LLVM API Documentation
00001 //===- Inliner.cpp - Code common to all inliners --------------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the mechanics required to implement inlining without 00011 // missing any calls and updating the call graph. The decisions of which calls 00012 // are profitable to inline are implemented elsewhere. 00013 // 00014 //===----------------------------------------------------------------------===// 00015 00016 #include "llvm/Transforms/IPO/InlinerPass.h" 00017 #include "llvm/ADT/SmallPtrSet.h" 00018 #include "llvm/ADT/Statistic.h" 00019 #include "llvm/Analysis/AliasAnalysis.h" 00020 #include "llvm/Analysis/AssumptionTracker.h" 00021 #include "llvm/Analysis/CallGraph.h" 00022 #include "llvm/Analysis/InlineCost.h" 00023 #include "llvm/IR/CallSite.h" 00024 #include "llvm/IR/DataLayout.h" 00025 #include "llvm/IR/DiagnosticInfo.h" 00026 #include "llvm/IR/Instructions.h" 00027 #include "llvm/IR/IntrinsicInst.h" 00028 #include "llvm/IR/Module.h" 00029 #include "llvm/Support/CommandLine.h" 00030 #include "llvm/Support/Debug.h" 00031 #include "llvm/Support/raw_ostream.h" 00032 #include "llvm/Target/TargetLibraryInfo.h" 00033 #include "llvm/Transforms/Utils/Cloning.h" 00034 #include "llvm/Transforms/Utils/Local.h" 00035 using namespace llvm; 00036 00037 #define DEBUG_TYPE "inline" 00038 00039 STATISTIC(NumInlined, "Number of functions inlined"); 00040 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); 00041 STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); 00042 STATISTIC(NumMergedAllocas, "Number of allocas merged together"); 00043 00044 // This weirdly named statistic tracks the number of times that, when attempting 00045 // to inline a function A into B, we analyze the callers of B in order to see 00046 // if those would be more profitable and blocked inline steps. 00047 STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); 00048 00049 static cl::opt<int> 00050 InlineLimit("inline-threshold", cl::Hidden, cl::init(225), cl::ZeroOrMore, 00051 cl::desc("Control the amount of inlining to perform (default = 225)")); 00052 00053 static cl::opt<int> 00054 HintThreshold("inlinehint-threshold", cl::Hidden, cl::init(325), 00055 cl::desc("Threshold for inlining functions with inline hint")); 00056 00057 // We instroduce this threshold to help performance of instrumentation based 00058 // PGO before we actually hook up inliner with analysis passes such as BPI and 00059 // BFI. 00060 static cl::opt<int> 00061 ColdThreshold("inlinecold-threshold", cl::Hidden, cl::init(225), 00062 cl::desc("Threshold for inlining functions with cold attribute")); 00063 00064 // Threshold to use when optsize is specified (and there is no -inline-limit). 00065 const int OptSizeThreshold = 75; 00066 00067 Inliner::Inliner(char &ID) 00068 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit), InsertLifetime(true) {} 00069 00070 Inliner::Inliner(char &ID, int Threshold, bool InsertLifetime) 00071 : CallGraphSCCPass(ID), InlineThreshold(InlineLimit.getNumOccurrences() > 0 ? 00072 InlineLimit : Threshold), 00073 InsertLifetime(InsertLifetime) {} 00074 00075 /// getAnalysisUsage - For this class, we declare that we require and preserve 00076 /// the call graph. If the derived class implements this method, it should 00077 /// always explicitly call the implementation here. 00078 void Inliner::getAnalysisUsage(AnalysisUsage &AU) const { 00079 AU.addRequired<AliasAnalysis>(); 00080 AU.addRequired<AssumptionTracker>(); 00081 CallGraphSCCPass::getAnalysisUsage(AU); 00082 } 00083 00084 00085 typedef DenseMap<ArrayType*, std::vector<AllocaInst*> > 00086 InlinedArrayAllocasTy; 00087 00088 /// \brief If the inlined function had a higher stack protection level than the 00089 /// calling function, then bump up the caller's stack protection level. 00090 static void AdjustCallerSSPLevel(Function *Caller, Function *Callee) { 00091 // If upgrading the SSP attribute, clear out the old SSP Attributes first. 00092 // Having multiple SSP attributes doesn't actually hurt, but it adds useless 00093 // clutter to the IR. 00094 AttrBuilder B; 00095 B.addAttribute(Attribute::StackProtect) 00096 .addAttribute(Attribute::StackProtectStrong); 00097 AttributeSet OldSSPAttr = AttributeSet::get(Caller->getContext(), 00098 AttributeSet::FunctionIndex, 00099 B); 00100 AttributeSet CallerAttr = Caller->getAttributes(), 00101 CalleeAttr = Callee->getAttributes(); 00102 00103 if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 00104 Attribute::StackProtectReq)) { 00105 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 00106 Caller->addFnAttr(Attribute::StackProtectReq); 00107 } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 00108 Attribute::StackProtectStrong) && 00109 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 00110 Attribute::StackProtectReq)) { 00111 Caller->removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); 00112 Caller->addFnAttr(Attribute::StackProtectStrong); 00113 } else if (CalleeAttr.hasAttribute(AttributeSet::FunctionIndex, 00114 Attribute::StackProtect) && 00115 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 00116 Attribute::StackProtectReq) && 00117 !CallerAttr.hasAttribute(AttributeSet::FunctionIndex, 00118 Attribute::StackProtectStrong)) 00119 Caller->addFnAttr(Attribute::StackProtect); 00120 } 00121 00122 /// InlineCallIfPossible - If it is possible to inline the specified call site, 00123 /// do so and update the CallGraph for this operation. 00124 /// 00125 /// This function also does some basic book-keeping to update the IR. The 00126 /// InlinedArrayAllocas map keeps track of any allocas that are already 00127 /// available from other functions inlined into the caller. If we are able to 00128 /// inline this call site we attempt to reuse already available allocas or add 00129 /// any new allocas to the set if not possible. 00130 static bool InlineCallIfPossible(CallSite CS, InlineFunctionInfo &IFI, 00131 InlinedArrayAllocasTy &InlinedArrayAllocas, 00132 int InlineHistory, bool InsertLifetime, 00133 const DataLayout *DL) { 00134 Function *Callee = CS.getCalledFunction(); 00135 Function *Caller = CS.getCaller(); 00136 00137 // Try to inline the function. Get the list of static allocas that were 00138 // inlined. 00139 if (!InlineFunction(CS, IFI, InsertLifetime)) 00140 return false; 00141 00142 AdjustCallerSSPLevel(Caller, Callee); 00143 00144 // Look at all of the allocas that we inlined through this call site. If we 00145 // have already inlined other allocas through other calls into this function, 00146 // then we know that they have disjoint lifetimes and that we can merge them. 00147 // 00148 // There are many heuristics possible for merging these allocas, and the 00149 // different options have different tradeoffs. One thing that we *really* 00150 // don't want to hurt is SRoA: once inlining happens, often allocas are no 00151 // longer address taken and so they can be promoted. 00152 // 00153 // Our "solution" for that is to only merge allocas whose outermost type is an 00154 // array type. These are usually not promoted because someone is using a 00155 // variable index into them. These are also often the most important ones to 00156 // merge. 00157 // 00158 // A better solution would be to have real memory lifetime markers in the IR 00159 // and not have the inliner do any merging of allocas at all. This would 00160 // allow the backend to do proper stack slot coloring of all allocas that 00161 // *actually make it to the backend*, which is really what we want. 00162 // 00163 // Because we don't have this information, we do this simple and useful hack. 00164 // 00165 SmallPtrSet<AllocaInst*, 16> UsedAllocas; 00166 00167 // When processing our SCC, check to see if CS was inlined from some other 00168 // call site. For example, if we're processing "A" in this code: 00169 // A() { B() } 00170 // B() { x = alloca ... C() } 00171 // C() { y = alloca ... } 00172 // Assume that C was not inlined into B initially, and so we're processing A 00173 // and decide to inline B into A. Doing this makes an alloca available for 00174 // reuse and makes a callsite (C) available for inlining. When we process 00175 // the C call site we don't want to do any alloca merging between X and Y 00176 // because their scopes are not disjoint. We could make this smarter by 00177 // keeping track of the inline history for each alloca in the 00178 // InlinedArrayAllocas but this isn't likely to be a significant win. 00179 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. 00180 return true; 00181 00182 // Loop over all the allocas we have so far and see if they can be merged with 00183 // a previously inlined alloca. If not, remember that we had it. 00184 for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); 00185 AllocaNo != e; ++AllocaNo) { 00186 AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; 00187 00188 // Don't bother trying to merge array allocations (they will usually be 00189 // canonicalized to be an allocation *of* an array), or allocations whose 00190 // type is not itself an array (because we're afraid of pessimizing SRoA). 00191 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); 00192 if (!ATy || AI->isArrayAllocation()) 00193 continue; 00194 00195 // Get the list of all available allocas for this array type. 00196 std::vector<AllocaInst*> &AllocasForType = InlinedArrayAllocas[ATy]; 00197 00198 // Loop over the allocas in AllocasForType to see if we can reuse one. Note 00199 // that we have to be careful not to reuse the same "available" alloca for 00200 // multiple different allocas that we just inlined, we use the 'UsedAllocas' 00201 // set to keep track of which "available" allocas are being used by this 00202 // function. Also, AllocasForType can be empty of course! 00203 bool MergedAwayAlloca = false; 00204 for (unsigned i = 0, e = AllocasForType.size(); i != e; ++i) { 00205 AllocaInst *AvailableAlloca = AllocasForType[i]; 00206 00207 unsigned Align1 = AI->getAlignment(), 00208 Align2 = AvailableAlloca->getAlignment(); 00209 // If we don't have data layout information, and only one alloca is using 00210 // the target default, then we can't safely merge them because we can't 00211 // pick the greater alignment. 00212 if (!DL && (!Align1 || !Align2) && Align1 != Align2) 00213 continue; 00214 00215 // The available alloca has to be in the right function, not in some other 00216 // function in this SCC. 00217 if (AvailableAlloca->getParent() != AI->getParent()) 00218 continue; 00219 00220 // If the inlined function already uses this alloca then we can't reuse 00221 // it. 00222 if (!UsedAllocas.insert(AvailableAlloca)) 00223 continue; 00224 00225 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare 00226 // success! 00227 DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI << "\n\t\tINTO: " 00228 << *AvailableAlloca << '\n'); 00229 00230 AI->replaceAllUsesWith(AvailableAlloca); 00231 00232 if (Align1 != Align2) { 00233 if (!Align1 || !Align2) { 00234 assert(DL && "DataLayout required to compare default alignments"); 00235 unsigned TypeAlign = DL->getABITypeAlignment(AI->getAllocatedType()); 00236 00237 Align1 = Align1 ? Align1 : TypeAlign; 00238 Align2 = Align2 ? Align2 : TypeAlign; 00239 } 00240 00241 if (Align1 > Align2) 00242 AvailableAlloca->setAlignment(AI->getAlignment()); 00243 } 00244 00245 AI->eraseFromParent(); 00246 MergedAwayAlloca = true; 00247 ++NumMergedAllocas; 00248 IFI.StaticAllocas[AllocaNo] = nullptr; 00249 break; 00250 } 00251 00252 // If we already nuked the alloca, we're done with it. 00253 if (MergedAwayAlloca) 00254 continue; 00255 00256 // If we were unable to merge away the alloca either because there are no 00257 // allocas of the right type available or because we reused them all 00258 // already, remember that this alloca came from an inlined function and mark 00259 // it used so we don't reuse it for other allocas from this inline 00260 // operation. 00261 AllocasForType.push_back(AI); 00262 UsedAllocas.insert(AI); 00263 } 00264 00265 return true; 00266 } 00267 00268 unsigned Inliner::getInlineThreshold(CallSite CS) const { 00269 int thres = InlineThreshold; // -inline-threshold or else selected by 00270 // overall opt level 00271 00272 // If -inline-threshold is not given, listen to the optsize attribute when it 00273 // would decrease the threshold. 00274 Function *Caller = CS.getCaller(); 00275 bool OptSize = Caller && !Caller->isDeclaration() && 00276 Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 00277 Attribute::OptimizeForSize); 00278 if (!(InlineLimit.getNumOccurrences() > 0) && OptSize && 00279 OptSizeThreshold < thres) 00280 thres = OptSizeThreshold; 00281 00282 // Listen to the inlinehint attribute when it would increase the threshold 00283 // and the caller does not need to minimize its size. 00284 Function *Callee = CS.getCalledFunction(); 00285 bool InlineHint = Callee && !Callee->isDeclaration() && 00286 Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 00287 Attribute::InlineHint); 00288 if (InlineHint && HintThreshold > thres 00289 && !Caller->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 00290 Attribute::MinSize)) 00291 thres = HintThreshold; 00292 00293 // Listen to the cold attribute when it would decrease the threshold. 00294 bool ColdCallee = Callee && !Callee->isDeclaration() && 00295 Callee->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 00296 Attribute::Cold); 00297 // Command line argument for InlineLimit will override the default 00298 // ColdThreshold. If we have -inline-threshold but no -inlinecold-threshold, 00299 // do not use the default cold threshold even if it is smaller. 00300 if ((InlineLimit.getNumOccurrences() == 0 || 00301 ColdThreshold.getNumOccurrences() > 0) && ColdCallee && 00302 ColdThreshold < thres) 00303 thres = ColdThreshold; 00304 00305 return thres; 00306 } 00307 00308 static void emitAnalysis(CallSite CS, const Twine &Msg) { 00309 Function *Caller = CS.getCaller(); 00310 LLVMContext &Ctx = Caller->getContext(); 00311 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 00312 emitOptimizationRemarkAnalysis(Ctx, DEBUG_TYPE, *Caller, DLoc, Msg); 00313 } 00314 00315 /// shouldInline - Return true if the inliner should attempt to inline 00316 /// at the given CallSite. 00317 bool Inliner::shouldInline(CallSite CS) { 00318 InlineCost IC = getInlineCost(CS); 00319 00320 if (IC.isAlways()) { 00321 DEBUG(dbgs() << " Inlining: cost=always" 00322 << ", Call: " << *CS.getInstruction() << "\n"); 00323 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName()) + 00324 " should always be inlined (cost=always)"); 00325 return true; 00326 } 00327 00328 if (IC.isNever()) { 00329 DEBUG(dbgs() << " NOT Inlining: cost=never" 00330 << ", Call: " << *CS.getInstruction() << "\n"); 00331 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 00332 " should never be inlined (cost=never)")); 00333 return false; 00334 } 00335 00336 Function *Caller = CS.getCaller(); 00337 if (!IC) { 00338 DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() 00339 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 00340 << ", Call: " << *CS.getInstruction() << "\n"); 00341 emitAnalysis(CS, Twine(CS.getCalledFunction()->getName() + 00342 " too costly to inline (cost=") + 00343 Twine(IC.getCost()) + ", threshold=" + 00344 Twine(IC.getCostDelta() + IC.getCost()) + ")"); 00345 return false; 00346 } 00347 00348 // Try to detect the case where the current inlining candidate caller (call 00349 // it B) is a static or linkonce-ODR function and is an inlining candidate 00350 // elsewhere, and the current candidate callee (call it C) is large enough 00351 // that inlining it into B would make B too big to inline later. In these 00352 // circumstances it may be best not to inline C into B, but to inline B into 00353 // its callers. 00354 // 00355 // This only applies to static and linkonce-ODR functions because those are 00356 // expected to be available for inlining in the translation units where they 00357 // are used. Thus we will always have the opportunity to make local inlining 00358 // decisions. Importantly the linkonce-ODR linkage covers inline functions 00359 // and templates in C++. 00360 // 00361 // FIXME: All of this logic should be sunk into getInlineCost. It relies on 00362 // the internal implementation of the inline cost metrics rather than 00363 // treating them as truly abstract units etc. 00364 if (Caller->hasLocalLinkage() || Caller->hasLinkOnceODRLinkage()) { 00365 int TotalSecondaryCost = 0; 00366 // The candidate cost to be imposed upon the current function. 00367 int CandidateCost = IC.getCost() - (InlineConstants::CallPenalty + 1); 00368 // This bool tracks what happens if we do NOT inline C into B. 00369 bool callerWillBeRemoved = Caller->hasLocalLinkage(); 00370 // This bool tracks what happens if we DO inline C into B. 00371 bool inliningPreventsSomeOuterInline = false; 00372 for (User *U : Caller->users()) { 00373 CallSite CS2(U); 00374 00375 // If this isn't a call to Caller (it could be some other sort 00376 // of reference) skip it. Such references will prevent the caller 00377 // from being removed. 00378 if (!CS2 || CS2.getCalledFunction() != Caller) { 00379 callerWillBeRemoved = false; 00380 continue; 00381 } 00382 00383 InlineCost IC2 = getInlineCost(CS2); 00384 ++NumCallerCallersAnalyzed; 00385 if (!IC2) { 00386 callerWillBeRemoved = false; 00387 continue; 00388 } 00389 if (IC2.isAlways()) 00390 continue; 00391 00392 // See if inlining or original callsite would erase the cost delta of 00393 // this callsite. We subtract off the penalty for the call instruction, 00394 // which we would be deleting. 00395 if (IC2.getCostDelta() <= CandidateCost) { 00396 inliningPreventsSomeOuterInline = true; 00397 TotalSecondaryCost += IC2.getCost(); 00398 } 00399 } 00400 // If all outer calls to Caller would get inlined, the cost for the last 00401 // one is set very low by getInlineCost, in anticipation that Caller will 00402 // be removed entirely. We did not account for this above unless there 00403 // is only one caller of Caller. 00404 if (callerWillBeRemoved && !Caller->use_empty()) 00405 TotalSecondaryCost += InlineConstants::LastCallToStaticBonus; 00406 00407 if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) { 00408 DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() << 00409 " Cost = " << IC.getCost() << 00410 ", outer Cost = " << TotalSecondaryCost << '\n'); 00411 emitAnalysis( 00412 CS, Twine("Not inlining. Cost of inlining " + 00413 CS.getCalledFunction()->getName() + 00414 " increases the cost of inlining " + 00415 CS.getCaller()->getName() + " in other contexts")); 00416 return false; 00417 } 00418 } 00419 00420 DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() 00421 << ", thres=" << (IC.getCostDelta() + IC.getCost()) 00422 << ", Call: " << *CS.getInstruction() << '\n'); 00423 emitAnalysis( 00424 CS, CS.getCalledFunction()->getName() + Twine(" can be inlined into ") + 00425 CS.getCaller()->getName() + " with cost=" + Twine(IC.getCost()) + 00426 " (threshold=" + Twine(IC.getCostDelta() + IC.getCost()) + ")"); 00427 return true; 00428 } 00429 00430 /// InlineHistoryIncludes - Return true if the specified inline history ID 00431 /// indicates an inline history that includes the specified function. 00432 static bool InlineHistoryIncludes(Function *F, int InlineHistoryID, 00433 const SmallVectorImpl<std::pair<Function*, int> > &InlineHistory) { 00434 while (InlineHistoryID != -1) { 00435 assert(unsigned(InlineHistoryID) < InlineHistory.size() && 00436 "Invalid inline history ID"); 00437 if (InlineHistory[InlineHistoryID].first == F) 00438 return true; 00439 InlineHistoryID = InlineHistory[InlineHistoryID].second; 00440 } 00441 return false; 00442 } 00443 00444 bool Inliner::runOnSCC(CallGraphSCC &SCC) { 00445 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); 00446 AssumptionTracker *AT = &getAnalysis<AssumptionTracker>(); 00447 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 00448 const DataLayout *DL = DLP ? &DLP->getDataLayout() : nullptr; 00449 const TargetLibraryInfo *TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 00450 AliasAnalysis *AA = &getAnalysis<AliasAnalysis>(); 00451 00452 SmallPtrSet<Function*, 8> SCCFunctions; 00453 DEBUG(dbgs() << "Inliner visiting SCC:"); 00454 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 00455 Function *F = (*I)->getFunction(); 00456 if (F) SCCFunctions.insert(F); 00457 DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); 00458 } 00459 00460 // Scan through and identify all call sites ahead of time so that we only 00461 // inline call sites in the original functions, not call sites that result 00462 // from inlining other functions. 00463 SmallVector<std::pair<CallSite, int>, 16> CallSites; 00464 00465 // When inlining a callee produces new call sites, we want to keep track of 00466 // the fact that they were inlined from the callee. This allows us to avoid 00467 // infinite inlining in some obscure cases. To represent this, we use an 00468 // index into the InlineHistory vector. 00469 SmallVector<std::pair<Function*, int>, 8> InlineHistory; 00470 00471 for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) { 00472 Function *F = (*I)->getFunction(); 00473 if (!F) continue; 00474 00475 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) 00476 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { 00477 CallSite CS(cast<Value>(I)); 00478 // If this isn't a call, or it is a call to an intrinsic, it can 00479 // never be inlined. 00480 if (!CS || isa<IntrinsicInst>(I)) 00481 continue; 00482 00483 // If this is a direct call to an external function, we can never inline 00484 // it. If it is an indirect call, inlining may resolve it to be a 00485 // direct call, so we keep it. 00486 if (CS.getCalledFunction() && CS.getCalledFunction()->isDeclaration()) 00487 continue; 00488 00489 CallSites.push_back(std::make_pair(CS, -1)); 00490 } 00491 } 00492 00493 DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); 00494 00495 // If there are no calls in this function, exit early. 00496 if (CallSites.empty()) 00497 return false; 00498 00499 // Now that we have all of the call sites, move the ones to functions in the 00500 // current SCC to the end of the list. 00501 unsigned FirstCallInSCC = CallSites.size(); 00502 for (unsigned i = 0; i < FirstCallInSCC; ++i) 00503 if (Function *F = CallSites[i].first.getCalledFunction()) 00504 if (SCCFunctions.count(F)) 00505 std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); 00506 00507 00508 InlinedArrayAllocasTy InlinedArrayAllocas; 00509 InlineFunctionInfo InlineInfo(&CG, DL, AA, AT); 00510 00511 // Now that we have all of the call sites, loop over them and inline them if 00512 // it looks profitable to do so. 00513 bool Changed = false; 00514 bool LocalChange; 00515 do { 00516 LocalChange = false; 00517 // Iterate over the outer loop because inlining functions can cause indirect 00518 // calls to become direct calls. 00519 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { 00520 CallSite CS = CallSites[CSi].first; 00521 00522 Function *Caller = CS.getCaller(); 00523 Function *Callee = CS.getCalledFunction(); 00524 00525 // If this call site is dead and it is to a readonly function, we should 00526 // just delete the call instead of trying to inline it, regardless of 00527 // size. This happens because IPSCCP propagates the result out of the 00528 // call and then we're left with the dead call. 00529 if (isInstructionTriviallyDead(CS.getInstruction(), TLI)) { 00530 DEBUG(dbgs() << " -> Deleting dead call: " 00531 << *CS.getInstruction() << "\n"); 00532 // Update the call graph by deleting the edge from Callee to Caller. 00533 CG[Caller]->removeCallEdgeFor(CS); 00534 CS.getInstruction()->eraseFromParent(); 00535 ++NumCallsDeleted; 00536 } else { 00537 // We can only inline direct calls to non-declarations. 00538 if (!Callee || Callee->isDeclaration()) continue; 00539 00540 // If this call site was obtained by inlining another function, verify 00541 // that the include path for the function did not include the callee 00542 // itself. If so, we'd be recursively inlining the same function, 00543 // which would provide the same callsites, which would cause us to 00544 // infinitely inline. 00545 int InlineHistoryID = CallSites[CSi].second; 00546 if (InlineHistoryID != -1 && 00547 InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) 00548 continue; 00549 00550 LLVMContext &CallerCtx = Caller->getContext(); 00551 00552 // Get DebugLoc to report. CS will be invalid after Inliner. 00553 DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); 00554 00555 // If the policy determines that we should inline this function, 00556 // try to do so. 00557 if (!shouldInline(CS)) { 00558 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 00559 Twine(Callee->getName() + 00560 " will not be inlined into " + 00561 Caller->getName())); 00562 continue; 00563 } 00564 00565 // Attempt to inline the function. 00566 if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas, 00567 InlineHistoryID, InsertLifetime, DL)) { 00568 emitOptimizationRemarkMissed(CallerCtx, DEBUG_TYPE, *Caller, DLoc, 00569 Twine(Callee->getName() + 00570 " will not be inlined into " + 00571 Caller->getName())); 00572 continue; 00573 } 00574 ++NumInlined; 00575 00576 // Report the inline decision. 00577 emitOptimizationRemark( 00578 CallerCtx, DEBUG_TYPE, *Caller, DLoc, 00579 Twine(Callee->getName() + " inlined into " + Caller->getName())); 00580 00581 // If inlining this function gave us any new call sites, throw them 00582 // onto our worklist to process. They are useful inline candidates. 00583 if (!InlineInfo.InlinedCalls.empty()) { 00584 // Create a new inline history entry for this, so that we remember 00585 // that these new callsites came about due to inlining Callee. 00586 int NewHistoryID = InlineHistory.size(); 00587 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); 00588 00589 for (unsigned i = 0, e = InlineInfo.InlinedCalls.size(); 00590 i != e; ++i) { 00591 Value *Ptr = InlineInfo.InlinedCalls[i]; 00592 CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); 00593 } 00594 } 00595 } 00596 00597 // If we inlined or deleted the last possible call site to the function, 00598 // delete the function body now. 00599 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && 00600 // TODO: Can remove if in SCC now. 00601 !SCCFunctions.count(Callee) && 00602 00603 // The function may be apparently dead, but if there are indirect 00604 // callgraph references to the node, we cannot delete it yet, this 00605 // could invalidate the CGSCC iterator. 00606 CG[Callee]->getNumReferences() == 0) { 00607 DEBUG(dbgs() << " -> Deleting dead function: " 00608 << Callee->getName() << "\n"); 00609 CallGraphNode *CalleeNode = CG[Callee]; 00610 00611 // Remove any call graph edges from the callee to its callees. 00612 CalleeNode->removeAllCalledFunctions(); 00613 00614 // Removing the node for callee from the call graph and delete it. 00615 delete CG.removeFunctionFromModule(CalleeNode); 00616 ++NumDeleted; 00617 } 00618 00619 // Remove this call site from the list. If possible, use 00620 // swap/pop_back for efficiency, but do not use it if doing so would 00621 // move a call site to a function in this SCC before the 00622 // 'FirstCallInSCC' barrier. 00623 if (SCC.isSingular()) { 00624 CallSites[CSi] = CallSites.back(); 00625 CallSites.pop_back(); 00626 } else { 00627 CallSites.erase(CallSites.begin()+CSi); 00628 } 00629 --CSi; 00630 00631 Changed = true; 00632 LocalChange = true; 00633 } 00634 } while (LocalChange); 00635 00636 return Changed; 00637 } 00638 00639 // doFinalization - Remove now-dead linkonce functions at the end of 00640 // processing to avoid breaking the SCC traversal. 00641 bool Inliner::doFinalization(CallGraph &CG) { 00642 return removeDeadFunctions(CG); 00643 } 00644 00645 /// removeDeadFunctions - Remove dead functions that are not included in 00646 /// DNR (Do Not Remove) list. 00647 bool Inliner::removeDeadFunctions(CallGraph &CG, bool AlwaysInlineOnly) { 00648 SmallVector<CallGraphNode*, 16> FunctionsToRemove; 00649 00650 // Scan for all of the functions, looking for ones that should now be removed 00651 // from the program. Insert the dead ones in the FunctionsToRemove set. 00652 for (CallGraph::iterator I = CG.begin(), E = CG.end(); I != E; ++I) { 00653 CallGraphNode *CGN = I->second; 00654 Function *F = CGN->getFunction(); 00655 if (!F || F->isDeclaration()) 00656 continue; 00657 00658 // Handle the case when this function is called and we only want to care 00659 // about always-inline functions. This is a bit of a hack to share code 00660 // between here and the InlineAlways pass. 00661 if (AlwaysInlineOnly && 00662 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 00663 Attribute::AlwaysInline)) 00664 continue; 00665 00666 // If the only remaining users of the function are dead constants, remove 00667 // them. 00668 F->removeDeadConstantUsers(); 00669 00670 if (!F->isDefTriviallyDead()) 00671 continue; 00672 00673 // Remove any call graph edges from the function to its callees. 00674 CGN->removeAllCalledFunctions(); 00675 00676 // Remove any edges from the external node to the function's call graph 00677 // node. These edges might have been made irrelegant due to 00678 // optimization of the program. 00679 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); 00680 00681 // Removing the node for callee from the call graph and delete it. 00682 FunctionsToRemove.push_back(CGN); 00683 } 00684 if (FunctionsToRemove.empty()) 00685 return false; 00686 00687 // Now that we know which functions to delete, do so. We didn't want to do 00688 // this inline, because that would invalidate our CallGraph::iterator 00689 // objects. :( 00690 // 00691 // Note that it doesn't matter that we are iterating over a non-stable order 00692 // here to do this, it doesn't matter which order the functions are deleted 00693 // in. 00694 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); 00695 FunctionsToRemove.erase(std::unique(FunctionsToRemove.begin(), 00696 FunctionsToRemove.end()), 00697 FunctionsToRemove.end()); 00698 for (SmallVectorImpl<CallGraphNode *>::iterator I = FunctionsToRemove.begin(), 00699 E = FunctionsToRemove.end(); 00700 I != E; ++I) { 00701 delete CG.removeFunctionFromModule(*I); 00702 ++NumDeleted; 00703 } 00704 return true; 00705 }