LLVM API Documentation
00001 //===- CFG.h - Process LLVM structures as graphs ----------------*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines specializations of GraphTraits that allow Function and 00011 // BasicBlock graphs to be treated as proper graphs for generic algorithms. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #ifndef LLVM_IR_CFG_H 00016 #define LLVM_IR_CFG_H 00017 00018 #include "llvm/ADT/GraphTraits.h" 00019 #include "llvm/IR/Function.h" 00020 #include "llvm/IR/InstrTypes.h" 00021 00022 namespace llvm { 00023 00024 //===----------------------------------------------------------------------===// 00025 // BasicBlock pred_iterator definition 00026 //===----------------------------------------------------------------------===// 00027 00028 template <class Ptr, class USE_iterator> // Predecessor Iterator 00029 class PredIterator : public std::iterator<std::forward_iterator_tag, 00030 Ptr, ptrdiff_t, Ptr*, Ptr*> { 00031 typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*, 00032 Ptr*> super; 00033 typedef PredIterator<Ptr, USE_iterator> Self; 00034 USE_iterator It; 00035 00036 inline void advancePastNonTerminators() { 00037 // Loop to ignore non-terminator uses (for example BlockAddresses). 00038 while (!It.atEnd() && !isa<TerminatorInst>(*It)) 00039 ++It; 00040 } 00041 00042 public: 00043 typedef typename super::pointer pointer; 00044 typedef typename super::reference reference; 00045 00046 PredIterator() {} 00047 explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) { 00048 advancePastNonTerminators(); 00049 } 00050 inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {} 00051 00052 inline bool operator==(const Self& x) const { return It == x.It; } 00053 inline bool operator!=(const Self& x) const { return !operator==(x); } 00054 00055 inline reference operator*() const { 00056 assert(!It.atEnd() && "pred_iterator out of range!"); 00057 return cast<TerminatorInst>(*It)->getParent(); 00058 } 00059 inline pointer *operator->() const { return &operator*(); } 00060 00061 inline Self& operator++() { // Preincrement 00062 assert(!It.atEnd() && "pred_iterator out of range!"); 00063 ++It; advancePastNonTerminators(); 00064 return *this; 00065 } 00066 00067 inline Self operator++(int) { // Postincrement 00068 Self tmp = *this; ++*this; return tmp; 00069 } 00070 00071 /// getOperandNo - Return the operand number in the predecessor's 00072 /// terminator of the successor. 00073 unsigned getOperandNo() const { 00074 return It.getOperandNo(); 00075 } 00076 00077 /// getUse - Return the operand Use in the predecessor's terminator 00078 /// of the successor. 00079 Use &getUse() const { 00080 return It.getUse(); 00081 } 00082 }; 00083 00084 typedef PredIterator<BasicBlock, Value::user_iterator> pred_iterator; 00085 typedef PredIterator<const BasicBlock, 00086 Value::const_user_iterator> const_pred_iterator; 00087 00088 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); } 00089 inline const_pred_iterator pred_begin(const BasicBlock *BB) { 00090 return const_pred_iterator(BB); 00091 } 00092 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);} 00093 inline const_pred_iterator pred_end(const BasicBlock *BB) { 00094 return const_pred_iterator(BB, true); 00095 } 00096 00097 00098 00099 //===----------------------------------------------------------------------===// 00100 // BasicBlock succ_iterator definition 00101 //===----------------------------------------------------------------------===// 00102 00103 template <class Term_, class BB_> // Successor Iterator 00104 class SuccIterator : public std::iterator<std::random_access_iterator_tag, BB_, 00105 int, BB_ *, BB_ *> { 00106 typedef std::iterator<std::random_access_iterator_tag, BB_, int, BB_ *, BB_ *> 00107 super; 00108 00109 public: 00110 typedef typename super::pointer pointer; 00111 typedef typename super::reference reference; 00112 00113 private: 00114 const Term_ Term; 00115 unsigned idx; 00116 typedef SuccIterator<Term_, BB_> Self; 00117 00118 inline bool index_is_valid(int idx) { 00119 return idx >= 0 && (unsigned) idx < Term->getNumSuccessors(); 00120 } 00121 00122 /// \brief Proxy object to allow write access in operator[] 00123 class SuccessorProxy { 00124 Self it; 00125 00126 public: 00127 explicit SuccessorProxy(const Self &it) : it(it) {} 00128 00129 SuccessorProxy &operator=(SuccessorProxy r) { 00130 *this = reference(r); 00131 return *this; 00132 } 00133 00134 SuccessorProxy &operator=(reference r) { 00135 it.Term->setSuccessor(it.idx, r); 00136 return *this; 00137 } 00138 00139 operator reference() const { return *it; } 00140 }; 00141 00142 public: 00143 explicit inline SuccIterator(Term_ T) : Term(T), idx(0) {// begin iterator 00144 } 00145 inline SuccIterator(Term_ T, bool) // end iterator 00146 : Term(T) { 00147 if (Term) 00148 idx = Term->getNumSuccessors(); 00149 else 00150 // Term == NULL happens, if a basic block is not fully constructed and 00151 // consequently getTerminator() returns NULL. In this case we construct a 00152 // SuccIterator which describes a basic block that has zero successors. 00153 // Defining SuccIterator for incomplete and malformed CFGs is especially 00154 // useful for debugging. 00155 idx = 0; 00156 } 00157 00158 inline const Self &operator=(const Self &I) { 00159 assert(Term == I.Term &&"Cannot assign iterators to two different blocks!"); 00160 idx = I.idx; 00161 return *this; 00162 } 00163 00164 /// getSuccessorIndex - This is used to interface between code that wants to 00165 /// operate on terminator instructions directly. 00166 unsigned getSuccessorIndex() const { return idx; } 00167 00168 inline bool operator==(const Self& x) const { return idx == x.idx; } 00169 inline bool operator!=(const Self& x) const { return !operator==(x); } 00170 00171 inline reference operator*() const { return Term->getSuccessor(idx); } 00172 inline pointer operator->() const { return operator*(); } 00173 00174 inline Self& operator++() { ++idx; return *this; } // Preincrement 00175 00176 inline Self operator++(int) { // Postincrement 00177 Self tmp = *this; ++*this; return tmp; 00178 } 00179 00180 inline Self& operator--() { --idx; return *this; } // Predecrement 00181 inline Self operator--(int) { // Postdecrement 00182 Self tmp = *this; --*this; return tmp; 00183 } 00184 00185 inline bool operator<(const Self& x) const { 00186 assert(Term == x.Term && "Cannot compare iterators of different blocks!"); 00187 return idx < x.idx; 00188 } 00189 00190 inline bool operator<=(const Self& x) const { 00191 assert(Term == x.Term && "Cannot compare iterators of different blocks!"); 00192 return idx <= x.idx; 00193 } 00194 inline bool operator>=(const Self& x) const { 00195 assert(Term == x.Term && "Cannot compare iterators of different blocks!"); 00196 return idx >= x.idx; 00197 } 00198 00199 inline bool operator>(const Self& x) const { 00200 assert(Term == x.Term && "Cannot compare iterators of different blocks!"); 00201 return idx > x.idx; 00202 } 00203 00204 inline Self& operator+=(int Right) { 00205 unsigned new_idx = idx + Right; 00206 assert(index_is_valid(new_idx) && "Iterator index out of bound"); 00207 idx = new_idx; 00208 return *this; 00209 } 00210 00211 inline Self operator+(int Right) const { 00212 Self tmp = *this; 00213 tmp += Right; 00214 return tmp; 00215 } 00216 00217 inline Self& operator-=(int Right) { 00218 return operator+=(-Right); 00219 } 00220 00221 inline Self operator-(int Right) const { 00222 return operator+(-Right); 00223 } 00224 00225 inline int operator-(const Self& x) const { 00226 assert(Term == x.Term && "Cannot work on iterators of different blocks!"); 00227 int distance = idx - x.idx; 00228 return distance; 00229 } 00230 00231 inline SuccessorProxy operator[](int offset) { 00232 Self tmp = *this; 00233 tmp += offset; 00234 return SuccessorProxy(tmp); 00235 } 00236 00237 /// Get the source BB of this iterator. 00238 inline BB_ *getSource() { 00239 assert(Term && "Source not available, if basic block was malformed"); 00240 return Term->getParent(); 00241 } 00242 }; 00243 00244 typedef SuccIterator<TerminatorInst*, BasicBlock> succ_iterator; 00245 typedef SuccIterator<const TerminatorInst*, 00246 const BasicBlock> succ_const_iterator; 00247 00248 inline succ_iterator succ_begin(BasicBlock *BB) { 00249 return succ_iterator(BB->getTerminator()); 00250 } 00251 inline succ_const_iterator succ_begin(const BasicBlock *BB) { 00252 return succ_const_iterator(BB->getTerminator()); 00253 } 00254 inline succ_iterator succ_end(BasicBlock *BB) { 00255 return succ_iterator(BB->getTerminator(), true); 00256 } 00257 inline succ_const_iterator succ_end(const BasicBlock *BB) { 00258 return succ_const_iterator(BB->getTerminator(), true); 00259 } 00260 00261 template <typename T, typename U> struct isPodLike<SuccIterator<T, U> > { 00262 static const bool value = isPodLike<T>::value; 00263 }; 00264 00265 00266 00267 //===--------------------------------------------------------------------===// 00268 // GraphTraits specializations for basic block graphs (CFGs) 00269 //===--------------------------------------------------------------------===// 00270 00271 // Provide specializations of GraphTraits to be able to treat a function as a 00272 // graph of basic blocks... 00273 00274 template <> struct GraphTraits<BasicBlock*> { 00275 typedef BasicBlock NodeType; 00276 typedef succ_iterator ChildIteratorType; 00277 00278 static NodeType *getEntryNode(BasicBlock *BB) { return BB; } 00279 static inline ChildIteratorType child_begin(NodeType *N) { 00280 return succ_begin(N); 00281 } 00282 static inline ChildIteratorType child_end(NodeType *N) { 00283 return succ_end(N); 00284 } 00285 }; 00286 00287 template <> struct GraphTraits<const BasicBlock*> { 00288 typedef const BasicBlock NodeType; 00289 typedef succ_const_iterator ChildIteratorType; 00290 00291 static NodeType *getEntryNode(const BasicBlock *BB) { return BB; } 00292 00293 static inline ChildIteratorType child_begin(NodeType *N) { 00294 return succ_begin(N); 00295 } 00296 static inline ChildIteratorType child_end(NodeType *N) { 00297 return succ_end(N); 00298 } 00299 }; 00300 00301 // Provide specializations of GraphTraits to be able to treat a function as a 00302 // graph of basic blocks... and to walk it in inverse order. Inverse order for 00303 // a function is considered to be when traversing the predecessor edges of a BB 00304 // instead of the successor edges. 00305 // 00306 template <> struct GraphTraits<Inverse<BasicBlock*> > { 00307 typedef BasicBlock NodeType; 00308 typedef pred_iterator ChildIteratorType; 00309 static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; } 00310 static inline ChildIteratorType child_begin(NodeType *N) { 00311 return pred_begin(N); 00312 } 00313 static inline ChildIteratorType child_end(NodeType *N) { 00314 return pred_end(N); 00315 } 00316 }; 00317 00318 template <> struct GraphTraits<Inverse<const BasicBlock*> > { 00319 typedef const BasicBlock NodeType; 00320 typedef const_pred_iterator ChildIteratorType; 00321 static NodeType *getEntryNode(Inverse<const BasicBlock*> G) { 00322 return G.Graph; 00323 } 00324 static inline ChildIteratorType child_begin(NodeType *N) { 00325 return pred_begin(N); 00326 } 00327 static inline ChildIteratorType child_end(NodeType *N) { 00328 return pred_end(N); 00329 } 00330 }; 00331 00332 00333 00334 //===--------------------------------------------------------------------===// 00335 // GraphTraits specializations for function basic block graphs (CFGs) 00336 //===--------------------------------------------------------------------===// 00337 00338 // Provide specializations of GraphTraits to be able to treat a function as a 00339 // graph of basic blocks... these are the same as the basic block iterators, 00340 // except that the root node is implicitly the first node of the function. 00341 // 00342 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> { 00343 static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); } 00344 00345 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 00346 typedef Function::iterator nodes_iterator; 00347 static nodes_iterator nodes_begin(Function *F) { return F->begin(); } 00348 static nodes_iterator nodes_end (Function *F) { return F->end(); } 00349 static size_t size (Function *F) { return F->size(); } 00350 }; 00351 template <> struct GraphTraits<const Function*> : 00352 public GraphTraits<const BasicBlock*> { 00353 static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();} 00354 00355 // nodes_iterator/begin/end - Allow iteration over all nodes in the graph 00356 typedef Function::const_iterator nodes_iterator; 00357 static nodes_iterator nodes_begin(const Function *F) { return F->begin(); } 00358 static nodes_iterator nodes_end (const Function *F) { return F->end(); } 00359 static size_t size (const Function *F) { return F->size(); } 00360 }; 00361 00362 00363 // Provide specializations of GraphTraits to be able to treat a function as a 00364 // graph of basic blocks... and to walk it in inverse order. Inverse order for 00365 // a function is considered to be when traversing the predecessor edges of a BB 00366 // instead of the successor edges. 00367 // 00368 template <> struct GraphTraits<Inverse<Function*> > : 00369 public GraphTraits<Inverse<BasicBlock*> > { 00370 static NodeType *getEntryNode(Inverse<Function*> G) { 00371 return &G.Graph->getEntryBlock(); 00372 } 00373 }; 00374 template <> struct GraphTraits<Inverse<const Function*> > : 00375 public GraphTraits<Inverse<const BasicBlock*> > { 00376 static NodeType *getEntryNode(Inverse<const Function *> G) { 00377 return &G.Graph->getEntryBlock(); 00378 } 00379 }; 00380 00381 } // End llvm namespace 00382 00383 #endif