01175 
01176     unsigned AS = PTy->getAddressSpace();
01177     PHINode *NewPN =
01178       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
01179                      PN->getNumIncomingValues(),
01180                      PN->getName()+".f"+Twine(FieldNo), PN);
01181     Result = NewPN;
01182     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
01183   } else {
01184     llvm_unreachable("Unknown usable value");
01185   }
01186 
01187   return FieldVals[FieldNo] = Result;
01188 }
01189 
01190 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
01191 /// the load, rewrite the derived value to use the HeapSRoA'd load.
01192 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
01193              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
01194                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
01195   // If this is a comparison against null, handle it.
01196   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
01197     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
01198     // If we have a setcc of the loaded pointer, we can use a setcc of any
01199     // field.
01200     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
01201                                    InsertedScalarizedValues, PHIsToRewrite);
01202 
01203     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
01204                               Constant::getNullValue(NPtr->getType()),
01205                               SCI->getName());
01206     SCI->replaceAllUsesWith(New);
01207     SCI->eraseFromParent();
01208     return;
01209   }
01210 
01211   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
01212   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
01213     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
01214            && "Unexpected GEPI!");
01215 
01216     // Load the pointer for this field.
01217     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
01218     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
01219                                      InsertedScalarizedValues, PHIsToRewrite);
01220 
01221     // Create the new GEP idx vector.
01222     SmallVector<Value*, 8> GEPIdx;
01223     GEPIdx.push_back(GEPI->getOperand(1));
01224     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
01225 
01226     Value *NGEPI = GetElementPtrInst::Create(NewPtr, GEPIdx,
01227                                              GEPI->getName(), GEPI);
01228     GEPI->replaceAllUsesWith(NGEPI);
01229     GEPI->eraseFromParent();
01230     return;
01231   }
01232 
01233   // Recursively transform the users of PHI nodes.  This will lazily create the
01234   // PHIs that are needed for individual elements.  Keep track of what PHIs we
01235   // see in InsertedScalarizedValues so that we don't get infinite loops (very
01236   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
01237   // already been seen first by another load, so its uses have already been
01238   // processed.
01239   PHINode *PN = cast<PHINode>(LoadUser);
01240   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
01241                                               std::vector<Value*>())).second)
01242     return;
01243 
01244   // If this is the first time we've seen this PHI, recursively process all
01245   // users.
01246   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
01247     Instruction *User = cast<Instruction>(*UI++);
01248     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
01249   }
01250 }
01251 
01252 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
01253 /// is a value loaded from the global.  Eliminate all uses of Ptr, making them
01254 /// use FieldGlobals instead.  All uses of loaded values satisfy
01255 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
01256 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
01257                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
01258                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
01259   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
01260     Instruction *User = cast<Instruction>(*UI++);
01261     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
01262   }
01263 
01264   if (Load->use_empty()) {
01265     Load->eraseFromParent();
01266     InsertedScalarizedValues.erase(Load);
01267   }
01268 }
01269 
01270 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
01271 /// it up into multiple allocations of arrays of the fields.
01272 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
01273                                             Value *NElems, const DataLayout *DL,
01274                                             const TargetLibraryInfo *TLI) {
01275   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
01276   Type *MAT = getMallocAllocatedType(CI, TLI);
01277   StructType *STy = cast<StructType>(MAT);
01278 
01279   // There is guaranteed to be at least one use of the malloc (storing
01280   // it into GV).  If there are other uses, change them to be uses of
01281   // the global to simplify later code.  This also deletes the store
01282   // into GV.
01283   ReplaceUsesOfMallocWithGlobal(CI, GV);
01284 
01285   // Okay, at this point, there are no users of the malloc.  Insert N
01286   // new mallocs at the same place as CI, and N globals.
01287   std::vector<Value*> FieldGlobals;
01288   std::vector<Value*> FieldMallocs;
01289 
01290   unsigned AS = GV->getType()->getPointerAddressSpace();
01291   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
01292     Type *FieldTy = STy->getElementType(FieldNo);
01293     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
01294 
01295     GlobalVariable *NGV =
01296       new GlobalVariable(*GV->getParent(),
01297                          PFieldTy, false, GlobalValue::InternalLinkage,
01298                          Constant::getNullValue(PFieldTy),
01299                          GV->getName() + ".f" + Twine(FieldNo), GV,
01300                          GV->getThreadLocalMode());
01301     FieldGlobals.push_back(NGV);
01302 
01303     unsigned TypeSize = DL->getTypeAllocSize(FieldTy);
01304     if (StructType *ST = dyn_cast<StructType>(FieldTy))
01305       TypeSize = DL->getStructLayout(ST)->getSizeInBytes();
01306     Type *IntPtrTy = DL->getIntPtrType(CI->getType());
01307     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
01308                                         ConstantInt::get(IntPtrTy, TypeSize),
01309                                         NElems, nullptr,
01310                                         CI->getName() + ".f" + Twine(FieldNo));
01311     FieldMallocs.push_back(NMI);
01312     new StoreInst(NMI, NGV, CI);
01313   }
01314 
01315   // The tricky aspect of this transformation is handling the case when malloc
01316   // fails.  In the original code, malloc failing would set the result pointer
01317   // of malloc to null.  In this case, some mallocs could succeed and others
01318   // could fail.  As such, we emit code that looks like this:
01319   //    F0 = malloc(field0)
01320   //    F1 = malloc(field1)
01321   //    F2 = malloc(field2)
01322   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
01323   //      if (F0) { free(F0); F0 = 0; }
01324   //      if (F1) { free(F1); F1 = 0; }
01325   //      if (F2) { free(F2); F2 = 0; }
01326   //    }
01327   // The malloc can also fail if its argument is too large.
01328   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
01329   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
01330                                   ConstantZero, "isneg");
01331   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
01332     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
01333                              Constant::getNullValue(FieldMallocs[i]->getType()),
01334                                "isnull");
01335     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
01336   }
01337 
01338   // Split the basic block at the old malloc.
01339   BasicBlock *OrigBB = CI->getParent();
01340   BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
01341 
01342   // Create the block to check the first condition.  Put all these blocks at the
01343   // end of the function as they are unlikely to be executed.
01344   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
01345                                                 "malloc_ret_null",
01346                                                 OrigBB->getParent());
01347 
01348   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
01349   // branch on RunningOr.
01350   OrigBB->getTerminator()->eraseFromParent();
01351   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
01352 
01353   // Within the NullPtrBlock, we need to emit a comparison and branch for each
01354   // pointer, because some may be null while others are not.
01355   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
01356     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
01357     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
01358                               Constant::getNullValue(GVVal->getType()));
01359     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
01360                                                OrigBB->getParent());
01361     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
01362                                                OrigBB->getParent());
01363     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
01364                                          Cmp, NullPtrBlock);
01365 
01366     // Fill in FreeBlock.
01367     CallInst::CreateFree(GVVal, BI);
01368     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
01369                   FreeBlock);
01370     BranchInst::Create(NextBlock, FreeBlock);
01371 
01372     NullPtrBlock = NextBlock;
01373   }
01374 
01375   BranchInst::Create(ContBB, NullPtrBlock);
01376 
01377   // CI is no longer needed, remove it.
01378   CI->eraseFromParent();
01379 
01380   /// InsertedScalarizedLoads - As we process loads, if we can't immediately
01381   /// update all uses of the load, keep track of what scalarized loads are
01382   /// inserted for a given load.
01383   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
01384   InsertedScalarizedValues[GV] = FieldGlobals;
01385 
01386   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
01387 
01388   // Okay, the malloc site is completely handled.  All of the uses of GV are now
01389   // loads, and all uses of those loads are simple.  Rewrite them to use loads
01390   // of the per-field globals instead.
01391   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
01392     Instruction *User = cast<Instruction>(*UI++);
01393 
01394     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
01395       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
01396       continue;
01397     }
01398 
01399     // Must be a store of null.
01400     StoreInst *SI = cast<StoreInst>(User);
01401     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
01402            "Unexpected heap-sra user!");
01403 
01404     // Insert a store of null into each global.
01405     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
01406       PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
01407       Constant *Null = Constant::getNullValue(PT->getElementType());
01408       new StoreInst(Null, FieldGlobals[i], SI);
01409     }
01410     // Erase the original store.
01411     SI->eraseFromParent();
01412   }
01413 
01414   // While we have PHIs that are interesting to rewrite, do it.
01415   while (!PHIsToRewrite.empty()) {
01416     PHINode *PN = PHIsToRewrite.back().first;
01417     unsigned FieldNo = PHIsToRewrite.back().second;
01418     PHIsToRewrite.pop_back();
01419     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
01420     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
01421 
01422     // Add all the incoming values.  This can materialize more phis.
01423     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
01424       Value *InVal = PN->getIncomingValue(i);
01425       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
01426                                PHIsToRewrite);
01427       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
01428     }
01429   }
01430 
01431   // Drop all inter-phi links and any loads that made it this far.
01432   for (DenseMap<Value*, std::vector<Value*> >::iterator
01433        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
01434        I != E; ++I) {
01435     if (PHINode *PN = dyn_cast<PHINode>(I->first))
01436       PN->dropAllReferences();
01437     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
01438       LI->dropAllReferences();
01439   }
01440 
01441   // Delete all the phis and loads now that inter-references are dead.
01442   for (DenseMap<Value*, std::vector<Value*> >::iterator
01443        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
01444        I != E; ++I) {
01445     if (PHINode *PN = dyn_cast<PHINode>(I->first))
01446       PN->eraseFromParent();
01447     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
01448       LI->eraseFromParent();
01449   }
01450 
01451   // The old global is now dead, remove it.
01452   GV->eraseFromParent();
01453 
01454   ++NumHeapSRA;
01455   return cast<GlobalVariable>(FieldGlobals[0]);
01456 }
01457 
01458 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
01459 /// pointer global variable with a single value stored it that is a malloc or
01460 /// cast of malloc.
01461 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
01462                                                CallInst *CI,
01463                                                Type *AllocTy,
01464                                                AtomicOrdering Ordering,
01465                                                Module::global_iterator &GVI,
01466                                                const DataLayout *DL,
01467                                                TargetLibraryInfo *TLI) {
01468   if (!DL)
01469     return false;
01470 
01471   // If this is a malloc of an abstract type, don't touch it.
01472   if (!AllocTy->isSized())
01473     return false;
01474 
01475   // We can't optimize this global unless all uses of it are *known* to be
01476   // of the malloc value, not of the null initializer value (consider a use
01477   // that compares the global's value against zero to see if the malloc has
01478   // been reached).  To do this, we check to see if all uses of the global
01479   // would trap if the global were null: this proves that they must all
01480   // happen after the malloc.
01481   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
01482     return false;
01483 
01484   // We can't optimize this if the malloc itself is used in a complex way,
01485   // for example, being stored into multiple globals.  This allows the
01486   // malloc to be stored into the specified global, loaded icmp'd, and
01487   // GEP'd.  These are all things we could transform to using the global
01488   // for.
01489   SmallPtrSet<const PHINode*, 8> PHIs;
01490   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
01491     return false;
01492 
01493   // If we have a global that is only initialized with a fixed size malloc,
01494   // transform the program to use global memory instead of malloc'd memory.
01495   // This eliminates dynamic allocation, avoids an indirection accessing the
01496   // data, and exposes the resultant global to further GlobalOpt.
01497   // We cannot optimize the malloc if we cannot determine malloc array size.
01498   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
01499   if (!NElems)
01500     return false;
01501 
01502   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
01503     // Restrict this transformation to only working on small allocations
01504     // (2048 bytes currently), as we don't want to introduce a 16M global or
01505     // something.
01506     if (NElements->getZExtValue() * DL->getTypeAllocSize(AllocTy) < 2048) {
01507       GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
01508       return true;
01509     }
01510 
01511   // If the allocation is an array of structures, consider transforming this
01512   // into multiple malloc'd arrays, one for each field.  This is basically
01513   // SRoA for malloc'd memory.
01514 
01515   if (Ordering != NotAtomic)
01516     return false;
01517 
01518   // If this is an allocation of a fixed size array of structs, analyze as a
01519   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
01520   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
01521     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
01522       AllocTy = AT->getElementType();
01523 
01524   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
01525   if (!AllocSTy)
01526     return false;
01527 
01528   // This the structure has an unreasonable number of fields, leave it
01529   // alone.
01530   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
01531       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
01532 
01533     // If this is a fixed size array, transform the Malloc to be an alloc of
01534     // structs.  malloc [100 x struct],1 -> malloc struct, 100
01535     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
01536       Type *IntPtrTy = DL->getIntPtrType(CI->getType());
01537       unsigned TypeSize = DL->getStructLayout(AllocSTy)->getSizeInBytes();
01538       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
01539       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
01540       Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
01541                                                    AllocSize, NumElements,
01542                                                    nullptr, CI->getName());
01543       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
01544       CI->replaceAllUsesWith(Cast);
01545       CI->eraseFromParent();
01546       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
01547         CI = cast<CallInst>(BCI->getOperand(0));
01548       else
01549         CI = cast<CallInst>(Malloc);
01550     }
01551 
01552     GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true),
01553                                DL, TLI);
01554     return true;
01555   }
01556 
01557   return false;
01558 }
01559 
01560 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
01561 // that only one value (besides its initializer) is ever stored to the global.
01562 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
01563                                      AtomicOrdering Ordering,
01564                                      Module::global_iterator &GVI,
01565                                      const DataLayout *DL,
01566                                      TargetLibraryInfo *TLI) {
01567   // Ignore no-op GEPs and bitcasts.
01568   StoredOnceVal = StoredOnceVal->stripPointerCasts();
01569 
01570   // If we are dealing with a pointer global that is initialized to null and
01571   // only has one (non-null) value stored into it, then we can optimize any
01572   // users of the loaded value (often calls and loads) that would trap if the
01573   // value was null.
01574   if (GV->getInitializer()->getType()->isPointerTy() &&
01575       GV->getInitializer()->isNullValue()) {
01576     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
01577       if (GV->getInitializer()->getType() != SOVC->getType())
01578         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
01579 
01580       // Optimize away any trapping uses of the loaded value.
01581       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
01582         return true;
01583     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
01584       Type *MallocType = getMallocAllocatedType(CI, TLI);
01585       if (MallocType &&
01586           TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
01587                                              DL, TLI))
01588         return true;
01589     }
01590   }
01591 
01592   return false;
01593 }
01594 
01595 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
01596 /// two values ever stored into GV are its initializer and OtherVal.  See if we
01597 /// can shrink the global into a boolean and select between the two values
01598 /// whenever it is used.  This exposes the values to other scalar optimizations.
01599 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
01600   Type *GVElType = GV->getType()->getElementType();
01601 
01602   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
01603   // an FP value, pointer or vector, don't do this optimization because a select
01604   // between them is very expensive and unlikely to lead to later
01605   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
01606   // where v1 and v2 both require constant pool loads, a big loss.
01607   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
01608       GVElType->isFloatingPointTy() ||
01609       GVElType->isPointerTy() || GVElType->isVectorTy())
01610     return false;
01611 
01612   // Walk the use list of the global seeing if all the uses are load or store.
01613   // If there is anything else, bail out.
01614   for (User *U : GV->users())
01615     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
01616       return false;
01617 
01618   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
01619 
01620   // Create the new global, initializing it to false.
01621   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
01622                                              false,
01623                                              GlobalValue::InternalLinkage,
01624                                         ConstantInt::getFalse(GV->getContext()),
01625                                              GV->getName()+".b",
01626                                              GV->getThreadLocalMode(),
01627                                              GV->getType()->getAddressSpace());
01628   GV->getParent()->getGlobalList().insert(GV, NewGV);
01629 
01630   Constant *InitVal = GV->getInitializer();
01631   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
01632          "No reason to shrink to bool!");
01633 
01634   // If initialized to zero and storing one into the global, we can use a cast
01635   // instead of a select to synthesize the desired value.
01636   bool IsOneZero = false;
01637   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
01638     IsOneZero = InitVal->isNullValue() && CI->isOne();
01639 
01640   while (!GV->use_empty()) {
01641     Instruction *UI = cast<Instruction>(GV->user_back());
01642     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
01643       // Change the store into a boolean store.
01644       bool StoringOther = SI->getOperand(0) == OtherVal;
01645       // Only do this if we weren't storing a loaded value.
01646       Value *StoreVal;
01647       if (StoringOther || SI->getOperand(0) == InitVal) {
01648         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
01649                                     StoringOther);
01650       } else {
01651         // Otherwise, we are storing a previously loaded copy.  To do this,
01652         // change the copy from copying the original value to just copying the
01653         // bool.
01654         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
01655 
01656         // If we've already replaced the input, StoredVal will be a cast or
01657         // select instruction.  If not, it will be a load of the original
01658         // global.
01659         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
01660           assert(LI->getOperand(0) == GV && "Not a copy!");
01661           // Insert a new load, to preserve the saved value.
01662           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
01663                                   LI->getOrdering(), LI->getSynchScope(), LI);
01664         } else {
01665           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
01666                  "This is not a form that we understand!");
01667           StoreVal = StoredVal->getOperand(0);
01668           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
01669         }
01670       }
01671       new StoreInst(StoreVal, NewGV, false, 0,
01672                     SI->getOrdering(), SI->getSynchScope(), SI);
01673     } else {
01674       // Change the load into a load of bool then a select.
01675       LoadInst *LI = cast<LoadInst>(UI);
01676       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
01677                                    LI->getOrdering(), LI->getSynchScope(), LI);
01678       Value *NSI;
01679       if (IsOneZero)
01680         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
01681       else
01682         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
01683       NSI->takeName(LI);
01684       LI->replaceAllUsesWith(NSI);
01685     }
01686     UI->eraseFromParent();
01687   }
01688 
01689   // Retain the name of the old global variable. People who are debugging their
01690   // programs may expect these variables to be named the same.
01691   NewGV->takeName(GV);
01692   GV->eraseFromParent();
01693   return true;
01694 }
01695 
01696 
01697 /// ProcessGlobal - Analyze the specified global variable and optimize it if
01698 /// possible.  If we make a change, return true.
01699 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
01700                               Module::global_iterator &GVI) {
01701   // Do more involved optimizations if the global is internal.
01702   GV->removeDeadConstantUsers();
01703 
01704   if (GV->use_empty()) {
01705     DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
01706     GV->eraseFromParent();
01707     ++NumDeleted;
01708     return true;
01709   }
01710 
01711   if (!GV->hasLocalLinkage())
01712     return false;
01713 
01714   GlobalStatus GS;
01715 
01716   if (GlobalStatus::analyzeGlobal(GV, GS))
01717     return false;
01718 
01719   if (!GS.IsCompared && !GV->hasUnnamedAddr()) {
01720     GV->setUnnamedAddr(true);
01721     NumUnnamed++;
01722   }
01723 
01724   if (GV->isConstant() || !GV->hasInitializer())
01725     return false;
01726 
01727   return ProcessInternalGlobal(GV, GVI, GS);
01728 }
01729 
01730 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
01731 /// it if possible.  If we make a change, return true.
01732 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
01733                                       Module::global_iterator &GVI,
01734                                       const GlobalStatus &GS) {
01735   // If this is a first class global and has only one accessing function
01736   // and this function is main (which we know is not recursive), we replace
01737   // the global with a local alloca in this function.
01738   //
01739   // NOTE: It doesn't make sense to promote non-single-value types since we
01740   // are just replacing static memory to stack memory.
01741   //
01742   // If the global is in different address space, don't bring it to stack.
01743   if (!GS.HasMultipleAccessingFunctions &&
01744       GS.AccessingFunction && !GS.HasNonInstructionUser &&
01745       GV->getType()->getElementType()->isSingleValueType() &&
01746       GS.AccessingFunction->getName() == "main" &&
01747       GS.AccessingFunction->hasExternalLinkage() &&
01748       GV->getType()->getAddressSpace() == 0) {
01749     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
01750     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
01751                                                    ->getEntryBlock().begin());
01752     Type *ElemTy = GV->getType()->getElementType();
01753     // FIXME: Pass Global's alignment when globals have alignment
01754     AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr,
01755                                         GV->getName(), &FirstI);
01756     if (!isa<UndefValue>(GV->getInitializer()))
01757       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
01758 
01759     GV->replaceAllUsesWith(Alloca);
01760     GV->eraseFromParent();
01761     ++NumLocalized;
01762     return true;
01763   }
01764 
01765   // If the global is never loaded (but may be stored to), it is dead.
01766   // Delete it now.
01767   if (!GS.IsLoaded) {
01768     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
01769 
01770     bool Changed;
01771     if (isLeakCheckerRoot(GV)) {
01772       // Delete any constant stores to the global.
01773       Changed = CleanupPointerRootUsers(GV, TLI);
01774     } else {
01775       // Delete any stores we can find to the global.  We may not be able to
01776       // make it completely dead though.
01777       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
01778     }
01779 
01780     // If the global is dead now, delete it.
01781     if (GV->use_empty()) {
01782       GV->eraseFromParent();
01783       ++NumDeleted;
01784       Changed = true;
01785     }
01786     return Changed;
01787 
01788   } else if (GS.StoredType <= GlobalStatus::InitializerStored) {
01789     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
01790     GV->setConstant(true);
01791 
01792     // Clean up any obviously simplifiable users now.
01793     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
01794 
01795     // If the global is dead now, just nuke it.
01796     if (GV->use_empty()) {
01797       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
01798             << "all users and delete global!\n");
01799       GV->eraseFromParent();
01800       ++NumDeleted;
01801     }
01802 
01803     ++NumMarked;
01804     return true;
01805   } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
01806     if (DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>()) {
01807       const DataLayout &DL = DLP->getDataLayout();
01808       if (GlobalVariable *FirstNewGV = SRAGlobal(GV, DL)) {
01809         GVI = FirstNewGV;  // Don't skip the newly produced globals!
01810         return true;
01811       }
01812     }
01813   } else if (GS.StoredType == GlobalStatus::StoredOnce) {
01814     // If the initial value for the global was an undef value, and if only
01815     // one other value was stored into it, we can just change the
01816     // initializer to be the stored value, then delete all stores to the
01817     // global.  This allows us to mark it constant.
01818     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
01819       if (isa<UndefValue>(GV->getInitializer())) {
01820         // Change the initial value here.
01821         GV->setInitializer(SOVConstant);
01822 
01823         // Clean up any obviously simplifiable users now.
01824         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
01825 
01826         if (GV->use_empty()) {
01827           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
01828                        << "simplify all users and delete global!\n");
01829           GV->eraseFromParent();
01830           ++NumDeleted;
01831         } else {
01832           GVI = GV;
01833         }
01834         ++NumSubstitute;
01835         return true;
01836       }
01837 
01838     // Try to optimize globals based on the knowledge that only one value
01839     // (besides its initializer) is ever stored to the global.
01840     if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
01841                                  DL, TLI))
01842       return true;
01843 
01844     // Otherwise, if the global was not a boolean, we can shrink it to be a
01845     // boolean.
01846     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
01847       if (GS.Ordering == NotAtomic) {
01848         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
01849           ++NumShrunkToBool;
01850           return true;
01851         }
01852       }
01853     }
01854   }
01855 
01856   return false;
01857 }
01858 
01859 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
01860 /// function, changing them to FastCC.
01861 static void ChangeCalleesToFastCall(Function *F) {
01862   for (User *U : F->users()) {
01863     if (isa<BlockAddress>(U))
01864       continue;
01865     CallSite CS(cast<Instruction>(U));
01866     CS.setCallingConv(CallingConv::Fast);
01867   }
01868 }
01869 
01870 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
01871   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
01872     unsigned Index = Attrs.getSlotIndex(i);
01873     if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
01874       continue;
01875 
01876     // There can be only one.
01877     return Attrs.removeAttribute(C, Index, Attribute::Nest);
01878   }
01879 
01880   return Attrs;
01881 }
01882 
01883 static void RemoveNestAttribute(Function *F) {
01884   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
01885   for (User *U : F->users()) {
01886     if (isa<BlockAddress>(U))
01887       continue;
01888     CallSite CS(cast<Instruction>(U));
01889     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
01890   }
01891 }
01892 
01893 /// Return true if this is a calling convention that we'd like to change.  The
01894 /// idea here is that we don't want to mess with the convention if the user
01895 /// explicitly requested something with performance implications like coldcc,
01896 /// GHC, or anyregcc.
01897 static bool isProfitableToMakeFastCC(Function *F) {
01898   CallingConv::ID CC = F->getCallingConv();
01899   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
01900   return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
01901 }
01902 
01903 bool GlobalOpt::OptimizeFunctions(Module &M) {
01904   bool Changed = false;
01905   // Optimize functions.
01906   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
01907     Function *F = FI++;
01908     // Functions without names cannot be referenced outside this module.
01909     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
01910       F->setLinkage(GlobalValue::InternalLinkage);
01911     F->removeDeadConstantUsers();
01912     if (F->isDefTriviallyDead()) {
01913       F->eraseFromParent();
01914       Changed = true;
01915       ++NumFnDeleted;
01916     } else if (F->hasLocalLinkage()) {
01917       if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
01918           !F->hasAddressTaken()) {
01919         // If this function has a calling convention worth changing, is not a
01920         // varargs function, and is only called directly, promote it to use the
01921         // Fast calling convention.
01922         F->setCallingConv(CallingConv::Fast);
01923         ChangeCalleesToFastCall(F);
01924         ++NumFastCallFns;
01925         Changed = true;
01926       }
01927 
01928       if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
01929           !F->hasAddressTaken()) {
01930         // The function is not used by a trampoline intrinsic, so it is safe
01931         // to remove the 'nest' attribute.
01932         RemoveNestAttribute(F);
01933         ++NumNestRemoved;
01934         Changed = true;
01935       }
01936     }
01937   }
01938   return Changed;
01939 }
01940 
01941 bool GlobalOpt::OptimizeGlobalVars(Module &M) {
01942   bool Changed = false;
01943 
01944   SmallSet<const Comdat *, 8> NotDiscardableComdats;
01945   for (const GlobalVariable &GV : M.globals())
01946     if (const Comdat *C = GV.getComdat())
01947       if (!GV.isDiscardableIfUnused())
01948         NotDiscardableComdats.insert(C);
01949 
01950   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
01951        GVI != E; ) {
01952     GlobalVariable *GV = GVI++;
01953     // Global variables without names cannot be referenced outside this module.
01954     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
01955       GV->setLinkage(GlobalValue::InternalLinkage);
01956     // Simplify the initializer.
01957     if (GV->hasInitializer())
01958       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
01959         Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
01960         if (New && New != CE)
01961           GV->setInitializer(New);
01962       }
01963 
01964     if (GV->isDiscardableIfUnused()) {
01965       if (const Comdat *C = GV->getComdat())
01966         if (NotDiscardableComdats.count(C))
01967           continue;
01968       Changed |= ProcessGlobal(GV, GVI);
01969     }
01970   }
01971   return Changed;
01972 }
01973 
01974 static inline bool
01975 isSimpleEnoughValueToCommit(Constant *C,
01976                             SmallPtrSetImpl<Constant*> &SimpleConstants,
01977                             const DataLayout *DL);
01978 
01979 
01980 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be
01981 /// handled by the code generator.  We don't want to generate something like:
01982 ///   void *X = &X/42;
01983 /// because the code generator doesn't have a relocation that can handle that.
01984 ///
01985 /// This function should be called if C was not found (but just got inserted)
01986 /// in SimpleConstants to avoid having to rescan the same constants all the
01987 /// time.
01988 static bool isSimpleEnoughValueToCommitHelper(Constant *C,
01989                                    SmallPtrSetImpl<Constant*> &SimpleConstants,
01990                                    const DataLayout *DL) {
01991   // Simple global addresses are supported, do not allow dllimport or
01992   // thread-local globals.
01993   if (auto *GV = dyn_cast<GlobalValue>(C))
01994     return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
01995 
01996   // Simple integer, undef, constant aggregate zero, etc are all supported.
01997   if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
01998     return true;
01999 
02000   // Aggregate values are safe if all their elements are.
02001   if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
02002       isa<ConstantVector>(C)) {
02003     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
02004       Constant *Op = cast<Constant>(C->getOperand(i));
02005       if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, DL))
02006         return false;
02007     }
02008     return true;
02009   }
02010 
02011   // We don't know exactly what relocations are allowed in constant expressions,
02012   // so we allow &global+constantoffset, which is safe and uniformly supported
02013   // across targets.
02014   ConstantExpr *CE = cast<ConstantExpr>(C);
02015   switch (CE->getOpcode()) {
02016   case Instruction::BitCast:
02017     // Bitcast is fine if the casted value is fine.
02018     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
02019 
02020   case Instruction::IntToPtr:
02021   case Instruction::PtrToInt:
02022     // int <=> ptr is fine if the int type is the same size as the
02023     // pointer type.
02024     if (!DL || DL->getTypeSizeInBits(CE->getType()) !=
02025                DL->getTypeSizeInBits(CE->getOperand(0)->getType()))
02026       return false;
02027     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
02028 
02029   // GEP is fine if it is simple + constant offset.
02030   case Instruction::GetElementPtr:
02031     for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
02032       if (!isa<ConstantInt>(CE->getOperand(i)))
02033         return false;
02034     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
02035 
02036   case Instruction::Add:
02037     // We allow simple+cst.
02038     if (!isa<ConstantInt>(CE->getOperand(1)))
02039       return false;
02040     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
02041   }
02042   return false;
02043 }
02044 
02045 static inline bool
02046 isSimpleEnoughValueToCommit(Constant *C,
02047                             SmallPtrSetImpl<Constant*> &SimpleConstants,
02048                             const DataLayout *DL) {
02049   // If we already checked this constant, we win.
02050   if (!SimpleConstants.insert(C)) return true;
02051   // Check the constant.
02052   return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
02053 }
02054 
02055 
02056 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
02057 /// enough for us to understand.  In particular, if it is a cast to anything
02058 /// other than from one pointer type to another pointer type, we punt.
02059 /// We basically just support direct accesses to globals and GEP's of
02060 /// globals.  This should be kept up to date with CommitValueTo.
02061 static bool isSimpleEnoughPointerToCommit(Constant *C) {
02062   // Conservatively, avoid aggregate types. This is because we don't
02063   // want to worry about them partially overlapping other stores.
02064   if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
02065     return false;
02066 
02067   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
02068     // Do not allow weak/*_odr/linkonce linkage or external globals.
02069     return GV->hasUniqueInitializer();
02070 
02071   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
02072     // Handle a constantexpr gep.
02073     if (CE->getOpcode() == Instruction::GetElementPtr &&
02074         isa<GlobalVariable>(CE->getOperand(0)) &&
02075         cast<GEPOperator>(CE)->isInBounds()) {
02076       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
02077       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
02078       // external globals.
02079       if (!GV->hasUniqueInitializer())
02080         return false;
02081 
02082       // The first index must be zero.
02083       ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
02084       if (!CI || !CI->isZero()) return false;
02085 
02086       // The remaining indices must be compile-time known integers within the
02087       // notional bounds of the corresponding static array types.
02088       if (!CE->isGEPWithNoNotionalOverIndexing())
02089         return false;
02090 
02091       return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
02092 
02093     // A constantexpr bitcast from a pointer to another pointer is a no-op,
02094     // and we know how to evaluate it by moving the bitcast from the pointer
02095     // operand to the value operand.
02096     } else if (CE->getOpcode() == Instruction::BitCast &&
02097                isa<GlobalVariable>(CE->getOperand(0))) {
02098       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
02099       // external globals.
02100       return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
02101     }
02102   }
02103 
02104   return false;
02105 }
02106 
02107 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
02108 /// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
02109 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
02110 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
02111                                    ConstantExpr *Addr, unsigned OpNo) {
02112   // Base case of the recursion.
02113   if (OpNo == Addr->getNumOperands()) {
02114     assert(Val->getType() == Init->getType() && "Type mismatch!");
02115     return Val;
02116   }
02117 
02118   SmallVector<Constant*, 32> Elts;
02119   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
02120     // Break up the constant into its elements.
02121     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
02122       Elts.push_back(Init->getAggregateElement(i));
02123 
02124     // Replace the element that we are supposed to.
02125     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
02126     unsigned Idx = CU->getZExtValue();
02127     assert(Idx < STy->getNumElements() && "Struct index out of range!");
02128     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
02129 
02130     // Return the modified struct.
02131     return ConstantStruct::get(STy, Elts);
02132   }
02133 
02134   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
02135   SequentialType *InitTy = cast<SequentialType>(Init->getType());
02136 
02137   uint64_t NumElts;
02138   if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
02139     NumElts = ATy->getNumElements();
02140   else
02141     NumElts = InitTy->getVectorNumElements();
02142 
02143   // Break up the array into elements.
02144   for (uint64_t i = 0, e = NumElts; i != e; ++i)
02145     Elts.push_back(Init->getAggregateElement(i));
02146 
02147   assert(CI->getZExtValue() < NumElts);
02148   Elts[CI->getZExtValue()] =
02149     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
02150 
02151   if (Init->getType()->isArrayTy())
02152     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
02153   return ConstantVector::get(Elts);
02154 }
02155 
02156 /// CommitValueTo - We have decided that Addr (which satisfies the predicate
02157 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
02158 static void CommitValueTo(Constant *Val, Constant *Addr) {
02159   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
02160     assert(GV->hasInitializer());
02161     GV->setInitializer(Val);
02162     return;
02163   }
02164 
02165   ConstantExpr *CE = cast<ConstantExpr>(Addr);
02166   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
02167   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
02168 }
02169 
02170 namespace {
02171 
02172 /// Evaluator - This class evaluates LLVM IR, producing the Constant
02173 /// representing each SSA instruction.  Changes to global variables are stored
02174 /// in a mapping that can be iterated over after the evaluation is complete.
02175 /// Once an evaluation call fails, the evaluation object should not be reused.
02176 class Evaluator {
02177 public:
02178   Evaluator(const DataLayout *DL, const TargetLibraryInfo *TLI)
02179     : DL(DL), TLI(TLI) {
02180     ValueStack.emplace_back();
02181   }
02182 
02183   ~Evaluator() {
02184     for (auto &Tmp : AllocaTmps)
02185       // If there are still users of the alloca, the program is doing something
02186       // silly, e.g. storing the address of the alloca somewhere and using it
02187       // later.  Since this is undefined, we'll just make it be null.
02188       if (!Tmp->use_empty())
02189         Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
02190   }
02191 
02192   /// EvaluateFunction - Evaluate a call to function F, returning true if
02193   /// successful, false if we can't evaluate it.  ActualArgs contains the formal
02194   /// arguments for the function.
02195   bool EvaluateFunction(Function *F, Constant *&RetVal,
02196                         const SmallVectorImpl<Constant*> &ActualArgs);
02197 
02198   /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
02199   /// successful, false if we can't evaluate it.  NewBB returns the next BB that
02200   /// control flows into, or null upon return.
02201   bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
02202 
02203   Constant *getVal(Value *V) {
02204     if (Constant *CV = dyn_cast<Constant>(V)) return CV;
02205     Constant *R = ValueStack.back().lookup(V);
02206     assert(R && "Reference to an uncomputed value!");
02207     return R;
02208   }
02209 
02210   void setVal(Value *V, Constant *C) {
02211     ValueStack.back()[V] = C;
02212   }
02213 
02214   const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
02215     return MutatedMemory;
02216   }
02217 
02218   const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
02219     return Invariants;
02220   }
02221 
02222 private:
02223   Constant *ComputeLoadResult(Constant *P);
02224 
02225   /// ValueStack - As we compute SSA register values, we store their contents
02226   /// here. The back of the deque contains the current function and the stack
02227   /// contains the values in the calling frames.
02228   std::deque<DenseMap<Value*, Constant*>> ValueStack;
02229 
02230   /// CallStack - This is used to detect recursion.  In pathological situations
02231   /// we could hit exponential behavior, but at least there is nothing
02232   /// unbounded.
02233   SmallVector<Function*, 4> CallStack;
02234 
02235   /// MutatedMemory - For each store we execute, we update this map.  Loads
02236   /// check this to get the most up-to-date value.  If evaluation is successful,
02237   /// this state is committed to the process.
02238   DenseMap<Constant*, Constant*> MutatedMemory;
02239 
02240   /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
02241   /// to represent its body.  This vector is needed so we can delete the
02242   /// temporary globals when we are done.
02243   SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
02244 
02245   /// Invariants - These global variables have been marked invariant by the
02246   /// static constructor.
02247   SmallPtrSet<GlobalVariable*, 8> Invariants;
02248 
02249   /// SimpleConstants - These are constants we have checked and know to be
02250   /// simple enough to live in a static initializer of a global.
02251   SmallPtrSet<Constant*, 8> SimpleConstants;
02252 
02253   const DataLayout *DL;
02254   const TargetLibraryInfo *TLI;
02255 };
02256 
02257 }  // anonymous namespace
02258 
02259 /// ComputeLoadResult - Return the value that would be computed by a load from
02260 /// P after the stores reflected by 'memory' have been performed.  If we can't
02261 /// decide, return null.
02262 Constant *Evaluator::ComputeLoadResult(Constant *P) {
02263   // If this memory location has been recently stored, use the stored value: it
02264   // is the most up-to-date.
02265   DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
02266   if (I != MutatedMemory.end()) return I->second;
02267 
02268   // Access it.
02269   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
02270     if (GV->hasDefinitiveInitializer())
02271       return GV->getInitializer();
02272     return nullptr;
02273   }
02274 
02275   // Handle a constantexpr getelementptr.
02276   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
02277     if (CE->getOpcode() == Instruction::GetElementPtr &&
02278         isa<GlobalVariable>(CE->getOperand(0))) {
02279       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
02280       if (GV->hasDefinitiveInitializer())
02281         return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
02282     }
02283 
02284   return nullptr;  // don't know how to evaluate.
02285 }
02286 
02287 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
02288 /// successful, false if we can't evaluate it.  NewBB returns the next BB that
02289 /// control flows into, or null upon return.
02290 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
02291                               BasicBlock *&NextBB) {
02292   // This is the main evaluation loop.
02293   while (1) {
02294     Constant *InstResult = nullptr;
02295 
02296     DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
02297 
02298     if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
02299       if (!SI->isSimple()) {
02300         DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
02301         return false;  // no volatile/atomic accesses.
02302       }
02303       Constant *Ptr = getVal(SI->getOperand(1));
02304       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
02305         DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
02306         Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
02307         DEBUG(dbgs() << "; To: " << *Ptr << "\n");
02308       }
02309       if (!isSimpleEnoughPointerToCommit(Ptr)) {
02310         // If this is too complex for us to commit, reject it.
02311         DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
02312         return false;
02313       }
02314 
02315       Constant *Val = getVal(SI->getOperand(0));
02316 
02317       // If this might be too difficult for the backend to handle (e.g. the addr
02318       // of one global variable divided by another) then we can't commit it.
02319       if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
02320         DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
02321               << "\n");
02322         return false;
02323       }
02324 
02325       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
02326         if (CE->getOpcode() == Instruction::BitCast) {
02327           DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
02328           // If we're evaluating a store through a bitcast, then we need
02329           // to pull the bitcast off the pointer type and push it onto the
02330           // stored value.
02331           Ptr = CE->getOperand(0);
02332 
02333           Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
02334 
02335           // In order to push the bitcast onto the stored value, a bitcast
02336           // from NewTy to Val's type must be legal.  If it's not, we can try
02337           // introspecting NewTy to find a legal conversion.
02338           while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
02339             // If NewTy is a struct, we can convert the pointer to the struct
02340             // into a pointer to its first member.
02341             // FIXME: This could be extended to support arrays as well.
02342             if (StructType *STy = dyn_cast<StructType>(NewTy)) {
02343               NewTy = STy->getTypeAtIndex(0U);
02344 
02345               IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
02346               Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
02347               Constant * const IdxList[] = {IdxZero, IdxZero};
02348 
02349               Ptr = ConstantExpr::getGetElementPtr(Ptr, IdxList);
02350               if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
02351                 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
02352 
02353             // If we can't improve the situation by introspecting NewTy,
02354             // we have to give up.
02355             } else {
02356               DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
02357                     "evaluate.\n");
02358               return false;
02359             }
02360           }
02361 
02362           // If we found compatible types, go ahead and push the bitcast
02363           // onto the stored value.
02364           Val = ConstantExpr::getBitCast(Val, NewTy);
02365 
02366           DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
02367         }
02368       }
02369 
02370       MutatedMemory[Ptr] = Val;
02371     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
02372       InstResult = ConstantExpr::get(BO->getOpcode(),
02373                                      getVal(BO->getOperand(0)),
02374                                      getVal(BO->getOperand(1)));
02375       DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
02376             << "\n");
02377     } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
02378       InstResult = ConstantExpr::getCompare(CI->getPredicate(),
02379                                             getVal(CI->getOperand(0)),
02380                                             getVal(CI->getOperand(1)));
02381       DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
02382             << "\n");
02383     } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
02384       InstResult = ConstantExpr::getCast(CI->getOpcode(),
02385                                          getVal(CI->getOperand(0)),
02386                                          CI->getType());
02387       DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
02388             << "\n");
02389     } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
02390       InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
02391                                            getVal(SI->getOperand(1)),
02392                                            getVal(SI->getOperand(2)));
02393       DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
02394             << "\n");
02395     } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
02396       InstResult = ConstantExpr::getExtractValue(
02397           getVal(EVI->getAggregateOperand()), EVI->getIndices());
02398       DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
02399                    << "\n");
02400     } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
02401       InstResult = ConstantExpr::getInsertValue(
02402           getVal(IVI->getAggregateOperand()),
02403           getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
02404       DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
02405                    << "\n");
02406     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
02407       Constant *P = getVal(GEP->getOperand(0));
02408       SmallVector<Constant*, 8> GEPOps;
02409       for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
02410            i != e; ++i)
02411         GEPOps.push_back(getVal(*i));
02412       InstResult =
02413         ConstantExpr::getGetElementPtr(P, GEPOps,
02414                                        cast<GEPOperator>(GEP)->isInBounds());
02415       DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
02416             << "\n");
02417     } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
02418 
02419       if (!LI->isSimple()) {
02420         DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
02421         return false;  // no volatile/atomic accesses.
02422       }
02423 
02424       Constant *Ptr = getVal(LI->getOperand(0));
02425       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
02426         Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
02427         DEBUG(dbgs() << "Found a constant pointer expression, constant "
02428               "folding: " << *Ptr << "\n");
02429       }
02430       InstResult = ComputeLoadResult(Ptr);
02431       if (!InstResult) {
02432         DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
02433               "\n");
02434         return false; // Could not evaluate load.
02435       }
02436 
02437       DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
02438     } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
02439       if (AI->isArrayAllocation()) {
02440         DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
02441         return false;  // Cannot handle array allocs.
02442       }
02443       Type *Ty = AI->getType()->getElementType();
02444       AllocaTmps.push_back(
02445           make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
02446                                       UndefValue::get(Ty), AI->getName()));
02447       InstResult = AllocaTmps.back().get();
02448       DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
02449     } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
02450       CallSite CS(CurInst);
02451 
02452       // Debug info can safely be ignored here.
02453       if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
02454         DEBUG(dbgs() << "Ignoring debug info.\n");
02455         ++CurInst;
02456         continue;
02457       }
02458 
02459       // Cannot handle inline asm.
02460       if (isa<InlineAsm>(CS.getCalledValue())) {
02461         DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
02462         return false;
02463       }
02464 
02465       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
02466         if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
02467           if (MSI->isVolatile()) {
02468             DEBUG(dbgs() << "Can not optimize a volatile memset " <<
02469                   "intrinsic.\n");
02470             return false;
02471           }
02472           Constant *Ptr = getVal(MSI->getDest());
02473           Constant *Val = getVal(MSI->getValue());
02474           Constant *DestVal = ComputeLoadResult(getVal(Ptr));
02475           if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
02476             // This memset is a no-op.
02477             DEBUG(dbgs() << "Ignoring no-op memset.\n");
02478             ++CurInst;
02479             continue;
02480           }
02481         }
02482 
02483         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
02484             II->getIntrinsicID() == Intrinsic::lifetime_end) {
02485           DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
02486           ++CurInst;
02487           continue;
02488         }
02489 
02490         if (II->getIntrinsicID() == Intrinsic::invariant_start) {
02491           // We don't insert an entry into Values, as it doesn't have a
02492           // meaningful return value.
02493           if (!II->use_empty()) {
02494             DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
02495             return false;
02496           }
02497           ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
02498           Value *PtrArg = getVal(II->getArgOperand(1));
02499           Value *Ptr = PtrArg->stripPointerCasts();
02500           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
02501             Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
02502             if (DL && !Size->isAllOnesValue() &&
02503                 Size->getValue().getLimitedValue() >=
02504                 DL->getTypeStoreSize(ElemTy)) {
02505               Invariants.insert(GV);
02506               DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
02507                     << "\n");
02508             } else {
02509               DEBUG(dbgs() << "Found a global var, but can not treat it as an "
02510                     "invariant.\n");
02511             }
02512           }
02513           // Continue even if we do nothing.
02514           ++CurInst;
02515           continue;
02516         }
02517 
02518         DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
02519         return false;
02520       }
02521 
02522       // Resolve function pointers.
02523       Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
02524       if (!Callee || Callee->mayBeOverridden()) {
02525         DEBUG(dbgs() << "Can not resolve function pointer.\n");
02526         return false;  // Cannot resolve.
02527       }
02528 
02529       SmallVector<Constant*, 8> Formals;
02530       for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
02531         Formals.push_back(getVal(*i));
02532 
02533       if (Callee->isDeclaration()) {
02534         // If this is a function we can constant fold, do it.
02535         if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
02536           InstResult = C;
02537           DEBUG(dbgs() << "Constant folded function call. Result: " <<
02538                 *InstResult << "\n");
02539         } else {
02540           DEBUG(dbgs() << "Can not constant fold function call.\n");
02541           return false;
02542         }
02543       } else {
02544         if (Callee->getFunctionType()->isVarArg()) {
02545           DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
02546           return false;
02547         }
02548 
02549         Constant *RetVal = nullptr;
02550         // Execute the call, if successful, use the return value.
02551         ValueStack.emplace_back();
02552         if (!EvaluateFunction(Callee, RetVal, Formals)) {
02553           DEBUG(dbgs() << "Failed to evaluate function.\n");
02554           return false;
02555         }
02556         ValueStack.pop_back();
02557         InstResult = RetVal;
02558 
02559         if (InstResult) {
02560           DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
02561                 InstResult << "\n\n");
02562         } else {
02563           DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
02564         }
02565       }
02566     } else if (isa<TerminatorInst>(CurInst)) {
02567       DEBUG(dbgs() << "Found a terminator instruction.\n");
02568 
02569       if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
02570         if (BI->isUnconditional()) {
02571           NextBB = BI->getSuccessor(0);
02572         } else {
02573           ConstantInt *Cond =
02574             dyn_cast<ConstantInt>(getVal(BI->getCondition()));
02575           if (!Cond) return false;  // Cannot determine.
02576 
02577           NextBB = BI->getSuccessor(!Cond->getZExtValue());
02578         }
02579       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
02580         ConstantInt *Val =
02581           dyn_cast<ConstantInt>(getVal(SI->getCondition()));
02582         if (!Val) return false;  // Cannot determine.
02583         NextBB = SI->findCaseValue(Val).getCaseSuccessor();
02584       } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
02585         Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
02586         if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
02587           NextBB = BA->getBasicBlock();
02588         else
02589           return false;  // Cannot determine.
02590       } else if (isa<ReturnInst>(CurInst)) {
02591         NextBB = nullptr;
02592       } else {
02593         // invoke, unwind, resume, unreachable.
02594         DEBUG(dbgs() << "Can not handle terminator.");
02595         return false;  // Cannot handle this terminator.
02596       }
02597 
02598       // We succeeded at evaluating this block!
02599       DEBUG(dbgs() << "Successfully evaluated block.\n");
02600       return true;
02601     } else {
02602       // Did not know how to evaluate this!
02603       DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
02604             "\n");
02605       return false;
02606     }
02607 
02608     if (!CurInst->use_empty()) {
02609       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
02610         InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
02611 
02612       setVal(CurInst, InstResult);
02613     }
02614 
02615     // If we just processed an invoke, we finished evaluating the block.
02616     if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
02617       NextBB = II->getNormalDest();
02618       DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
02619       return true;
02620     }
02621 
02622     // Advance program counter.
02623     ++CurInst;
02624   }
02625 }
02626 
02627 /// EvaluateFunction - Evaluate a call to function F, returning true if
02628 /// successful, false if we can't evaluate it.  ActualArgs contains the formal
02629 /// arguments for the function.
02630 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
02631                                  const SmallVectorImpl<Constant*> &ActualArgs) {
02632   // Check to see if this function is already executing (recursion).  If so,
02633   // bail out.  TODO: we might want to accept limited recursion.
02634   if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
02635     return false;
02636 
02637   CallStack.push_back(F);
02638 
02639   // Initialize arguments to the incoming values specified.
02640   unsigned ArgNo = 0;
02641   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
02642        ++AI, ++ArgNo)
02643     setVal(AI, ActualArgs[ArgNo]);
02644 
02645   // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
02646   // we can only evaluate any one basic block at most once.  This set keeps
02647   // track of what we have executed so we can detect recursive cases etc.
02648   SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
02649 
02650   // CurBB - The current basic block we're evaluating.
02651   BasicBlock *CurBB = F->begin();
02652 
02653   BasicBlock::iterator CurInst = CurBB->begin();
02654 
02655   while (1) {
02656     BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
02657     DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
02658 
02659     if (!EvaluateBlock(CurInst, NextBB))
02660       return false;
02661 
02662     if (!NextBB) {
02663       // Successfully running until there's no next block means that we found
02664       // the return.  Fill it the return value and pop the call stack.
02665       ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
02666       if (RI->getNumOperands())
02667         RetVal = getVal(RI->getOperand(0));
02668       CallStack.pop_back();
02669       return true;
02670     }
02671 
02672     // Okay, we succeeded in evaluating this control flow.  See if we have
02673     // executed the new block before.  If so, we have a looping function,
02674     // which we cannot evaluate in reasonable time.
02675     if (!ExecutedBlocks.insert(NextBB))
02676       return false;  // looped!
02677 
02678     // Okay, we have never been in this block before.  Check to see if there
02679     // are any PHI nodes.  If so, evaluate them with information about where
02680     // we came from.
02681     PHINode *PN = nullptr;
02682     for (CurInst = NextBB->begin();
02683          (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
02684       setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
02685 
02686     // Advance to the next block.
02687     CurBB = NextBB;
02688   }
02689 }
02690 
02691 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
02692 /// we can.  Return true if we can, false otherwise.
02693 static bool EvaluateStaticConstructor(Function *F, const DataLayout *DL,
02694                                       const TargetLibraryInfo *TLI) {
02695   // Call the function.
02696   Evaluator Eval(DL, TLI);
02697   Constant *RetValDummy;
02698   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
02699                                            SmallVector<Constant*, 0>());
02700 
02701   if (EvalSuccess) {
02702     ++NumCtorsEvaluated;
02703 
02704     // We succeeded at evaluation: commit the result.
02705     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
02706           << F->getName() << "' to " << Eval.getMutatedMemory().size()
02707           << " stores.\n");
02708     for (DenseMap<Constant*, Constant*>::const_iterator I =
02709            Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
02710          I != E; ++I)
02711       CommitValueTo(I->second, I->first);
02712     for (GlobalVariable *GV : Eval.getInvariants())
02713       GV->setConstant(true);
02714   }
02715 
02716   return EvalSuccess;
02717 }
02718 
02719 static int compareNames(Constant *const *A, Constant *const *B) {
02720   return (*A)->getName().compare((*B)->getName());
02721 }
02722 
02723 static void setUsedInitializer(GlobalVariable &V,
02724                                const SmallPtrSet<GlobalValue *, 8> &Init) {
02725   if (Init.empty()) {
02726     V.eraseFromParent();
02727     return;
02728   }
02729 
02730   // Type of pointer to the array of pointers.
02731   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
02732 
02733   SmallVector<llvm::Constant *, 8> UsedArray;
02734   for (GlobalValue *GV : Init) {
02735     Constant *Cast
02736       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
02737     UsedArray.push_back(Cast);
02738   }
02739   // Sort to get deterministic order.
02740   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
02741   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
02742 
02743   Module *M = V.getParent();
02744   V.removeFromParent();
02745   GlobalVariable *NV =
02746       new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
02747                          llvm::ConstantArray::get(ATy, UsedArray), "");
02748   NV->takeName(&V);
02749   NV->setSection("llvm.metadata");
02750   delete &V;
02751 }
02752 
02753 namespace {
02754 /// \brief An easy to access representation of llvm.used and llvm.compiler.used.
02755 class LLVMUsed {
02756   SmallPtrSet<GlobalValue *, 8> Used;
02757   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
02758   GlobalVariable *UsedV;
02759   GlobalVariable *CompilerUsedV;
02760 
02761 public:
02762   LLVMUsed(Module &M) {
02763     UsedV = collectUsedGlobalVariables(M, Used, false);
02764     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
02765   }
02766   typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
02767   typedef iterator_range<iterator> used_iterator_range;
02768   iterator usedBegin() { return Used.begin(); }
02769   iterator usedEnd() { return Used.end(); }
02770   used_iterator_range used() {
02771     return used_iterator_range(usedBegin(), usedEnd());
02772   }
02773   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
02774   iterator compilerUsedEnd() { return CompilerUsed.end(); }
02775   used_iterator_range compilerUsed() {
02776     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
02777   }
02778   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
02779   bool compilerUsedCount(GlobalValue *GV) const {
02780     return CompilerUsed.count(GV);
02781   }
02782   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
02783   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
02784   bool usedInsert(GlobalValue *GV) { return Used.insert(GV); }
02785   bool compilerUsedInsert(GlobalValue *GV) { return CompilerUsed.insert(GV); }
02786 
02787   void syncVariablesAndSets() {
02788     if (UsedV)
02789       setUsedInitializer(*UsedV, Used);
02790     if (CompilerUsedV)
02791       setUsedInitializer(*CompilerUsedV, CompilerUsed);
02792   }
02793 };
02794 }
02795 
02796 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
02797   if (GA.use_empty()) // No use at all.
02798     return false;
02799 
02800   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
02801          "We should have removed the duplicated "
02802          "element from llvm.compiler.used");
02803   if (!GA.hasOneUse())
02804     // Strictly more than one use. So at least one is not in llvm.used and
02805     // llvm.compiler.used.
02806     return true;
02807 
02808   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
02809   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
02810 }
02811 
02812 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
02813                                                const LLVMUsed &U) {
02814   unsigned N = 2;
02815   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
02816          "We should have removed the duplicated "
02817          "element from llvm.compiler.used");
02818   if (U.usedCount(&V) || U.compilerUsedCount(&V))
02819     ++N;
02820   return V.hasNUsesOrMore(N);
02821 }
02822 
02823 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
02824   if (!GA.hasLocalLinkage())
02825     return true;
02826 
02827   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
02828 }
02829 
02830 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
02831                              bool &RenameTarget) {
02832   RenameTarget = false;
02833   bool Ret = false;
02834   if (hasUseOtherThanLLVMUsed(GA, U))
02835     Ret = true;
02836 
02837   // If the alias is externally visible, we may still be able to simplify it.
02838   if (!mayHaveOtherReferences(GA, U))
02839     return Ret;
02840 
02841   // If the aliasee has internal linkage, give it the name and linkage
02842   // of the alias, and delete the alias.  This turns:
02843   //   define internal ... @f(...)
02844   //   @a = alias ... @f
02845   // into:
02846   //   define ... @a(...)
02847   Constant *Aliasee = GA.getAliasee();
02848   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
02849   if (!Target->hasLocalLinkage())
02850     return Ret;
02851 
02852   // Do not perform the transform if multiple aliases potentially target the
02853   // aliasee. This check also ensures that it is safe to replace the section
02854   // and other attributes of the aliasee with those of the alias.
02855   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
02856     return Ret;
02857 
02858   RenameTarget = true;
02859   return true;
02860 }
02861 
02862 bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
02863   bool Changed = false;
02864   LLVMUsed Used(M);
02865 
02866   for (GlobalValue *GV : Used.used())
02867     Used.compilerUsedErase(GV);
02868 
02869   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
02870        I != E;) {
02871     Module::alias_iterator J = I++;
02872     // Aliases without names cannot be referenced outside this module.
02873     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
02874       J->setLinkage(GlobalValue::InternalLinkage);
02875     // If the aliasee may change at link time, nothing can be done - bail out.
02876     if (J->mayBeOverridden())
02877       continue;
02878 
02879     Constant *Aliasee = J->getAliasee();
02880     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
02881     // We can't trivially replace the alias with the aliasee if the aliasee is
02882     // non-trivial in some way.
02883     // TODO: Try to handle non-zero GEPs of local aliasees.
02884     if (!Target)
02885       continue;
02886     Target->removeDeadConstantUsers();
02887 
02888     // Make all users of the alias use the aliasee instead.
02889     bool RenameTarget;
02890     if (!hasUsesToReplace(*J, Used, RenameTarget))
02891       continue;
02892 
02893     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
02894     ++NumAliasesResolved;
02895     Changed = true;
02896 
02897     if (RenameTarget) {
02898       // Give the aliasee the name, linkage and other attributes of the alias.
02899       Target->takeName(J);
02900       Target->setLinkage(J->getLinkage());
02901       Target->setVisibility(J->getVisibility());
02902       Target->setDLLStorageClass(J->getDLLStorageClass());
02903 
02904       if (Used.usedErase(J))
02905         Used.usedInsert(Target);
02906 
02907       if (Used.compilerUsedErase(J))
02908         Used.compilerUsedInsert(Target);
02909     } else if (mayHaveOtherReferences(*J, Used))
02910       continue;
02911 
02912     // Delete the alias.
02913     M.getAliasList().erase(J);
02914     ++NumAliasesRemoved;
02915     Changed = true;
02916   }
02917 
02918   Used.syncVariablesAndSets();
02919 
02920   return Changed;
02921 }
02922 
02923 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
02924   if (!TLI->has(LibFunc::cxa_atexit))
02925     return nullptr;
02926 
02927   Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
02928 
02929   if (!Fn)
02930     return nullptr;
02931 
02932   FunctionType *FTy = Fn->getFunctionType();
02933 
02934   // Checking that the function has the right return type, the right number of
02935   // parameters and that they all have pointer types should be enough.
02936   if (!FTy->getReturnType()->isIntegerTy() ||
02937       FTy->getNumParams() != 3 ||
02938       !FTy->getParamType(0)->isPointerTy() ||
02939       !FTy->getParamType(1)->isPointerTy() ||
02940       !FTy->getParamType(2)->isPointerTy())
02941     return nullptr;
02942 
02943   return Fn;
02944 }
02945 
02946 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++
02947 /// destructor and can therefore be eliminated.
02948 /// Note that we assume that other optimization passes have already simplified
02949 /// the code so we only look for a function with a single basic block, where
02950 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
02951 /// other side-effect free instructions.
02952 static bool cxxDtorIsEmpty(const Function &Fn,
02953                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
02954   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
02955   // nounwind, but that doesn't seem worth doing.
02956   if (Fn.isDeclaration())
02957     return false;
02958 
02959   if (++Fn.begin() != Fn.end())
02960     return false;
02961 
02962   const BasicBlock &EntryBlock = Fn.getEntryBlock();
02963   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
02964        I != E; ++I) {
02965     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
02966       // Ignore debug intrinsics.
02967       if (isa<DbgInfoIntrinsic>(CI))
02968         continue;
02969 
02970       const Function *CalledFn = CI->getCalledFunction();
02971 
02972       if (!CalledFn)
02973         return false;
02974 
02975       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
02976 
02977       // Don't treat recursive functions as empty.
02978       if (!NewCalledFunctions.insert(CalledFn))
02979         return false;
02980 
02981       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
02982         return false;
02983     } else if (isa<ReturnInst>(*I))
02984       return true; // We're done.
02985     else if (I->mayHaveSideEffects())
02986       return false; // Destructor with side effects, bail.
02987   }
02988 
02989   return false;
02990 }
02991 
02992 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
02993   /// Itanium C++ ABI p3.3.5:
02994   ///
02995   ///   After constructing a global (or local static) object, that will require
02996   ///   destruction on exit, a termination function is registered as follows:
02997   ///
02998   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
02999   ///
03000   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
03001   ///   call f(p) when DSO d is unloaded, before all such termination calls
03002   ///   registered before this one. It returns zero if registration is
03003   ///   successful, nonzero on failure.
03004 
03005   // This pass will look for calls to __cxa_atexit where the function is trivial
03006   // and remove them.
03007   bool Changed = false;
03008 
03009   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
03010        I != E;) {
03011     // We're only interested in calls. Theoretically, we could handle invoke
03012     // instructions as well, but neither llvm-gcc nor clang generate invokes
03013     // to __cxa_atexit.
03014     CallInst *CI = dyn_cast<CallInst>(*I++);
03015     if (!CI)
03016       continue;
03017 
03018     Function *DtorFn =
03019       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
03020     if (!DtorFn)
03021       continue;
03022 
03023     SmallPtrSet<const Function *, 8> CalledFunctions;
03024     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
03025       continue;
03026 
03027     // Just remove the call.
03028     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
03029     CI->eraseFromParent();
03030 
03031     ++NumCXXDtorsRemoved;
03032 
03033     Changed |= true;
03034   }
03035 
03036   return Changed;
03037 }
03038 
03039 bool GlobalOpt::runOnModule(Module &M) {
03040   bool Changed = false;
03041 
03042   DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
03043   DL = DLP ? &DLP->getDataLayout() : nullptr;
03044   TLI = &getAnalysis<TargetLibraryInfo>();
03045 
03046   bool LocalChange = true;
03047   while (LocalChange) {
03048     LocalChange = false;
03049 
03050     // Delete functions that are trivially dead, ccc -> fastcc
03051     LocalChange |= OptimizeFunctions(M);
03052 
03053     // Optimize global_ctors list.
03054     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
03055       return EvaluateStaticConstructor(F, DL, TLI);
03056     });
03057 
03058     // Optimize non-address-taken globals.
03059     LocalChange |= OptimizeGlobalVars(M);
03060 
03061     // Resolve aliases, when possible.
03062     LocalChange |= OptimizeGlobalAliases(M);
03063 
03064     // Try to remove trivial global destructors if they are not removed
03065     // already.
03066     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
03067     if (CXAAtExitFn)
03068       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
03069 
03070     Changed |= LocalChange;
03071   }
03072 
03073   // TODO: Move all global ctors functions to the end of the module for code
03074   // layout.
03075 
03076   return Changed;
03077 }